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For ideal projectile motion, which starts and ends at the same height, maximum range is achieved
when the firing angle is 45°. If air resistance is taken into account, the optimal angle is somewhat
less than 45° and this is often considered obvious. We show here that it is not obvious by
considering drag forces with different dependence on projectile speed. In some cases maximum
range is achieved for launch angles greater than 45°. Simple physical arguments are given which
help explain results that were found by computing trajectories and ranges. ©1998 American

Association of Physics Teachers.
n
or
ed

ng
or
o

ir

ir

e
.’

to
in
a
e

ts
hi
ro
ica
is
rc
e

le
ro

em
q

do
fo
it
t
i

ry

t
fo

ts
re-

the

the
ted

for
:

s

a-

gth
e

ag

n-
n

er-
al

ger
If mechanics is food for thought, then projectile motio
provides much of the starch at the beginning of introduct
physics courses. One of the more interesting results serv
the relationship of the range~horizontal distance traveled! of
a projectile and the angleu of inclination at its launch. For a
fixed initial speed, and for negligible air resistance, the ra
is a function ofu that is symmetric about 45°. The range f
30°, for example, is the same as the range for 60°. The
timal angle, i.e., the angle for maximum range, is 45°.

A more difficult question is what the optimal angle is if a
resistance is taken into account.1 It is semicommon knowl-
edge that maximum range, when the resistance of still a
taken into account, occurs for angles less than 45°.2 But is
this answer obvious? An informal survey of our colleagu
revealed that the immediate reaction is ‘‘yes, it’s obvious
This seems to be related to the fact that a lower trajec
reduces the time and distance of flight, therefore minimiz
the time and distance over which the drag force due to the
is acting. This point, in fact, is explicitly made in one of th
texts.3 Another introductory textbook4 clearly treats the issue
as obvious, since the question is assigned to the studen
the end of the chapter on two-dimensional motion. At t
point in the text, Newton’s laws have not even been int
duced, let alone a description of air resistance. The impl
tion is that the decrease in the optimal launching angle
robust result, independent of the details of the resistive fo
This, in fact, is precisely what seems to be proved in a rec
publication in this Journal,5 i.e., that for any force directed
opposite to the velocity of the projectile, the optimal ang
cannot be greater than 45°. The proof, however, suffers f
a flaw in the formulation of the problem,6 so the question
remains open and interesting.

One can get a first insight into the nature of the probl
by considering 30° and 60° launches, cases that have e
range in the absence of air resistance. The 60° trajectory
indeed give air drag more time and distance to act. But
the 30° trajectory the projectile spends a larger fraction of
time at speeds near the maximum speed. This suggests
the more strongly we make the resistive force increase w
velocity, the more it will act to shorten the 30° trajecto
relative to the 60° trajectory.

Figure 1 shows the results of a numerical computation
test this idea. The figure shows 30° and 60° trajectories
two types of resistance:~i! ‘‘standard’’ air drag proportional
to v2, wherev is the speed of the projectile; and~ii ! drag
109 Am. J. Phys.66 ~2!, February 1998
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proportional tov8. In both cases, the resistive force ac
antiparallel to the velocity vector. The results show—as p
dicted by the above argument—that for drag;v8, the 30°
trajectory is shortened more drastically by resistance than
60° trajectory; for drag;v2, the 60° trajectory is more
strongly affected.

The above results encourage further investigation into
way trajectories are affected. To do this, we have compu
trajectories based on the following equation of motion
drag forces proportional to thenth power of projectile speed

dv

dt
52

l

m
vvn212gĵ , ~1!

where v is the velocity of a particle of massm, which is
affected by a gravitational accelerationg, taken to act in the
negativey direction. We limit our attention to drag force
that vary as a power of the projectile speed.

It is useful to note at the outset some scaling simplific
tions. If we denote the initial speed of the projectile byv0 ,
then all length scales can be scaled by the natural len
scalev0

2/g of the problem. For the dynamics, we scale tim
by the natural time scalev0 /g, replacing t by T[tg/v0 .
Thus, if we introduce the dimensionless velocityu[v/v0 ,
Eq. ~1! reduces to

du

dT
52kuun212 ĵ , ~2!

wherek[lv0
n/mg is the ratio of the initial drag force to the

weight of the projectile. Since the initial condition in Eq.~2!
is u051, the problem is completely specified by the dr
parametersk andn, and by the launch angleu.

Numerical solution of the above equation of motion co
firms that aiming high is often the way to go far. In additio
to debunking the ‘‘obvious’’ nature of the ‘‘always aim
low’’ philosophy, the numerical results, and other consid
ations, lead to the following observations about optim
angles.

~i! The optimal angle of launch isgreater than45° when
n, the exponent of the velocity dependence, is lar
than some critical valuencrit , which is around 3.5.
109© 1998 American Association of Physics Teachers
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The precise value ofncrit depends on the strength o
the drag~i.e., on k!, increasing as drag strength in
creases.

~ii ! For n much less thanncrit and strong drag, the trajec
tories are very skewed; the descent from the ma
mum height is much steeper than the ascent to
height. There is no such distortion of the trajector
whenn is much greater thanncrit . This point is illus-
trated in Fig. 2.

~iii ! For n58 andk5100, the optimal angle is found to b
47.0°. Forn.ncrit parameters could not be found fo
which the optimal angle is much larger than 47°. Th
is quite different from then,ncrit case in which
strong drag leads to very shallow optimal angles.

~iv! For extremelystrong drag and largen, the optimal
angle is, as in the case of smalln, less than 45°.

Most of these results can be understood as more than
computer output. The most basic issue, then dependence o
the optimal angle, can be understood with a calculat
based on the two ways in which drag affects the range: F
it reduces the time the projectile is in the air, and second
reduces the horizontal velocity. This can be quantified wit
calculation in the limit of weak drag, i.e., a calculation
first order in the drag parameterk. This weak-limit calcula-
tion is useful in that it gives a definitive proof thatuopt can be
more than 45°, a proof that is independent of the difficult
that can cloud numerical results. This calculation unfor
nately is not light reading, and has been relegated to
Appendix. It is recommended only to readers with the req
site skepticism and tolerance for details. The results of
calculation are rather more interesting than the calcula
itself, and are shown in Fig. 3. Since the deviation of t
optimal angle from 45° is proportional tok, we plot du/k

Fig. 1. Trajectories are shown for 30° and 60° launch angles, in the ca
two types of drag; one for whichn52, and one for whichn58. The n
52 drag has a stronger shortening effect on the 60° trajectory, wherea
n58 drag has a stronger shortening effect on the 30° trajectory. Thex,y
coordinates are normalized by the natural length scalev0

2/g of the problem,
where g is the acceleration of gravity andv0 is the initial speed of the
projectile. For both then52 andn58 drag laws, the dimensionless ind
cator of damping strength,lv0

n/mg, has been taken to be unity. Note als
that x51 corresponds to maximum range for the drag-free case.
110 Am. J. Phys., Vol. 66, No. 2, February 1998
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[(uopt245°)/k, whereuopt is the angle for maximum range
A key result is thatncrit53.4148... in the limit of weak drag

The calculation in the Appendix, then, can be taken as
‘‘explanation’’ of observation~i! above. Explanations of ob
servations~ii !–~iv! above lie in a rather simple picture of th
effect of air drag for largen. In the case of largen, the
drag—if it is of any importance at all—is ferociously stron
at the beginning of the launch, immediately slows down
projectile to a speed at which the drag is a small force co
pared to the weight of the projectile, and thereafter is un
portant. Largen drag, therefore, is confined to a very sma
portion of the beginning of the trajectory. This by itself give
an immediate explanation of observation~ii ! and of the re-
sults presented in Fig. 2. A calculation based on this pict
explains the remaining observations.

To do the calculation, let us imagine that the drag is
fective only during the very small initial portion of the tra
jectory pictured in Fig. 4, and that the subsequent motion
a drag-free parabola. Let us denote byv trans the speed of the
projectile at which the drag/no-drag transition occurs, and
us denote byH the height at which the transition occur
Further, let us suppose that during the strong drag phase
velocity vector is rotated downward by gravity an amou
dugrav. If a projectile is launched from heightH, the angle
for maximum range to a target at zero height is less than 4
It is straightforward to show that for smallH ~i.e., for H
!v trans

2 /g! the optimal angle is 45°2duH , where

duH5 1
2gH/v trans

2 . ~3!

of

the

Fig. 2. The shape of 30° trajectories for various drag laws. The lown laws
produce a very skewed orbit with a descent much steeper than ascen
largen, the trajectories are very nearly parabolic. Thex,y coordinates are
normalized by the natural length scalev0

2/g of the problem, whereg is the
acceleration of gravity andv0 is the initial speed of the projectile.
110R. H. Price and J. D. Romano
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If the time for the projectile to ascend to the transition ist,
then, due to the influence of gravity, the projectile will ha
a velocity vector at the transition that is rotated downwa
from its original direction by an amount

dugrav5gt/&v trans, ~4!

where we have assumed that the angle during the drag p
was approximately 45°.

The important question is whetherduH or dugrav is larger.
If duH is larger, then one needs to adjust the initial firi
angle to somewhat below 45°, so that the projectile will
optimally aimed when it starts its drag-free motion. If, on t
other hand,dugrav is larger, gravity rotates the velocity vecto

Fig. 3. The deviation of the optimal angle from 45° as a function of the d
exponentn, in the limit of weak drag. The deviationdu is proportional tok,
the dimensionless constant expressing the ratio of the initial drag forc
the weight of the projectile. Note that the optimal angle changes from be
45° to above 45° at aroundn53.41.

Fig. 4. The transition from drag-dominated to drag-free motion in the c
of very largen.
111 Am. J. Phys., Vol. 66, No. 2, February 1998
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too far down, and one must fire a bit above 45° for t
projectile to be optimally aimed when it starts its drag-fr
motion.

To get insight into the relative size ofduH anddugrav, let
us write H5āt2/2&, where ā is the appropriate averag
acceleration during the drag phase. In terms ofā, we have

duH

dugrav
5

āt

4v trans
. ~5!

Roughly speaking,āt is the amount by which the speed o
the projectile was reduced during the drag phase. For w
drag, this reduction will be a small fraction of the initia
speedv0 , and we will haveāt!v0'v trans. This argument
then predicts that for weak drag and largen, the ratio in Eq.
~5! will be much smaller than unity, and hence one must a
higher than 45° for maximum range. This conclusion is
agreement with the weak drag analysis of the Appendix.

On the other hand, for very strong drag—i.e., drag
which v trans!v0—the ratio in Eq.~5! will be large. In this
case, the need for a reduction in the angle due to the heig
larger than the rotation of the velocity by gravity. This arg
ment, then, predicts that in the case of largen and very
strong drag, the optimal angle is less than 45°, just as it is
small n drag of any strength. This prediction has been co
firmed with numerical integration of the equations of motio
The numerical problem is delicate since very largen requires
a very small step size in time. To find numerical solution
we were forced to use an adaptive step-size routine an
very small value of largen. More specifically, we usedn
54, which is a value ofn just large enough so that for wea
drag the optimal angle is above 45°. We computed trajec
ries for k50.1 and fork51015, and found an optimal angle
above 45° for the first case, and approximately 42° for
second.

This strong drag reversal explains why, for largen, it is
impossible to have an optimal angle much above 45°.
smallk ~i.e., for weak drag! the increase of the optimal angl
above 45° is proportional tok. If we try to increase the
optimal angle by increasingk, we leave the weak drag re
gime and find that we are in fact decreasing the optim
angle. It almost seems that there is a moral lesson here a
trying to aim too high, but a consideration of that hypothe
goes beyond the scope of this paper.
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APPENDIX

Here we analyze the solutions of Eq.~2! to first order ink
for a projectile starting with velocity components (ux0 ,uy0)
5(cosu,sinu). We start with they ~vertical! component of
the equation, initially limited to the timeT50 to T5T1 ,
during which the projectile is rising:
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duy

dT
5212kuy@ux

21uy
2#p. ~6!

Here we have introducedp[(n21)/2. Actually, for analyz-
ing the ascending phase of the motion, it is more conven
to work with the time-reversed equation:

dũy

dT̃
5211kũy@ ũ x

21ũ y
2#p, ~7!

whereũx[dx/dT̃ and ũy[dy/dT̃. Equation~7! is obtained
from Eq. ~6! by introducing a new time variableT̃[T1

2T. @A tilde (˜) is used to distinguish a time-reversed va
able from its ‘‘forward-in-time’’ counterpart.# In this de-
scription, the projectile descends from timeT̃50 to T̃
5T1 , starting with vertical velocityũy50 and ending with
ũy52uy0 . We chose to solve the time-reversed equat
because of its simpler initial condition.

We can findũy as a function ofT̃ by approximatingũx

'2ux0 ~correct to lowest order ink! and integrating Eq.~7!:

T̃5E
0

T̃
dT̄5E

0

ũy dūy

211kūy@ux0
2 1ū y

2#p . ~8!

To first order ink, this gives

T̃52ũy2kE
0

ũy
ūy@ux0

2 1ū y
2#pdūy ~9!

52ũy1
k

2~p11!
@ux0

2~p11!2~ux0
2 1ũ y

2!~p11!# ~10!

52ũy1
k

2~p11!
@ux0

2~p11!2~ux0
2 1T̃ 2!~p11!#, ~11!

where the approximationũy'2T̃ ~correct to lowest order in
k! has been used on the right-hand side. We can now find
maximum heightH of the trajectory by integratingũy from
T̃5T1 ~when the projectile is at ground level! to T̃50 ~when
the projectile is at its peak!:

H5E
T1

0

ũydT̃ ~12!

5
1

2
T1

22
k

2~p11! Fux0
2~p11!T12E

0

T1'uy0
~ux0

2

1T̃ 2!p11dT̃G ~13!

5
1

2
T1

22
k

2~p11!Fux0
2~p11!T12uy0

2p13

3E
0

1

~cot2u1j2!p11djG . ~14!

Here, we have replacedux0 /uy0 by cotu, where u is the
angle at which the projectile is launched.

We now consider the descent of the projectile, and re
the ~forward-in-time! clock so that it starts atT50. We let
T2 stand for the time at which the projectile reaches grou
level ~i.e., the starting height! again. For this case, we choos
to solve the forward-in-time Eq.~6!. This equation is identi-
cal to Eq.~7! except for the sign of the drag term. Also, th
112 Am. J. Phys., Vol. 66, No. 2, February 1998
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initial condition ~uy50 at T50! in terms of the forward-in-
time variables is identical to that for the ascent of the p
jectile in terms of the time-reversed variables. Thus, by s
ply reversing the sign of the drag term and replacingT1

everywhere byT2 , it follows immediately from Eq.~14! that
H is also given by

H5
1

2
T2

21
k

2~p11! Fux0
2~p11!T22uy0

2p13

3E
0

1

~cot2 u1j2!p11djG . ~15!

By subtracting ~14! from ~15!, and using 1
2(T2

22T1
2)

'uy0(T22T1) ~which is correct to first order ink!, it fol-
lows that

T22T15
k

~p11! Fuy0
2~p11!E

0

1

~cot2 u1j2!p11dj2ux0
2~p11!G .

~16!

Also, by settingũy52uy0 at T̃5T1 in Eq. ~10!, we get

2T152uy02
k

~p11!
@12ux0

2~p11!#. ~17!

Finally, we add these last two results to obtainTtot , the total
time of flight of the projectile:

Ttot[T11T252uy01
k

~p11!

3Fuy0
2~p11!E

0

1

~cot2 u1j2!p11dj21G .
~18!

Next we consider the equation

dux

dT
52kux@ux

21uy
2#p ~19!

for the horizontal motion, and in the drag term make t
lowest order approximationux'ux0 anduy'(uy02T):

dux

dT
52kux0@ux0

2 1~uy02T!2#p. ~20!

We now integrate this equation to arrive at

ux5ux02kux0E
0

T

@ux0
2 1~uy02T̄!2#pdT̄. ~21!

To find the rangeR, we integrateux from T50 to T5Ttot ,
using the approximationTtot'2uy0 in terms that are already
first order ink:

R5ux0Ttot2kux0E
0

2uy0
dTE

0

T

@ux0
2 1~uy02T̄!2#pdT̄.

~22!

The double integral in the expression can be simplified
changing the order of integration:
112R. H. Price and J. D. Romano
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0

2uy0
dTE

0

T

@ux0
2 1~uy02T̄!2#pdT̄

5E
0

2uy0
dT̄E

T̄

2uy0
@ux0

2 1~uy02T̄!2#pdT ~23!

5E
0

2uy0
~2uy02T̄!@ux0

2 1~uy02 t̄ !2#pdT̄ ~24!

5E
0

2uy0
uy0@ux0

2 1~uy02T̄!2#pdT̄1E
0

2uy0
~uy02T̄!

3@ux0
2 1~uy02T̄!2#pdT̄. ~25!

The second integral above vanishes by symmetry, and
first can be written as

2uy0
2~p11!E

0

1

~cot2 u1j2!pdj. ~26!

We can now use this result, and Eq.~18!, in Eq. ~22! to
arrive at an expression for the range that is correct to
order ink. We express the result in terms of the launch an
u, replacingux0 , uy0 by cosu, sinu. The result is

R52 sin u cosu1kF ~u!, ~27!

where

F ~u![
cosu

~p11! F ~sin u!2~p11!E
0

1

~cot2 u1j2!p11dj21G
22 cosu ~sin u!2~p11!E

0

1

~cot2 u1j2!pdj. ~28!

To find the critical value ofn, we now differentiateF ~u!
with respect tou and evaluate it at 45°:
113 Am. J. Phys., Vol. 66, No. 2, February 1998
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F 8u45°5
1

&

F 1

~p11! S 11
2p11

2p11 E
0

1

~11j2!p11dj D
2

2p13

2p E
0

1

~11j2!pdj

1
2p

2~p21! E
0

1

~11j2!p21djG . ~29!

This expression is easily evaluated numerically and is fou
to be negative for smallp, changing to positive atp
51.2074... . This means that in the limit of weak drag, t
optimal angle changes from less than 45° to greater an
52p1153.4148... .

For weak drag the optimal angle can be written as 4
1du, wheredu is first order ink. From the definition ofF
it follows thatdu/k5 1

4F 8u45° . It is this quantity that is plot-
ted in Fig. 3. As a check, we computeddu/k directly without
simplifying the double integrals occurring in Eq.~22!. The
results were in excellent agreement with those given by
~29! and in Fig. 3.

1We do not wish to wander too deeply into real world effects. For proj
tiles traveling very large distances, the decrease in atmospheric de
favors high angles of launch.@See D. Halliday, R. Resnick, and J. Walke
Fundamentals of Physics~Wiley, New York, 1981!, 5th ed., Question 16,
p. 73.# Here we consider a flat earth and homogeneous atmosphere.
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SCORNING THE BASE DEGREES

We need notice at the moment only that the choice of the simplest law that fits the facts is an
essential part of procedure in applied mathematics, and cannot be justified by the methods of
deductive logic. It is, however, rarely stated, and when it is stated it is usually in a manner
suggesting that it is something to be ashamed of. We may recall the words to Brutus.

But ’tis a common proof
That lowliness is young ambition’s ladder,
Whereto the climber upward turns his face;
But when he once attains the upmost round,
He then unto the ladder turns his back,
Looks in the clouds, scorning the base degrees
By which he did ascend.

Harold Jeffreys,Theory of Probability~Oxford University Press, 1939!, p. 4.
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