Aim high and go far—Optimal projectile launch angles greater than 45°
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For ideal projectile motion, which starts and ends at the same height, maximum range is achieved
when the firing angle is 45°. If air resistance is taken into account, the optimal angle is somewhat
less than 45° and this is often considered obvious. We show here that it is not obvious by
considering drag forces with different dependence on projectile speed. In some cases maximum
range is achieved for launch angles greater than 45°. Simple physical arguments are given which
help explain results that were found by computing trajectories and ranges.9980American
Association of Physics Teachers.

If mechanics is food for thought, then projectile motion proportional tov®. In both cases, the resistive force acts
provides much of the starch at the beginning of introductoryantiparallel to the velocity vector. The results show—as pre-
physics courses. One of the more interesting results served dficted by the above argument—that for drag?®, the 30°
the relationship of the rangéorizontal distance travelgdf  trajectory is shortened more drastically by resistance than the
a projectile and the angle of inclination at its launch. For a gQ° trajectory; for drag~v?, the 60° trajectory is more
fixed initial speed, and for negligible air resistance, the rang&trongly affected.
is a function ofé that is symmetric about 45°. The range for  The above results encourage further investigation into the
30°, for example, is the same as the range for 60°. The opway trajectories are affected. To do this, we have computed
timal angle, i.e., the angle for maximum range, is 45°. trajectories based on the following equation of motion for

A more difficult question is what the optimal angle is if air drag forces proportional to theth power of projectile speed:
resistance is taken into accodnit is semicommon knowl-

edge that maximum range, when the resistance of still air is dv N R

taken into account, occurs for angles less than®4Bet is —=——w" g, (D
this answer obvious? An informal survey of our colleagues dt m

revealed that the immediate reaction is “yes, it's obvious.”

This seems to be related to the fact that a lower trajectoryvherev is the velocity of a particle of mass, which is
reduces the time and distance of flight, therefore minimizingaffected by a gravitational acceleratigntaken to act in the
the time and distance over which the drag force due to the ainegativey direction. We limit our attention to drag forces
is acting. This point, in fact, is explicity made in one of the that vary as a power of the projectile speed.

texts® Another introductory textbodiclearly treats the issue It is useful to note at the outset some scaling simplifica-
as obvious, since the question is assigned to the students t#dns. If we denote the initial speed of the projectile dy;

the end of the chapter on two-dimensional motion. At thisthen all length scales can be scaled by the natural length
point in the text, Newton’s laws have not even been intro-scaley2/g of the problem. For the dynamics, we scale time
duced, let alone a description of air resistance. The |mpI|caby the natural time scaley/g, replacingt by T=tg/v,.

tion is that the decrease in the optimal launching angle is #Fhus. if we introduce the dimensionless velocitye v/v
robust result, independent of the details of the resistive force%q (1’) reduces 1o 01
Ea-

This, in fact, is precisely what seems to be proved in a rece

publication in this Journal,i.e., that for any force directed

opposite to the velocity of the projectile, the optimal angle d_u: _ kuun—l_j‘ )

cannot be greater than 45°. The proof, however, suffers from dT '

a flaw in the formulation of the problefhso the question

remains open and interesting. wherek=\vg/mg s the ratio of the initial drag force to the
One can get a first insight into the nature of the problemyeijght of the projectile. Since the initial condition in E&)

by considering 30° and 60° launches, cases that have equal, 1, the problem is completely specified by the drag

range in the absence of air resistance. The 60° trajectory do?)%rametersk andn, and by the launch angle

indeed give air drag more time and distance to act. But fo Numerical solution of the above equation of motion con-

t_he 30° trajectory the projectik_a spends a Iarge_r fraction of itsfir s that aiming high is often the way to go far. In addition

time at speeds near the maximum speed. This suggests that jop, \n1ing the “obvious” nature of the “always aim

the more strongly we make the resistive force increase Wltipow,, philosophy, the numerical results, and other consider-

velocity, the more it will act to shorten the 30° rajectory aiiong, |ead to the following observations about optimal
relative to the 60° trajectory. angles

Figure 1 shows the results of a numerical computation to
test this idea. The figure shows 30° and 60° trajectories fofi) The optimal angle of launch reater thard5° when
two types of resistancéi) “standard” air drag proportional n, the exponent of the velocity dependence, is larger
to v2, wherev is the speed of the projectile; arfi) drag than some critical value;, which is around 3.5.
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Fig. 1. Trajectories are shown for 30° and 60° launch angles, in the case ¢

two types of drag; one for which=2, and one for whicm=8. Then

=2 drag has a stronger shortening effect on the 60° trajectory, whereas th

n=8 drag has a stronger shortening effect on the 30° trajectory.xT\he

coordinates are normalized by the natural length sa@g of the problem,

where g is the acceleration of gravity and, is the initial speed of the \
projectile. For both they=2 andn=8 drag laws, the dimensionless indi- 0.000 5o .05 0.10 015 0.20
cator of damping strengtihvg/mg, has been taken to be unity. Note also X(g/Voz)

thatx=1 corresponds to maximum range for the drag-free case.

Fig. 2. The shape of 30° trajectories for various drag laws. Therldaws
produce a very skewed orbit with a descent much steeper than ascent. For
largen, the trajectories are very nearly parabolic. Dhg coordinates are

. normalized by the natural length scajé/g of the problem, wherg is the
The precise value ofiy;; depends on the strength of acceleration of gravity and, is the initial speed of the projectile.

the drag(i.e., onk), increasing as drag strength in-
creases.
(i)  Forn much less tham.;; and strong drag, the trajec-
tories are very skewed; the descent from the maxi=(6op—45°)/K, whereé, is the angle for maximum range.
mum height is much steeper than the ascent to thad key result is than,;;=3.4148... in the limit of weak drag.
height. There is no such distortion of the trajectories The calculation in the Appendix, then, can be taken as an
whenn is much greater than,;;. This point is illus-  “explanation” of observation(i) above. Explanations of ob-
trated in Fig. 2. servationgii)—(iv) above lie in a rather simple picture of the
(i) Forn=8 andk=100, the optimal angle is found to be effect of air drag for largen. In the case of large, the
47.0°. Forn>n,;; parameters could not be found for drag—if it is of any importance at all—is ferociously strong
which the optimal angle is much larger than 47°. Thisat the beginning of the launch, immediately slows down the
is quite different from then<ng; case in which Projectile to a speed at which the drag is a small force com-
strong drag leads to very shallow optimal angles. ~ Pared to the weight of the projectile, and thereafter is unim-
(iv)  For extremelystrong drag and large, the optimal ~ Portant. Largen drag, therefore, is confined to a very small
angle is, as in the case of small less than 45°. portion of the beginning of the trajectory. This by itself gives
an immediate explanation of observatiGi) and of the re-
Most of these results can be understood as more than justiits presented in Fig. 2. A calculation based on this picture
computer output. The most basic issue, thdependence of explains the remaining observations.
the optimal angle, can be understood with a calculation To do the calculation, let us imagine that the drag is ef-
based on the two ways in which drag affects the range: Firsfective only during the very small initial portion of the tra-
it reduces the time the projectile is in the air, and second, ifectory pictured in Fig. 4, and that the subsequent motion is
reduces the horizontal velocity. This can be quantified with & drag-free parabola. Let us denotedyy,sthe speed of the
calculation in the limit of weak drag, i.e., a calculation to projectile at which the drag/no-drag transition occurs, and let
first order in the drag parametkr This weak-limit calcula- us denote byH the height at which the transition occurs.
tion is useful in that it gives a definitive proof thé,.can be  Further, let us suppose that during the strong drag phase the
more than 45°, a proof that is independent of the difficultiesvelocity vector is rotated downward by gravity an amount
that can cloud numerical results. This calculation unfortu-5¢,,,. If a projectile is launched from heiglt, the angle
nately is not light reading, and has been relegated to thér maximum range to a target at zero height is less than 45°.
Appendix. It is recommended only to readers with the requidt is straightforward to show that for smal (i.e., for H
site ske_pt|C|sm and tolerance; for de_talls. The results of t_ha%vtzrangg) the optimal angle is 45 56,,, where
calculation are rather more interesting than the calculation
itself, and are shown in Fig. 3. Since the deviation of the ) )
optimal angle from 45° is proportional o, we plot 56/k 00n=39H/v{ans )

110 Am. J. Phys., Vol. 66, No. 2, February 1998 R. H. Price and J. D. Romano 110



too far down, and one must fire a bit above 45° for the
projectile to be optimally aimed when it starts its drag-free
motion.

To get insight into the relative size @, and 66y,,, let
us write H=ar?/2v2, wherea is the appropriate average
0.05 - 7] acceleration during the drag phase. In termsofve have
504 ar

= ®)

5egrav 40 yrans

0.00 Roughly speakingar is the amount by which the speed of
the projectile was reduced during the drag phase. For weak
drag, this reduction will be a small fraction of the initial
speedv,, and we will havear<uvy=~vans This argument
-0.05 | ‘ . then predicts that for weak drag and larmgethe ratio in Eq.
(5) will be much smaller than unity, and hence one must aim
higher than 45° for maximum range. This conclusion is in
agreement with the weak drag analysis of the Appendix.
oo L | On the other hand, for very strong drag—i.e., drag for
- which vy,,s<v—the ratio in Eqg.(5) will be large. In this
case, the need for a reduction in the angle due to the height is
larger than the rotation of the velocity by gravity. This argu-
ment, then, predicts that in the case of lamgeand very
015 . : strong drag, the optimal angle is less than 45°, just as it is for
n smalln drag of any strength. This prediction has been con-
firmed with numerical integration of the equations of motion.
Fig. 3. The deviation of the optimal angle from 45° as a function of the drag1 € numerical problem is delicate since very langequires
exponenn, in the limit of weak drag. The deviatiof¢ is proportional tck, a very small step size in time. To find numerical solutions,
the dimensionless constant expressing the ratio of the initial drag force tgye were forced to use an adaptive step-size routine and a
the weight of the projectile. Note that the optimal angle changes from belov‘(,ery small value of |argm_ More specifically, we used
45° to above 45° at arouna=3.41. Lo .
=4, which is a value of just large enough so that for weak
drag the optimal angle is above 45°. We computed trajecto-
ries fork=0.1 and fork=10%, and found an optimal angle
If the time for the projectile to ascend to the transitiorris  above 45° for the first case, and approximately 42° for the
then, due to the influence of gravity, the projectile will have second.
a velocity vector at the transition that is rotated downward Thjs strong drag reversal explains why, for langeit is
from its original direction by an amount impossible to have an optimal angle much above 45°. For
80grav=97IV2V yrans, (4) smallk (i.e.,_for weak (_jragthe increase of the_optimal angle
above 45° is proportional t&. If we try to increase the

where we have assumed that the angle during the drag phase.. . .
was approximately 45°. optimal angle by increasing, we leave the weak drag re-

. S . gime and find that we are in fact decreasing the optimal
if -g;e mp:ortant (tq#estmn IS WhgthtéﬁH (;)_r 5,[0%;?" IS '_‘;"_rﬁ’efﬂ angle. It almost seems that there is a moral lesson here about
H IS larger, then one neoe S 10 adjust the iniial TInng yving to aim too high, but a consideration of that hypothesis
angle to somewhat below 45°, so that the projectile will begoes beyond the scope of this paper.
optimally aimed when it starts its drag-free motion. If, on the

other handgéy,, is larger, gravity rotates the velocity vector

36/k (radians)
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APPENDIX

Here we analyze the solutions of EQ) to first order ink
for a projectile starting with velocity components,,uy)
=(cosé,sin §). We start with they (vertica) component of

Fig. 4. The transition from drag-dominated to drag-free motion in the caséhe_ E'quati_on, initia”){ “mite_d t_O_the timd=0 to T=T,,
of very largen. during which the projectile is rising:
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du, 2 2vp initial condition (uy=0 atT=0) in terms of the forward-in-
9T 1-kuy[us+ug]P. (6)  time variables is identical to that for the ascent of the pro-
jectile in terms of the time-reversed variables. Thus, by sim-

Here we have introducepl=(n—1)/2. Actually, for analyz-  ply reversing the sign of the drag term and replacihg

ing the ascending phase of the motion, it is more conveniendyerywhere by, it follows immediately from Eq(14) that
to work with the time-reversed equation: H is also given by

dd, ~ =2, =02
F:—lﬁtkuy[u s U, (7)

H 1 T%—i— 2(p+1)T +3

2(pt+1)
wheret,=dx/dT anduy,=dy/dT. Equation(7) is obtained
from Eqg. (6) by introducing a new time variabl@=T,
—T. [Atilde (7) is used to distinguish a time-reversed vari-

><f1(cot2 0+ &P dg|. (15)
0

able from its “forward-in-time” counterpar. In this de-

scription, the projectile descends from tinle=0 to T

=T,, starting with vertical velocitﬁjy=0 and ending with

u,=-—u
y
because of its simpler initial condition.
We can findu, as a function ofT by approximating,
~ — Uy (correct to lowest order ik) and integrating Eq.7):

= (7= (W duy
T=| dT= — . 8
f; f(; —1+kufug+u ;P ®

By subtracting (14) from (15), and using ¥(T5—T3)
~Uyo(T,—Ty) (which is correct to first order i), it fol-
lows that

yo- We chose to solve the time-reversed equation

To—Ty=

k
+1) 2”’*”] (cof g+ &3P idg—uiPHY

(16)

Also, by settingty= —uyq atT=T, in Eq. (10), we get

To first order ink, this gives 2T;=2uy— (le: Y [1— uxop+1)]_ (17)
T~ %2 a2
=" kJ; Uyl Uso + U y]°duy ©) Finally, we add these last two results to obt#ig, the total
time of flight of the projectile:
==Ty+5 (p+ 3 [ = (Ut TP (10

TtotET1+T2: 2Uy0+ (pTl)

k ~
—_7 2(p+1) 2 2\(p+1)
uy+ (p+1) [ (UX0+T ) ]1 (11)
where the approximatiouy~ -T (correct to lowest order in
k) has been used on the right-hand side. We can now find the (18
maximum heightH of the trajectory by integrgtin’ﬁy from

T=T, (when the projectile is at ground leyab T=0 (when

1
X u%‘”l)fo(col2 0+ ¢2)PHide—1 ).

Next we consider the equation

the projectile is at its peak duy )
o a7 = —ku[uy+uy]? (19
Hzf u,dT (12
T for the horizontal motion, and in the drag term make the
_} 12 2(p+1)_|_ lewuyo(uz lowest order approximation,~ u,, andu,~ (uyo—T):
2 1 2(p+1) 0 x0 du
X
B B 7 = ~ Kol Ut (uyo=T)?PP. (20
+T 2)p+1dT} (13
We now integrate this equation to arrive at
1 T2 2P+, —y2p+e T — =
2 2(pt1) ux=uxo—kuxof0 [Ukot (Uyo—T)“]PdT. (21)
1
X fo (cofg+£2)PH1dg . (14 To find the rangeR, we integrateu, from T=0 to T= Ty,

using the approximatioif,~2uy, in terms that are already

Here, we have replaced,,/uy by coté, where ¢ is the first order ink:

angle at which the projectile is launched.

We now consider the descent of the projectile, and reset B 2uyg T T
the (forward-in-time clock so that it starts at=0. We let R_uxoTtot_kuxofo deo [Ukot (Uyo—T)J"dT.
T, stand for the time at which the projectile reaches ground (22)
level (i.e., the starting heightagain. For this case, we choose
to solve the forward-in-time Ed6). This equation is identi- The double integral in the expression can be simplified by
cal to Eq.(7) except for the sign of the drag term. Also, the changing the order of integration:
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2uy0 T - — 1 1 2p+1 (1
dTJ uZ,+ (Uuyo—T)?]PdT T o= f 2yp+1
fo o Lo (Uyo=T)°] Tlas=— | ory | 1+ Zoer | (1)
2u 2u — 2p+3 (1
= f AT | U2+ (uyo—T)2PdT (23 T J0(1+§2>Pd§
0 T
2uy0 — — v 2P fl(1+ )P tdg (29
:f " (2uyo= Ut (Uyo—O?PdT (24 2P Jo '
0
This expression is easily evaluated numerically and is found
2u . (o _ to be negative for smalp, changing to positive ap
yo 2 > yo . . S
= Uyo[ Ugo+ (Uyo—T)“]Pd T+ (Uuyo—T) =1.2074... . This means that in the limit of weak drag, the
0 L 0 optimal angle changes from less than 45° to greaten at
><[u§0+(uy0—T)2]pdT. (25) =2p+1=3.4148....

For weak drag the optimal angle can be written as 45°
66, where b0 is first order ink. From the definition of7
it follows that §6/k=%7"|4s. It is this quantity that is plot-
1 ted in Fig. 3. As a check, we computéd/k directly without
ZU%’HDJ (cof 6+ £2)Pdé. (26)  simplifying the double integrals occurring in E(R2). The
0 results were in excellent agreement with those given by Eq.
We can now use this result, and EG8), in Eq. (22 to (29 and in Fig. 3.
arrive at an expression for the range that is correct to first
order ink. We express the result in terms of the launch angle

6, replacingu,q, U, by cosé, sin 6. The result is "We do not wish to wander too deeply into real world effects. For projec-
y tiles traveling very large distances, the decrease in atmospheric density
. . — favors high angles of launcfSee D. Halliday, R. Resnick, and J. Walker,
R=2sin 6 cos 0+k7(0), (27) Fundamentals of Physid®Viley, New York, 198}, 5th ed., Question 16,

The second integral above vanishes by symmetry, and thg
first can be written as

where p. 73] Here we consider a flat earth and homogeneous atmosphere.
2p. J. Brancazio, “Trajectory of a fly ball,” Phys. Teac®3 (1), 20-23
(1985.
cos 6 L 3L. S. Lerner,Physics for Scientists and Engineedo d Bartlett
7 _ . 2(p+1) 2p+lye_ . S. ,Physics for Scientists and Engineei@ones and Bartlett,
F0= gy | (5070 [ (cof 0+ P e G ok e

4R. A. Serway,Physics for Scientists and Engined®aunders, Philadel-
1 phia, 1992, 4th ed., Question 19, p. 95.
—2cosé (sin 0)2(p+1)J' (cof 9+ &2)Pde. (29 5C. W. Groetsch, “On the optimal angle of projection in general media,”
0 Am. J. Phys65 (8), 797-799(1997).
: . i i SRichard H. Price and Joseph D. Romano, “Comment on ‘On the optimal
To find the critical value oh, we now differentiate(6) angle of projection in general media,’ by C. W. Groetsch,” Am. J. Phys.

with respect tod and evaluate it at 45°; 66 (2), 114 (1998.

SCORNING THE BASE DEGREES

We need notice at the moment only that the choice of the simplest law that fits the factg is an
essential part of procedure in applied mathematics, and cannot be justified by the methpds of
deductive logic. It is, however, rarely stated, and when it is stated it is usually in a manner
suggesting that it is something to be ashamed of. We may recall the words to Brutus.

But 'tis a common proof

That lowliness is young ambition’s ladder,
Whereto the climber upward turns his face;

But when he once attains the upmost round,
He then unto the ladder turns his back,

Looks in the clouds, scorning the base degrees
By which he did ascend.

Harold Jeffreys;Theory of Probability(Oxford University Press, 1939p. 4.
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