Calculus III - table of dependencies among topics

Note: Topics are listed according to sections in which they are covered in the textbook [Calculus (Early transcendentals) by J. Stewart, 8th Ed.]. Topic titles do not always coincide with the titles of the respective sections in the textbook.

Section number	Topic	Uses material from section
12.2	Vectors: sum, difference; unit vectors; $\mathbf{i}, \mathbf{j}, \mathbf{k}$	Review
12.3	Dot product; projections	Review
12.4	Cross product; making $\overrightarrow{\mathbf{c}} \perp \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$	Review
12.5(1)	Equations of lines	Review
12.5(2)	Equations of planes	Review
12.6(1)	Parametric equations of ellipses and hyperbolas	10.1 (Calc II)
12.6(2)	Cylindrical surfaces	
13.1	Vector functions	10.1 (Calc II)
13.2	Derivatives, integrals of vect. functions; tangent lines	$3.4{ }^{\text {T }}$ (Calc I), 13.1
13.3(1)	Arclength	13.2
13.3(2)	Curvature	12.4, 13.2
13.4	Velocity and acceleration in motion on a curve	12.2, 12.3, 12.4, 13.2, 13.3(1,2)
14.1	Function of several variables ${ }^{\text {a }}$	12.6(2)
14.2	Limits of functions of several variables	
14.3	Partial derivatives	14.2
14.4	Tangent planes and linear approximations	12.5(2), 14.3
14.5	Chain Rule for functions of several variables	14.3
14.6(1)	Directional derivative; level curves	14.3, 14.5
14.6(2)	Gradient	12.3, 14.3, 14.6(1)

[^0]| Section number | Topic | Uses material from section |
| :---: | :---: | :---: |
| 14.7 | Maxima, minima, and saddle points | $12.3,14.6(1,2)$ |
| 14.8 | Conditional extrema and Lagrange multipliers | $12.2,12.6(1), 14.6(1,2)$ |
| 15.1 | Double integrals over rectangular regions | 14.1, 14.3 |
| 15.2 | Double integrals over general regions | 15.1 |
| 15.3 | Double integrals in polar coordinates | 10.3 (Calc II), 15.1, 15.2 |
| $15.5{ }^{\text {[3] }}$ | Applications of double integrals | 15.2, 15.3 |
| 15.6 | Triple integrals | 15.1, 15.2 |
| 15.7 | Triple integrals
 in cylindrical coordinates | 12.6(2), 15.3, 15.6 |
| 15.8 | Triple integrals in spherical coordinates | 15.6 |
| 15.9 | Change of variables in multiple integrals; Jacobian | $12.4,14.3,14.4,15.3,15.8$ |
| | Parametric surfaces and their area | 10.1 (Calc II), 12.4, 13.1, 13.2, 14.4, $15.2,15.5,15.8,15.9$ |
| 16.1 | Vector fields | 12.2 |
| 16.5 | Curl and divergence | 12.3, 12.4, 14.6(2), 16.1 |
| 16.2 | Line integrals | 10.1, $12.3,12.6(1), 13.3(1), 15.5$ |
| 16.3 | Fundamental Theorem of Calculus for line integrals | $\begin{gathered} 5.3^{19}(\text { Calc I }), \\ 14.5, \quad 14.6(2), \quad 16.1,16.5, \quad 16.2 \end{gathered}$ |
| 16.4 | Green's Theorem | $12.3,15.2,16.5,16.3$ |
| 16.7 | Surface integrals | $12.3,14.1,15.5,16.6,16.3$ |
| $16.8{ }^{\text {a }}$ | Stokes' Theorem | $12.3,12.4,16.5,16.3,16.4,16.7$ |
| 16.9 | Gauss' (Divergence) Theorem | $12.3,15.6,16.5,16.7$ |

[^1]
[^0]: ${ }^{1}$ Good working knowledge of this material will be needed throughout this entire course.
 2 This material will be used in all sections in the remainder of the course.

[^1]: ${ }^{3}$ Section 15.4 is skipped, since much of its material will be covered in 16.6.
 ${ }^{4}$ Here and after 16.1, sections will be covered in an order different than that in the textbook.
 ${ }^{5}$ This is the Fundamental Theorem of Calculus. This and the remaining sections of the course will generalize it to 2D and 3D.
 ${ }^{6}$ This section will be covered only briefly.

