Background from Algebra, Precalculus, and Calculus I which you are required to get down cold

Since this course is about solving differential equations, you must know the solution of the *simplest* differential equation:

 $y'(t) = f(t)$, where $f(t)$ is some known function.

Thus:

$$
y'(t) = f(t) \qquad \Leftrightarrow \qquad y(t) = \int f(t) dt.
$$

Algebra

Quadratic equations:

(a) Roots of $ax^2 + bx + c = 0$ are

$$
x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \equiv \frac{-(b/2) \pm \sqrt{(b/2)^2 - ac}}{a}.
$$

(b) Special cases of the above:

- $c = 0$: then $x_1 = 0$, $x_2 = -b/a$;
- $b = 0$: then $x_{1,2} = \pm \sqrt{-c/a}$.

(c) Graphs of $y = ax^2 + bx + c \equiv a(x - x_1)(x - x_2)$ for both $a > 0$ and $a < 0$. If you do not remember these graphs, use Mathematica or any other software to plot them. For example, in Mathematica the command is: Plot $[3*(x-2)*(x-6)$, $\{x,-1, 10\}]$

Exponential functions:

$$
a^{m+n} = a^m \cdot a^n, \qquad a^{m-n} = a^m/a^n;
$$

$$
a^{mn} = (a^m)^n = (a^n)^m.
$$

Precalculus

Logarithms:

$$
\ln(ab) = \ln a + \ln b
$$
, $\ln a^n = n \ln a$, $\ln(a/b) = \ln a - \ln b$, $\ln\left(\frac{1}{a}\right) = -\ln a$.

Exponentials and Logarithms:

$$
e^{\ln a} = a
$$
, $e^{\ln a + \ln b} = ab$, $e^{f(t)+C} = e^{f(t)} \cdot e^C$, $e^{a \ln t} = t^a$

.

Graphs of exponentials, sines, and cosines:

You must know:

- What graphs of e^{at} look like for both $a > 0$ and $a < 0$. Do Plot $[Exp[x], \{x,-0.5, 1.5\}]$ etc. if you do not remember.
- How graphs of e^{2t} and e^t differ for $t > 0$.
- How graphs of e^{-2t} and e^{-t} differ for $t > 0$.
- Where graphs of $\sin t$ and $\cos t$ have zeros and maxima and minima.
- How graph of $\sin 2t$ and $\sin(t/2)$ differ from the graph of $\sin t$.

Basic Calculus I

Differentiation rules:

•

$$
(f \pm g)' = f' \pm g';
$$

\n- \n
$$
(cf(t))' = cf'(t) \quad \text{if and only if} \quad c = \text{const};
$$
\n
\n- \n
$$
(fg)' = f'g + fg' \quad \text{(Product Rule)};
$$
\n
\n- \n
$$
\frac{df[u(t)]}{dt} = \frac{df}{du} \cdot \frac{du}{dt} \quad \text{(Chain Rule)}.
$$
\n
\n

Everywhere below $a = \text{const}; '+C'$ is implied for all indefinite integrals.

$$
(e^{at})' = a e^{at}; \qquad \int e^{at} dt = \frac{1}{a} e^{at}.
$$

\n
$$
(\sin(at))' = a \cos(at); \qquad \int \sin(at) dt = -\frac{1}{a} \cos(at).
$$

\n
$$
(\cos(at))' = -a \sin(at); \qquad \int \cos(at) dt = \frac{1}{a} \sin(at).
$$

\n
$$
\begin{cases}\n(t^a)' = a t^{a-1} \\
(\ln t)' = t^{-1};\n\end{cases}\n\begin{cases}\n\int t^a dt = \frac{1}{a} t^{a+1}, \quad a \neq -1 \\
\int t^{-1} dt = \ln|t|.\n\end{cases}
$$

Fundamental Theorem of Calculus:

$$
\int_{t_0}^t F'(t_1) dt_1 = F(t) - F(t_0).
$$

Of course, any "letter" will work in place of $F(t)$; e.g., $y(t)$.

Calculus I / II

Integration by parts:

This corollary of the Product Rule will be helpful, but I do *not* expect it from memory:

$$
\int f(t)g'(t)dt = f(t)g(t) - \int f'(t)g(t)dt
$$

Alternative form of the same:

$$
\int f(t) \, dg(t) = f(t)g(t) - \int g(t) \, df(t) \, .
$$

Partial fraction expansion (PFE):

Although you learned of four cases of PFE, in this course we will only need the simplest one, and only at the very end (when we study Laplace Transform):

$$
\frac{as+b}{(s+c)(s+d)} = \frac{A_1}{s+c} + \frac{A_2}{s+d};
$$

you should review your Calculus textbook on how to find the constants A_1 and A_2 .