Chapter 1 Matrices and Systems of Linear Equations

Solution

The defined operations yield

7 4 3 6 -3 13
A+ B = , 3C = . = 3
{0 11] 9 o 15| M A=, 15 |

while A + C and B + C are undefined. )

Vectors in R”

Before pr‘oceeding with the definition of matrix multiplication, recall that a point in
n-dimensional space is represented by an ordered n-tuple of real numbers x = (x1,
X200y Xy). Such an n-tuple will be called an n-dimensional vector and will be written
in the form of a matrix,

X1
X2

X

For example, an arbitrary three-dimensional vector has the form

Xy
X=1 x |,
L %3 |
and the vectors
1 3 2
x=1 2|, y=|29], and z=] 3
3

are distinct @ee-dimensional vectors. The set of all n-dimensional vectors with real
components is called Euclidean n-space and will be denoted by R". Vectors in R” will
be denoted by boldface type. Thus R” is the set defined by

no__ . o
R ={x X = where  xi,xz,..., x, are real numbers}.

As the notation suggests, an element of R” can be viewed as an (n x 1) real matrix, and
conversely an (n x 1) real matrix can be considered an element of R”. Thus addition and
scalar multiplication of vectors is just a special case of these operations for matrices.

Vector Form of the General Solution

Having dcﬁr_led addition and scalar multiplication for vectors and matrices, we can use
these operathxons to derive a compact expression for the general solution of a consistent
sy;tefn of linear equations. We call this expression the vector Jorm for the general
solution.
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The idea of the vector form for the general solution is straightforward and is best
explained by a few examples.

The matrix B is the augmented matrix for a homogeneous system of linear equations.
Find the general solution for the linear system and express the general solution in terms

of vectors
1 0 -1 =3 0
B 3 .
o 1 2 1 0

Since B is in reduced echelon form, it is easy to write the general solution:
X1 = X3 -+ 3)(4, Xg = —2X3 — X4.

In vector form, therefore, the general solution can be expressed as

x1 x3 + 3x4 X3 3x4
X2 —2x3 ~ X4 —2x3 —x4
X = = = +
X3 X3 X3 0
X4 X4 0 Xq
1 3
-2 -1
= X3 + X4 0
0
This last expression is called the vector form for the general solution. L]

In general, the vector form for the general solution of a homogeneous system consists
of a sum of well-determined vectors multiplied by the free variables. Such expressions
are called “linear combinations” and we will use this concept of a linear combination
extensively, beginning in Section 1.7. The next example illustrates the vector form for
the general solution of a nonhomogeneous system.

Let B denote the augmented matrix for a system of linear equations

1 -2 0 0 2 3
B=,0 0 1 0 -1 2
o 0 0 1 3 -4

Find the vector form for the general solution of the linear system.

Since B is in reduced echelon form, we readily find the general solution:

X1 =3+2X2—ZX5,X3=2+X5,X4=—-4—3x§.
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Expressing the general solution in vector form, we obtain

[ xy 34 2xp — 2xs5 3 2xo —2xs
X2 X2 0 X2 0
X=1] x3 | = 2+ xs = 2 |+ 0 + x5
X4 —4 — 3x5 4 0 —3xs
L xs xs 0 0 X5
r 3 2 -2
0 1 0
= 2 14xt 0 | +xs
—4 0 -3
L o 0 1
Thus, the genéral solution has the form x = b + au + by, where b, u, and v are fixed
vectors in R, s

Scalar Product

In vector calculus, the scalar product (or dot product) of two vectors

23 vy

u v
u = .2 and v= 2

Un Un

in R" is defined to be the number u vy + upv2 4 -+ - + Upty = }::':] u;v;. For example,
if

—4
u= 3 and v= 2 4,
-1 3

then the scalar product of u and v is 2(—4) + 3(2) + (—1)3 = —5. The scalar product
of two vectors will be considered further in the following section, and in Chapter 3 the
properties of R” will be more fully developed.

Matrix Multiplication

Matrix multiplication is defined in such a way as to provide a convenient mechanism
for describing a linear correspondence between vectors. To illustrate, let the variables
X1, X2, .. ., %, and the variables yi, y2, ..., ¥ be related by the linear equations

anxy + apxy + oo+ QinXn = N

ayxy + anpxy + -t GumXa = Y2

Am1X1 + @maXz + 0+ QpnXn = Ym-

W e
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If we set
X1 N
X = x~2 and y= y,2 ,
o ¥

then (1) defines a correspondence X — y from vectors in R" to vectors in R™. The ith
equation of (1) is

ajyxy + @ppXp A+ -+ QinXp = Vi

and this can be written in a briefer form as

n

Zaijxj =¥ 2

j=1

If A is the coefficient matrix of system (1),

a;y a1z o G
a a ceeooa

A= ?1 22 ?n ,
Ami  Gm2 " Qmn

then the left-hand side of Eq. (2) is precisely the scalar product of the ith row of A with
the vector x. Thus if we define the product of A and X to be the (m x 1) vector Ax whose
ith component is the scalar product of the { th row of A with x, then Ax is given by

I —1
E ayxj
J=1

n

E G2j%j

Ax = 1| 5

n
§ AmjX
L=

Using the definition of equality (Definition 5), we see that the simple matrix equation

Ax =Yy . 3

is equivalent to system (1).

In a natural fashion, we can extend the idea of the product of a matrix and a vectc
to the product, AB, of an (m x n) matrix A and an (n X s) matrix B by defining th
i jth entry of AB to be the scalar product of the ith row of A with the jth column of £
Formally, we have the following definition.
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The definition can be visualized by referring to Fig. 1.14.

X mXs
Ay G - a4y by by, Cip o €y Cis
. . b21 bZS . .
a‘m\ Ay v Gy Cmp O ot Cpg

Figure 1.14  The ijth entry of AB is the scalar product of the ith row of
A and the jth column of B.

Thus the product AB is defined only when the inside dimensions of A and B are
equal. In this case the outside dimensions, m and s, give the size of AB. Furthermore,
the ijth entry of AB is the scalar product of the ith row of A with the jth column of B.
For example,

-1 2 @

[21—3} o _3
-2 2 4 B .
2 1 4 #

_ 2-D+ 10 + (=32 22 +1(=3) + (=1 | -8 2
(=D +20)+42) (-22+2(=3)+4D) | | 10 =6 |’

whereas the product

is undefined.
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Let the matrices A, B, C, and D be given by

1 2 -3 2
A= , B = s

3 1
1 0 -2

C = , and D=]| —~-1 -2
0o 1 1

1 1

Find each of AB, BA, AC, CA, CD, and DC, or state that the indicated product is
undefined.

The definition of matrix multiplication yields

-1 -2 10 1 2 0
AB = , BA= , and AC = .
-3 =2 -3 —4 2 3 -1

The product CA is undefined, and

1 1 3 1 -5
CD = I: 0 -1 } and DC=| -1 -2 0 {. E ]
1 -1

Example 4 illustrates that matrix multiplication is not commutative; that is, normally
AB and BA are different matrices. Indeed, the product AB may be defined while the
product BA is undefined, or both may be defined but have different dimensions. Even
when AB and BA have the same size, they usually are not equal.

Express each of the linear systerns
= 2y- »

= —4zy + 2z
x; = —-3y1+2y; and o ! ?

2= 3721+ 22
= yn+3xn

as a matrix equation and use matrix multiplication to express xy, x;, and x3 in terms of
z1 and 2.

We have
X1 2 -1
L3300 = 0 )
. 13 2 y2 301 22

Substituting for ‘
Y2

X 2 1 . ~11 3
n |=| -3 2 [ ; l““}: 18 —4 [Zl].
13 @ 5 5 |L®

j] in the left-hand equation gives
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Therefore,
xp = —11z; + 322
xy = 18z — 4z
x3 = 5z;1 4+ 5z. )

The use of the matrix equation (3) to represent the linear system (1) provides a
convenient notational device for representing the (m x n) system
anxy + apxs + -+ apx, = by
anxy + anxy + -+ ayx, = by )
A1 X1+ dpaXy + -+ QunXn = by

of linear equations with unknowns xi, .. -, x,. Specifically, if A = (a;;) is the coefficient
matrix of (4), and if the unknown (n x 1) matrix x and the constant (m x 1) matrix b
are defined by

x) by
b
X = x.z and b= .2 ,
Xn bm

then the system (4) is equivalent to the matrix equation

Ax =b. 5

Solve the matrix equation Ax = b, where

1 3 -1 X 2
A=12 5 -1}, x=| x|, and b=]| 6
2 8 =2 X3 6

The matrix equation Ax = b is equivalent to the (3 x 3) linear system
X1 +3x — x3=2
2x;1+5x— x3=6
2x1 + 8xp — 2x3 = 6.

This system can be solved in the usual way—that is, by reducing the augr;i;amed matrix—
to obtain x; = 2, x, = 1, x5 = 3. Therefore,

is the unique solution to Ax = b. sl

| THEOREM 5
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Other Formulations of Matrix Multiplication
It is frequently convenient and useful to express an (m x n) matrix A = (q;;) in the form
A=T[AL A, Al )

where foreach j, 1 < j <n, A denotes the jth column of A. Thatis, A; isthe (m x 1)
column vector

— | ®j
Aj =

For example, if A is the (2 x 3) matrix

A 1 3 6 o
1240V
then A = [A,, Az, As], where

1] e[ ]

The next two theorems use Eq. (6) to provide alternative ways of expressing the matrix
products Ax and AB; these methods will be extremely useful in our later development
of matrix theory.

Let A = [Ay, Ay, ..., A;] be an (m x n) matrix whose jth column is A, and let x be
the (n x 1) column vector
X1
x=| ®
Xn
Then the product Ax can be expressed as
AX = x1Ay + xpA0 + -+ X, A, wl

The proof of this theorem is not difficult and uses only Definitions 5, 6, 7, and 8; the
proof is left as an exercise for the reader. To illustrate Theorem 5, let A be the matrix

1 3 6
A= s
2.4 0

and let x be the vector in R3,




