Matrices and Systems of Linear Equations

The variable x, has now been eliminated from the first and third equations. Next, we
eliminate x; from the first and second equations and leave x3, with coefficient 1, in the

third equation:

S ysterﬁ: Augmented Matrix:
(—1/3)E5: (—1/3)R3:
Xy —5x3 = —3 1 0 -5 =37
X +203= 2 0 | 2 2
x3= 2 L0 0 i 2
X) =17 1 o0 0 77
X2+ 2x3 =12 0 1 2 2
x3=2 | 0 0 1 2
Ez - 2E3Z Rz - ZR?,Z
X1 = 7 1 0 0 77
X3 =2 0 1 0 -2
x3= 2 L0 0 1 2 ]
The last system above clearly has a unique solution given byx; =7, 3 = —2, and
x3 = 2. Because the final system is equivalent to the original given system, both
systems have the same solution. e

The reduction process used in the preceding example is known as Gauss-Jordan
elimination and will be explained in Section 1.2. Note the advantage of the shorthand
notation provided by matrices. Because we do notneed to list the variables, the sequence
of steps in the right-hand column is easier to perform and record.

Example 7 illustrates that row equivalent augmented matrices represent equivalent
systems of equations. The following corollary to Theorem | states this in mathematical

terms.

.01, =06, ap=-1, ap=1, a5 =1,
an =2, asz=4, b=14, b =4
x1=2, xp=-—1, x3=1

S.an=1, an=1, ay=3 apn=4,
a31:~1, a32=2, bI:O, bg:—l,
b3=—3; xlzl, )Cz:—*l

10.a1 =0, anp=3, ay=4, an=0,
bl:9, b2:8; x1::2, )ngB

In Exercises 11-14, sketch a graph for each equation to
determine whether the system has a unique solution, no
solution, or infinitely many solutions.

1. 2x+y =35 12. 2x —y = —1
x—y=1 2x —y= 2
13, 3x+2y= 6 4.2x+ y=
—0x —4dy = —12 x— y=1
x+3y =

15. The (2 x 3) system of linear equations
aix +biy+ciz=4d
thx +byy + 2z = dy
is represented geometrically by two planes. How
are the planes related when:
a) The system has no solution?
b) The system has infinitely many solutions?

15 it possible for the system to have a unique solu-
tion? Explain.

In Bxercises 1618, determine whether the given (2 x 3)
system of linear equations represents coincident planes
(that is, the same plane), two parallel planes, or two
_ planes whose intersection is a line. In the latter case, give
_ the parametric equations for the line; that is, give equa-
tionsoftheformx =ar+ b,y =ct +d,z = et + f.
ié. 2x{4+x0+x3 =3 17.x;+2x; —x3 =2
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23. Repeat Exercise 22 for the matrices in Exercises 19
and 21.

In Exercises 24-29, display the coefficient matrix A and
the augmented matrix B for the given system.

24.)C]‘X2::~—1 25, X]-}—}CQ—)Q:Z
Xi+x;= 3 2xy —x3 =1
26. x;+3x—x3=1 27. xi+ x2+2x3=6
2xi+5x+x3=35 3x)+4x— x3=15
X1+ xp+x3=3 —x1+ x4 x3 =2
28. x; -+ )C2~3X3:—-1
X}+ZX2~—-5X3:-2
—Xp - 3X2 -+ 7)(3 = 3
29, X1+ x2+ X3=1
2X1+3X3+ X3=2
Xy = X2+3)C322

In Exercises 30-36, display the augmented matrix for the
given system. Use elementary operations on equations
to obtain an equivalent system of equations in which x,
appears in the first equation with coefficient one and has
been eliminated from the remaining equations. Simul-
taneously, perform the corresponding elementary row
operations on the augmented matrix.

30. 2x1 +3x, = 6 31 X1+ 2x— x3=1
dx; — xp =7 X1+ xp+2x3=2
—2x1 + X2 =4
32. o+ x3=4 33 xi+x=9
Xy = X2+ 2x3 =1 Xi—Xx2=7
2x+x0— x3=20 3xi+x =6

34. X1+ X+ X3 — x4 =1
—Xi Xy — X3+ Xy =3
—2Xx| + X3 ~l~x§;~x:;:2
35, X+ X3 —x4=23
Xp+2x — x3+xg=1

Suppose [A | b] and [C | d] are augmented matrices, each representing a different (m x n)

. . . M2x1+x2_x3:1 X1+ X2+X3:3
system of linear equations. If [A{b] and [C | d] are row equivalent matrices, then the

8. x4+ 3x — 203 = —1

COROLIARY
CORC 3 —x1+ X+ Tx3—x4=0

two systems are also equivalent. L Dy + 63y — dxy = ~2 36 x; +x= 8
ooy . Xp — Xxg =
9. Display the (2% 3) matrix A = (a;;), where a;; = 2, 3x; 410 =0

dp=Layy=6a=4a=3,anday = 8.
20. Display the (2 x4) matrix C = (¢ij), where ¢z3 = 4,
Cipo== 2, Copp == 2, Cla = 1, ¢y = 2, Crq == 3,

37. Consider the equation 2x; — 3x; + x3 — x4 = 3.

a) In the six different possible combinations, set
any two of the variables equal to 1 and graph the

EXERCISES cy=1landep =7,
N ) . . Display the (3 i = (g - equation in terms of the other two.
Which of the equations in Exercises 1-6 are linear? In Exercises 7-10, coefficients are given for a systent ~ p«y e( >.<_3) matrix Q = {(g;;), where gz = [, ; ‘ |
f the fi 2). Display the system and verify that the 90 =2, qu =193 = -3, 90 = 1,913 = 1, b) What type of graph do you always get when you
1.x, +2x3 =3 2. x1x0 +x0 =1 ot the torm (2). Display YStem 8 Y 91 =2,q;, =4, and q3; = 3. set two of the variables equal to two fixed
.2 2 given values constitute a solution. < ‘ . . . e

3. X — xp = sin” xy + cos” x; uppose the matrix C in Exercise 20 is the aug- CONStants

4. xi — xp = sin® x; + cos? x; Toan =1, an=3, an= ap = —1, Inented matrix for a system of linear equations. Dis- ¢) What is one possible reason the equation in

8. |xl— x| =0 6. wx) +/Txs = /3 by=7 by=2; x =1, ¥ the system formula (1) is called linear?
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38. Consider the (2 x 2) system 41. Prove that any of the elementary operations in The- Given system ‘ Aﬂ&ménte&‘ :‘Re‘ o . e
i ; ‘ ~ Reduced Reduced svstem I
apnxy + apxa = by orem 1 applied to system (2) produces an equivalent of equations i . ‘ RZ%‘?;&?E);‘;‘“ — Solution

system. [Hinz: To simplify this proof, represent the

az 1+ an¥2 = br. ith equation in system (2) as f;(x1, X2... ., Xp) = . -
Show that if ajjazm — aizaz; # 0, then this system b;; 50 Figure 1.3 Procedure for solving a system of linear equations
is equivalent to a system of the form
4 Y filxy, Xa, oo X)) = anXy F GinXka + oo Ginkn

cpx +epxn =d
cXz = da,

where ¢j1 # 0 and ¢ # 0. Note that the second
system always has a solution. [Hint: First suppose

fori = 1,2, ..., m. With this notation, system (2)
has the form of (A), which follows. Next, for exam-
ple, if a multiple of ¢ times the j th equation is added
to the kth equation, a new system of the form (B) 1s

can immediately describe the solution. See, for example, Examples 6 and 7 in Section
1.1. We turn now to the question of how to describe this objective in mathematical

terms—that is, how do we know when the system has been simplified as much as it can

be? The answer is: The system has been simplified as much as possible when it is in
reduced echelon form.

that a;; # 0, and then consider the special case in produced:

In the following (2 x 2) linear systems (A) and (B),
¢ is a nonzero scalar. Prove that any solution,
X = 81, X3 = 5, for (A) is also a solution for
(B). Conversely, show that any solution, x; = fy,
x5 = by, for (B) is also a solution for (A). Where is
the assumption that ¢ is nonzero required?

a1x] +apxa=»b .
(ay oo 1 Felxi, x2, oo x) = by

asnx1 + amxs = by

fl(xh X2y ooy xn) = bl
‘ Echelon Form

When an apgmented matrix is reduced to the form known as echelon form, it is easy to

solve the linear system represented by the reduced matrix. The formal description of

echelon form is given in Definition 3. Then, in Definition 4, we describe an even simpler
form known as reduced echelon form.

fiG X, X)) =by o [l xg, ) = bj

g(X]7X27...,X,1):7'

anxy +ank = b P X2 ooy Xn) = by fn1, X0, X)) = b

" DEFINITION 3 An (m x n) matrix B is in echelon form if:

cenXq + caxxy = cby

where g(xi, %2, ..., Xg) = Jfelxi, X2, .. LX) +
cf (X1, X2, s Xn), and r = by + cb;. To show
that the operation gives an equivalent systen, show
that any solution for (A) is a solution for (B), and
vice versa.}

42. Solve the system of two nonlinear equations in two

1. All rows that consist entirely of zeros are grouped together at the bottom of

40. In the (2 x 2) linear systems that follow, the system
the matrix.

(B) is obtained from (A) by performing the elemen-
tary operation E, + c¢E;. Prove that any solution,
Xp = §;, X2 = 2, for (A) is a solution for (B). Sim-
ilarly, prove that any solution, x; = f1, X2 = 2, for

2. ‘Iﬁlﬁ*«’ery nonzero row, the first nonzero entry (counting from left to right) is

3. Ifthe (i + 1)-strow contains z}émzem entries; then the first nonzero entry is in .

(B) is a solution for (A). unknowns =
ayx) + dnxs = by s - & a column to the right of the first nonzero entry in the ith row.
(A) )Cl —2X1+X2 —-3 Mex .
azx) +anx, = by 2 2
x7 — x5 =1

ayxy + apxe = by
(az; + cai)x) + (axn + cap)xy = by + cby

. Put informally, a matrix A is in echelon form if the nonzero entries in A form a
staircase-like pattern, such as the four examples shown in Fig. 1.4. (Note: Exercise 46
shows that there are exactly seven different types of echelon form for a (3 x 3) matrix.
Figure 1.4 illustrates four of the possible patterns. In Fig. 1.4, the entries marked * can
be zero or nonzero.)

B)

ECHELON FORM AND GAUSS-JORDAN
ELIMINATION

As we noted in the previous section, our method for solving a system of linear equations Lo o= = I % = 0 1 =
will be to pass to the augmented matrix, use elementary row operations to reduce the A=10 1 = A=lo 1 = A=l0 0 1 A=lo0 0 1
augmented matrix, and then solve the simpler but equivalent system represented by the 0 0 1 0 0 0 0 0 0 o o 0

reduced matrix. This procedure is illustrated in Fig. 1.3.
The objective of the Gauss-Jordan reduction process (represented by the middle
block in Fig. 1.3) is to obtain a system of equations simplified to the point where we

Figure 1.4  Patterns for four of the seven possible types of (3 x 3)
matrices in echelon form. Entries marked * can be either zero or nonzero.




