iu INVERSE PROBLEMS

where v and b are constant vectors. If v # 0, then the particle travels in a line
with constant velocity #(r) = v. On the other hand, if v = 0, then the particle
is motionless at position b,

We will model planetary motion by assuming that the planet is the particle
and that it is acted upon only by the sun, which we place at the origin. Newton
conceived of the sun as an attractor that draws the planet toward itself, causing
it to arbit the sun in a characteristic curve. He supposed that the force drawing
the planet toward the sun depended on the distance r between the planet and
the sun. This idea of a central force may be expressed in vector notation in the
following way:

f=—ﬂn5

that is, a central force is directed toward the origin and depends only on
the distance from the origin. The simple fact that the force is central has
two extraordinary consequences. First, if the force is central, then by simple
properties of the cross product we obtain

J(r)

r¥xf=-—-——rxr=10,
r

and hence,
d S g
E(r><r}=r><r+r><f=ﬂ+ﬂ=ﬂ,

The vector r X ¥ is called the angular momentum of the particle. This equation
says that under the action of a central force angular momentum is conserved,
1Le.,

rxgF=uc,

for some constant vector ¢. What is the geometrical meaning of this? The vector
f is tangent to the path of motion, so the equation above says that the path
of motion lies in the plane through the origin, which is perpendicular to ¢ (an
algebraic proof uses the triple product identity: r-¢ = r-{rxF) = (rxr)-¢ = 0).
So, under the influence of a central force, motion is planar. This simplifies both
the visualization and the analysis of centrally directed motion.

It is convenient to picture planar motion in a polar coordinate system, that
is,

2n,

r = rcosfi + rsin dj
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Figure 3.4: Areas in Polar Coordinates

(see Figure 3.4). Consider now the formula for the area A swept out by the
radius vector as the angle varies from 0 to 8:

1
:Ef ria) duw.
0

The rate at which area is swept out is then, by the Fundamental Theorem of
Calculus,

| :
— = —r(f)h.
e

However,
i = (# cos @ — rsin 08)i + (7 sin & + r cos 86)j,

and hence, by conservation of angular momentum,

: 2dA
i.:=1'>fC|"=Jr2|EJ'I:;=——-:f
o dr

that is, dA /dt is a constant, namely ¢/2.

In other words, under the influence of a ceniral force, the radius vector
sweeps out equal areas in equal times. This is Kepler's second law.

Recall that a conic section is characterized as a plane curve, which is the
locus of a point the ratio of whose distance from a fixed point € (a focus) and
from a fixed line L (the directrix) is a constant € (the eccentricity). An analytical
representation of the general conic section in polar coordinates is easy to come
by. We put the origin at @ and take the polar axis perpendicular to L, as in
Figure 3.5. Denote the distance from L to O by k.

The condition [P = ¢|PQ| then becomes

r=e¢k—ercosd,

or
ek

F= —

1 +ecosd
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Figure 3.5: A Conic Section

Suppose nmvrthat the body orbits under the influence of an inverse-square
central force, that is, the position vector satisfies

= ——r
i
where a is a constant. Since the force is central, we have seen that
r=r=p¢,

where ¢ is a constant vector, By Problem 3, we find that

d rr cXr
dr (;J " e
Multiplying by —a, we then have
4 T —ar
ag (7) =ex S

Integrating this gives

T
H(E'f‘—):f-xc
= 1

whf:re €15 a constant of integration. Note thate - ¢ = 0, and hence e lies in the
orbital plane. If we measure the angular displacement of the orbiting body with
re5|_:e[:t to the axis in direction e, as in Figure 3.6, then it is £4sy to see th};t th

orbit is a conic section, Indeed, from the last equation we obtain k

afr“’-‘"‘"r):I"I:l"Xl:}=l.“r>Cf'j-c=.;-1_
Butr-e = recos ¢, so

ril +ecosd) = 2 /g

INVERSE PROBLEMS IN CALCULUS 13

Figure 3.6: Orientation of the Orbit

oT,
ek

= —

1 +ecosd

where & = ¢* /(ae), which is a conic section of eccentricity ¢ with focus at the
center of attraction. Depending on the value of ¢, the conic may be an ellipse,

a parabola, or a hyperbola (see Problem 4). This is Kepler's first law.
It is useful at this point to summarize the main results for a body orbiting

a center of attraction:

no force == uniform straight line motion (or rest)
central force == planar orbit + equal areas law
inverse square central force = conic orbit with focus at origin.

What Newton did was provide a firm mathematical justification for these
observations of his predecessors (to be sure, his development was strictly
Euclidean and looked nothing like the treatment given above). It is natural
to ask about the corresponding inverse problems: To what extent may the
implications “==" be replaced by “+<="7" These and other inverse problems
were addressed by Newton in the Principia, The reader, equipped with the
powerful techniques of vector calculus, is invited to investigate a number of
such inverse problems in the following activities.

3.3.2 Aclivities
1. Exercise Show that in a uniform circular orbit

r = rcosafi + rsinatj,

the force is central and has magnitude ||i||> /r.

2. Exercise Verifly the vector identity: (a X b) X ¢ = (a- ¢)b — (b - cla.
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3. Problem Show that

2 ()~ expxr

4. Problem Recall that an inverse-square central force leads to an orbit of
the form

ek

r=— k= ofat
1 + ecosd & efa,

Use more familiar rectangular coordinates to show that if 0 < e < 1, the orbit

is an ellipse, while if ¢ = 1, the orbit is a parabola, and if ¢ > 1, the orbit is a
hyperbola,

i_t;.’mauion Suppose a particle moves entirely in a plane containing the
origin. Is the motivating force necessarily central?

6. Problem Give a geometrical proof that for uniform straight-line motion,
equal areas are swept out by the radius vector in equal times.

7. Exercise Suppose a body moves in a straight line with constant speed.
Show that no force acts on the body.

8. Exercise Use the equal areas law to show that under the influence of a
central force,

2rid+ rid = 0.
9. Problem Show that a central force implies
ré = (¥ — riPr.

10. Problem Show that if a body orbits in a plane containing the origin,
and the radius vector sweeps out equal areas in equal times, then the body is
motivated by a centrally directed force. (This is Proposition T, Theorem IT of
Book I of the Principia.)

For the remainder of this module, we assume a central force and use the
notation 1 = r~'. We assume that the body does not collide with thé center of
force and hence w is defined for all times,

I1. Problem Use the equal areas law to show that r6? = a2, where J is
twice the rate at which area is swept out.

,2 E\..‘_
12, Problem Show that F = — %2 (d ")
dg? J°
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13. Exercise Conclude from the previous three problems that, under the
influence of a central force,

r
= —gtu}F1

where

du
glu) = i’ (E + ”) .

This result provides a general tool for the inverse problem for orbits, as
the magnitude of the central force is given by f(r) = g(r~"). This can be used
to find the force functions for a number of simple orbits,

14. Problem Find the central force on a body that orbits on a circular arc
that passes through the center of force (Principia: Book 1, Proposition VII,

Corollary I).

15. Problem Show that if a body orbits in a conic with the center of force
at a focus, then the force on the body is proportional to the reciprocal of the
square of the distance between the body and the center of force (Principia,

Book 1, Propositions X1, XII, XIII).

16. Problem Find the central force on a body whose orbit is a logarithmic
spiral, i.e., r = e*® (Principia, Book I, Proposition IX).

17. Problem Find the central force on a body that orbits in an Archimedean
spiral, i.e., r = ab.

18. Problem Find the central force on a body that orbits in an ellipse whose
center is the center of force (Principia, Book 1, Proposition X)),

19, Problem Find the central force on a body that orbits on the hyperbola

-y =g

20. Problem Find the central force on an object that orbits on the lemniscate
r=aycos2f, 0=0<7/4

21. Computation Use the program ‘ode23’ in MATLAB, along with the
m-file ‘orbit)’ provided, to investigate orbits under the constant foree law
# = —r/r. Plot the orbits for various initial values. The program is invoked as

follows:

[1, 2] = ode23('orbitD’, 10, £, 20,



