
MATH 235 — Mathematical Models in Science and Engineering

Instructions: Present your work in a neat and organized manner. Please use either the 8.5× 11 size paper or the
filler paper with pre-punched holes. Please do not use paper which has been torn from a spiral notebook. Please
secure all your papers by using either a staple or a paper clip, but not by folding its (upper left) corner.

You must show all of the essential details of your work to get full credit. If you used Mathematica for some
of your calculations, attach a printout showing your commands and their output. If I am forced to fill in gaps in
your solution by using notrivial (at my discretion) steps, I will also be forced to reduce your score.

Please refer to the syllabus for the instructions on working on homework assignments with other students and
on submitting your own work.

Homework Assignment # 12

1. This problem is worth 1.5 points.

(a) Verify1 that vector v1 defined after Eq. (1) of the Notes is the only eigenvector of matrix A of Eq. (1).

(b) For that A and vector u defined before Eq. (2a), find A−1u.
Hint: A−1u = w for some w. Now, since u and v1 have been chosen to form a basis, then w = pv1+qu

for some p and q. Thus,
A−1u = pv1 + qu . (HW12.1)

To find p and q, multiply both sides of (HW12.1) by A. In subsequent calculations, use the fact that v1 and
u are linearly independent (since they form a basis). If you forgot what mathematical formula expresses
the condition of linear independence of vectors, consult a Linear Algebra textbook.
Note: No credit will be given if you find A−1u by a direct calculation involving the explicit form of either
A−1 or A. Moreover, you are also not allowed to use the explicit form of v1 and u. The only pieces of
information you are allowed to use are: (i) How A acts on its eigenvector v1, and (ii) How A acts on u

(see Eq. (2b) in the Notes).

(c) Using the result of part (b) and an approach similar to the one used to prove Eq. (14), show that Eq.
(4) also holds for integer n < 0.

(d) Verify2 that vector v1 defined after Eq. (5) is the only eigenvector of matrix A of Eq. (5).

(e) For that A and vector u2 defined in (6), find A−1u2.
Note: Follow the method of part (b). The Note for part (b) also applies here.

2. This problem is worth 2.5 points.

As announced in the preamble to Lecture 12, properties of a diagonalizable matrix C that is in some sense
close to a non-diagonalizable one are close to the properties of the latter matrix. In particular:

• The eigenvalues of such a “diagonalizable, but almost non-diagonalizable” matrix do not contain
adequate information about the large-n behavior of Cnx.

In layman terms, one can put it as:

• One cannot trust the information provided by eigenvalues of a matrix that is diagonalizable but is
close to being non-diagonalizable.

1doing the calculations by hand
2doing the calculations by hand
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In parts (a)–(c) of this problem, you will verify this statement for a diagonalizable matrix C that is close to
a non-diagonalizable matrix A given by Eq. (16) of the Notes.
Now, if eigenvalues of an “almost nondiagonalizable” matrix cannot be trusted to predict its action, then is
there a criterion by which one can tell that such a matrix is close to some nondiagonalizable matrix? You
will explore this question in part (d).
Finally, in part (e), you will be guided to uncover a reason (in general terms) behind the phenomenon on
which you (should) have reported in part (c). Then later, in Problem 3, you will further explore how that
“general-terms” reason is manifested in a specific example.

(a) Download the file demo_for_lecture12.m (it is posted next to Lecture 12). Set matrix A defined
by this code to be non-normal. Run the code and do not close figures or clear Matlab’s workspace.

What is the maximum size, bmax, of the entries of B? You can look inside the code or use the command
max. In the latter case, type help max first; also, round your answer to one significant figure. (Note
that since the maximum entry of A is 1, then this bmax also gives the relative change of entries of (A+B)

relative to entries of A.)

What is the change of the eigenvalues, |λ(A+B) − λA|, that adding B to A has caused? Is your answer
consistent with formula (27)?

What property of matrix A is responsible for the relation between |λ(A+B) − λA| and bmax?

Summarize the result of this part by copying to your paper the following sentence where you need to fill in
the blanks, and put it in a box :

of a matrix that is close to are very to small perturbations of the matrix.

(b) Define a column vector u as in Eq. (19) of the Notes.3 Compute p = A50u. 4 Plot it versus its index
(i.e., simply type plot(p)). Discuss how your plot agrees (within an order of magnitude or so) with
formula (20). 5

(c) This part addresses the first main point of this exercise. (Reread the preamble if you have forgotten
what it is supposed to be.)

Compute vector q = (A+B)50u and plot it. Give your answers to the questions below.

• Note that, from part (a), all eigenvalues of (A+B) are different.
(1) Quote a theorem from your Linear Algebra course stating whether a matrix with all distinct
eigenvalues can be diagonalizable or not.
(2) Further, state whether eigenvectors of such a matrix form a basis in RM , where M ×M is the
size of (A+B).
Given your answers to these two questions, and also from what we observed in Lecture 5, what should
the behavior of (A+B)nx for any vector x and a sufficiently large n be determined by?

• What is the largest absolute value6 of the eigenvalues of (A+B)?

• Does this largest eigenvalue explain the magnitude of the entries of q? Justify your answer with a
short calculation and a brief explanation.

3You can define a zero column vector using the command zeros and then overwrite its last entry by the command u(end)=1.
4For the correct syntax of raising a matrix to a power and of matrix-vector multiplication, either see the Matlab Primer posted on the

course webpage, or find an example in hw11 p1.m.
5If you would like to obtain a closer agreement, note that the largest coefficient in (20) is actually the binomial coefficient “n-choose-

(M-1)”, i.e. n!/
(
(n− (M − 1))! (M − 1)!

)
. Matlab has a command nchoosek to compute it.

6Matlab’s command for the absolute value is abs.
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In your paper, (re)state the main point that you have demonstrated by doing this part of the Exercise.
Put this statement in a box.

(d) Here you will address the question:
Is there a quantitative criterion by which the large-n behavior of (A+B)n is similar to that of An, where
A and B are the matrices defined in part (a). You already know, from part (a), that eigenvalues is not such
a criterion.

Given the vectors p and q computed in parts (b) and (c), plot, in a new figure, their difference (q − p).

The following statements would have been true if A had been (close to) normal.

• Since all eigenvalues of A equal 1, then ‖An u‖, where u is defined in part (b), would be 1n ‖u‖.
Here ‖ . . . ‖ denotes the length of a vector.

• Eigenvalues λA+B would be on the order of λA+ bmax, where bmax is the maximum (in magnitude)
entry of B.

• One would then expect that ‖(A+B)nu−Anu‖ would be on the order:

( (1 + bmax)
n − 1n ) ‖u‖, (HW12.2)

You know, of course, that none of the above statements apply to A since A is not normal. In particular, if
you look at the length of vector (p− q), you can see that it does not at all follow estimate (HW12.2).

Yet, is there some combination of any of the quantities p, q, (p − q), or their lengths, that does have the
order of magnitude of (HW12.2)? Based on your work in this part, choose (and complete, if needed) one
of the two sentences below, copy the result to your paper, and put it in a box .

“None of the quantities p = Anu, q = (A + B)u, (p − q), their lengths, or combinations thereof can be
used to quantify how close a given matrix (A+ B in this case) is to some nondiagonalizable matrix (A in
this case).”

or

“Quantity , as defined above, is a quantitative measure of how close a given matrix (A + B in
this case) is to some nondiagonalizable matrix (A in this case).”

(e) Finally, let us understand the reason behind your observation in part (c). Recall that eigenvalues of a
non-diagonalizable matrix C do not describe the large-n behavior of Cnx simply because C does not have
enough eigenvectors for a basis. However, as you have, hopefully, explained it in part (c), matrix (A+B)

is diagonalizable and hence its eigenvectors do form a basis. But,
the the Key question is: How good is that basis?

To answer it, find the eigenvectors of (A + B) using the command eig (read help for it first). Matlab
gives you those eigenvectors organized into the columns of a square matrix; let us call it S. Find cond(S).
Using this number, answer the key question highlighted above in italic following these logical steps:

(1) Based on the condition number of S, say whether it is singular, close to singular, not so close to
singular, or very far from singular. (Review Sec. 10.5 about the condition number as needed.)

(2a) What can one say of columns of a singular matrix? (If you forgot, find the answer in a Linear Algebra
textbook or elsewhere.)

(2b) Do column of a singular matrix form a basis?

(3a) Given your answer to question (2a), what could you then reasonably say about columns of a near-
singular matrix?
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(3b) Based on your answer to (3a), do columns of a near-singular matrix form a basis?

(4) Based on your answers to steps (1) – (3), answer the Key question highlighted above in italic.

(5) The answer you gave in (4) is the reason behind your observations in parts (c) and (d). In your paper,
state this in the form:

Since 〈answer to Key question〉, then 〈your observation in part (c)〉

and similarly for part (d); here you need to provide details for the phrases inside the angle brackets.
Then, put each of these two statements in a box .

3. This problem is worth 2.5 points.

This problem expands on Problem 2 in two ways. First, you will see that a matrix may not look like
being close to a non-diagonalizable matrix, and yet it will behave as such when acting on certain vectors.
Second, you will visualize what a poor basis looks like, and what is poor about it.

Consider matrix

A =

(
0.7 1
0 0.9

)
.

Its eigenvalues, 0.7 and 0.9, are different. So, it does not appear to be close to a non-diagonalizable matrix.
Yet, it behaves as one, as you will see below. The features that are responsible for this are:
(i) A is a triangular matrix (like the non-diagonalizable matrices considered in Lecture 12), and
(ii) the above-diagonal entry, 1, is significantly greater than the difference of the eigenvalues, 0.2.

(a) Let v1 = (1 0)T . Make a table of the lengths of vectors Anv1 for n = 1, . . . , 10. Round your
answers to two significant digits. Is the behavior you have observed explained by the eigenvalue(s) of A?

Note 1 : The length of a vector (x1 x2)
T is

√
x21 + x22. It is a simple measure that allows one to tell

whether a repeated action of A reduces or magnifies a given vector.

Note 2: This is not the final version of the table that you will be asked to submit. In part (e) you will be
asked to expand it, and a similar table in part (b), in a certain way.

(b) Let v2 = (0 1)T . Augment your table with the lengths of vectors Anv2 for n = 1, . . . , 10. Is the
behavior you have observed explained by the eigenvalue(s) of A?

(c) Find the eigenvectors s1 and s2 of matrix A. You can do so either by hand or on a computer, but make
sure that both eigenvectors have length one (Matlab does this by default).

Draw s1 and s2 to scale.

Find the condition number of a matrix S ≡ [s1, s2]. (The number you will find is many times smaller than
that in Problem 2(e), but keep in mind that here you have a small, 2× 2, matrix, while in Problem 2(e) the
matrices were 20× 20.)

Describe how your drawing of s1 and s2, the condition number, and your conclusion for Problem 2 all
together give a reason for the behavior observed in either part (a) or part (b) of this problem.

(d) Let us now explain what property of a basis makes it “poor”. This property is inefficiency. To explain
this, let us first give a
Layman Example of Inefficiency: Suppose that you are assigned to dig a 2-ft hole in your backyards in 2
days. The most efficient way to do so would be to dig about a foot on each of the days. Digging the entire
hole in just one day is still reasonably efficient. An inefficient way would be to dig 5 ft on day 1 and then
put back 3 ft of dirt on the second day.

4



Let us now return to our basis {s1, s2}. For each of the vectors v1 and v2 from parts (a) and (b), find their
coordinates c1, c2 in that basis. That is, solve the vector equation

v = c1s1 + c2s2 (HW12.3)

for c1 and c2. See the Note below on how to do so.
(Of course, each of v1 and v2 will have its “own” c1 and c2; i.e., you will have two pairs of c1, c2.)

Now comes a critical step: For each of v1 and v2, make a to-scale sketch illustrating expansion (HW12.3).
Be prepared that one of these sketches will be quite large (and you may want to make it in the landscape
orientation of the page).

Based on these sketches and the Layman Example of Inefficiency above, explain for which of the vectors
v1 and v2, the basis {s1, s2} is inefficient.

Note: By formula (7) of the document “Background from Linear Algebra”, equation (HW12.3) is equiv-
alent to the matrix equation S (c1, c2)

T = v where matrix S is defined in part (c). You can solve this
equation in Matlab. Round the answer to one decimal place.

(e) Finally, let us illustrate how this inefficiency led to the results observed in one of the parts (a) or (b).

Recall from Lecture 5 that the result of matrix A acting n times on vector v is:

Anv = λn1c1s1 + λn2c2s2.

The (square of the) length of this vector is found as:

‖Anv‖2 = (λn1c1s1 + λn2c2s2)
T (λn1c1s1 + λn2c2s2). (HW12.4)

As you cross-multiply terms, note that sTi si = 1 (i = 1, 2) by Matlab’s convention to normalize eigenvec-
tors to have length 1. Further note that since s1 and s2 are almost parallel, one has

sT1 s2 ≈ 1. (HW12.5)

Verify this with Matlab and give the actual value on the right-hand side of that equation.

Using equation (HW12.5) where you replace “≈ 1” with “= 1”, show that (HW12.4) reduces to

‖Anv‖2 = (λn1c1 + λn2c2)
2. (HW12.6)

Now, between the tables in part (a) and (b), focus on the one corresponding to that vector v for which you
found expansion (HW12.3) to be inefficient. For that table only, augment it with three columns showing:
λn1c1, λn2c2, and |λn1c1 + λn2c2|. Note that the last column in each part should be close7 to that part’s
‖Anv‖.

FYI – 1: The inefficiency of the basis {s1, s2} leads to cancellation of two relatively large terms,
resulting in a smaller final term. A similar, although more dramatic, cancellation (called catastrophic
cancellation) leads to loss of computational accuracy in certain computer calculations.

FYI – 2: You could have noticed that the percentage difference between ‖Anv‖ and |λn1c1 + λn2c2| (over
10%) is much greater than that between sT1 s2 and 1 (2%). The reason is the aforementioned cancellation.
Indeed, the percentage difference

‖Anv‖
|λn1c1 + λn2c2|

− 1

7See the FYI–2 as to why it is not as close as one might expect.
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should be compared not with (sT1 s2 − 1), but with

(sT1 s2 − 1) · |2λ
n
1λ

n
2c1c2|

(λn1c1 + λn2c2)
2 .

Given that c2 ≈ −c1, then for n not too large, the two terms in the denominator partially cancel one
another, thus making the denominator small compared to the numerator.

Bonus (worth 0.5 pt; credit will be given only if the solution is mostly correct)

In Problem 2 you have explained the size of vector p. Now explain its shape (that is, both the reason for
the oscillations and the envelope of the oscillations). You may need to extrapolate results of Sec. 12.3 from
the 2× 2 and 3× 3 cases to the M ×M case.
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