
MATH 235 — Mathematical Models in Science and Engineering

Instructions: Present your work in a neat and organized manner. Please use either the 8.5× 11 size paper or
the filler paper with pre-punched holes. Please do not use paper which has been torn from a spiral notebook.
Please secure all your papers by using either a staple or a paper clip, but not by folding its (upper left) corner.

You must show all of the essential details of your work to get full credit. If you used Mathematica for
some of your calculations, attach a printout showing your commands and their output. If I am forced to fill in
gaps in your solution by using notrivial (at my discretion) steps, I will also be forced to reduce your score.

Please refer to the syllabus for the instructions on working on homework assignments with other students
and on submitting your own work.

Homework Assignment # 7

Problems 1, 2, and 3 below are similar to the examples considered in Sections 7.3, 7.4, and 7.5. When you
work on these problems, please mimic your steps after the respective steps found in the notes. If you notice
that you have arrived at an equation that is the same (or equivalent, after renaming a constant) to an equation
considered in Sections 7.3 – 7.5, you may simply quote the results for that equation without rederiving it, unless
the problem specifically instructs otherwise.

Problems 1, 2, and 3 are worth 3, 1, and 2 points. This reflects the amount of work that I expect you to
do for each problem. This note is intended to help you avoid doing some unnecessary work.
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(a) (0.75 pts) Consider a horizontal bar of mass M
attached to a wall by a spring with the spring con-
stant k, as shown in the figure on the left. The bar
is restricted to move only in the horizontal direction.
A simple pendulum with a weightless rod of length
l and a point mass m at the end is attached to the
bar and performs swinging motion. Use the Euler–
Lagrange equations to derive the equations of mo-
tion for such a system. Your equations should be for
θ and D, where D is the amount of compression or
stretching of the spring beyond its natural length.

(b) (0.75 pts) Recall that whenever you obtain an answer, it is always a good idea to test its special cases
to see if they agree with previously known answers. In this spirit, test the equations you have obtained as
follows.

(i) In the Euler–Lagrange equation obtained in part (a) by differentiation with respect to θ and θ̇, set D
and all its derivatives to zero. You should then recover the equation for the simple pendulum.

(ii) Likewise, in the equation obtained by differentiation with respect to D and Ḋ, set θ and all its
derivatives to zero and then verify that you obtain the equation of a mass on a spring.
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(iii) Verify that in the limit of a very heavy bar, one of the two Euler–Lagrange equations reduces to the
equation of a simple pendulum.
Hint: Show that one of the Euler–Lagrange equations implies that for M ≫ 1, one has to have
D̈ = O(1/M) ≪ 1. Take the limit M → ∞, and then deduce the conclusion required above.

Side note 1 (JFYI) Notice that in your argument for case (iii), one has to be careful when taking the limit
of M → ∞. Namely, if one merely sets D̈ = D = 0 in both Euler–Lagrange equations, one can see
that θ has to satisfy two equations which contradict each other. This conundrum disappears if, instead,
one keeps into account that D̈ = O(1/M) and therefore a term O(M) · D̈, which appears in one of these
equations, is of order one, i.e. of the same size as the θ-terms.

It is also interesting to note that in the limit of a very tight spring, the equations do not reduce to the
equation of a simple pendulum. Indeed, in this case, it is straightforward to see that D is very small,
but this does not imply that D̈ is small (because D oscillates with very high frequency). A more subtle
analysis, which is far beyond the scope of this course, is required to to handle this case.

(c) (1.5 pts) Derive the linearized equations for small oscillations near the equilibrium state(s) of this
system and then perform the stability analysis of these states.

Guidelines for the stability analysis
Let the small deviations of θ and D from their respective equilibrium values be φ and δ. The linearized
equations that you are supposed to obtain in part (c) can be written in matrix form as

Av̈ = Bv, v(t) =

(
φ
δ

)
, (HW7.1)

where A and B are some 2 × 2 matrices whose explicit form you will determine. As a reference, A
should have all of its entries nonzero, while B should be diagonal. Observe that this is a matrix analog of
the scalar harmonic oscillation model lφ̈ = −gφ. Therefore, the method of solution will follow similar
lines. Namely, substitute into (HW7.1)

v(t) = eλtu, (HW7.2)

where u is a constant (i.e., t-independent) vector. The result of this substitution is (verify and show your
work):

(λ2A−B)u = 0 . (HW7.3)

This says that substitution (HW7.2) does indeed give a solution of (HW7.1) for such values λ that make
matrix (λ2A − B) singular (explain why). The rest is similar to finding eigenvalues and eigenvectors of
a matrix. (In fact, (HW7.3) is sometimes referred to as a generalized or a quadratic eigenvalue problem.)
Namely, find the λ2’s such that det(λ2A − B) = 0. If all (in this problem, both) λ2’s are negative,
then the equilibrium is stable. In order to receive full credit, you must explain why this is so, following
the stability analysis in Lecture 6. If any of the λ2’s is positive, then the equilibrium is unstable (again,
explain why, also following Lecture 6).

Technical note You may obtain expressions for λ2’s by hand or with Mathematica. These expressions
should have the form (±

√
a2 + b + c) for some a, b, c. (Some of these coefficients may be negative.)

You should determine the sign of those expressions in general, i.e. without assuming any specific values
for m, M , g, etc.. Note that as a first step of that explanation, you must show that the expression under
the radical is positive: a2 + b > 0. Indeed, if this had not been so, then λ2’s would have been complex.
Hint for showing that a2 + b > 0: First explain why (p+ q)2 − 4pq ≥ 0 for any p and q.
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Side note 2 (JFYI) To each of the λ2’s there corresponds its vector u (similarly to how to an eigenvalue of
a matrix there corresponds an eigenvector). This vector is called a normal mode, or an eigenmode, of Eq.
(HW7.1). If λ2

1, u1 and λ2
2, u2 are two different solutions of (HW7.3), then by the linear superposition

principle, an arbitrary solution of (HW7.1) has the form

v(t) =
(
c1 e

λ1t + c2 e
−λ1t

)
u1 +

(
c3 e

λ2t + c4 e
−λ2t

)
u2, (HW7.4)

where the c’s are determined by initial conditions. Thus, any motion of a linear system can be represented
as a superposition of its eigenmodes. This observation illustrates the significance of eigenmodes.

Side note 3 (JFYI) The model considered above is a piece of a baby model for the problem of synchro-
nization of two pendula attached to a common support. In the 17th century, the great Dutch researcher
Christian Huijgens (Huygens) discovered that two clocks (at that time, basically, pendula) hanging on
the same wall would synchronize, even if originally they had slightly different frequencies and arbi-
trary phases. The phenomenon of synchronization was extensively studied in the 20th century and has
applications in diverse areas of life.

2.
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(a) Consider a circular wire hoop of radius R sus-
pended from the ceiling, as shown on the left. Sup-
pose the hoop is rotating about its vertical axis with
a constant angular velocity Ω, and a bead is able to
slide along the wire without friction. Use the Euler–
Lagrange equations to obtain the equation of motion
for the angle θ indicated in the figure.

(b) Derive the linearized equation for small oscilla-
tions near the equilibrium states of this system and
then perform the stability analysis of these states.
Draw a bifurcation diagram.

3. (a) Consider a simple pendulum whose pivot point is rapidly oscillating in the horizontal direction, with
the coordinate of the pivot point being x0(t) = a cos(Ωt). The rest of the assumptions are the same as
for a similar model considered in Section 7.5 of the Notes. In particular, we assume that R ≡ Ω/ω0 ≫ 1,
where ω2

0 = g/l and l is the length of the pendulum, and ϵ ≡ a/l ≪ 1. Use the Euler–Lagrange equations
to derive the exact equation of motion for the angle θ of such a pendulum. (This equation is an analogue
of either of Eqs. (22) in the Notes.)

(b) Represent the solution of this equation as a sum of the fast and slower solutions, as in Eq. (24) of the
Notes, and then derive an equation for the slower solution θ(0). This should be an analogue of Eq. (28)
in the Notes.

(c) Derive a linearized equation for small oscillations near the equilibrium states of this system and then
perform the stability analysis of these states. Draw a bifurcation diagram.
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