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NOTES

Edited by Jimmie D. Lawson and William Adkins

What Goes Up Must Come Down, Eventually

Fred Brauer

1. The motion of a particle falling under the action of a constant gravitational force
and a retarding force of friction proportional to velocity is often presented as an ex-
ample in courses in calculus, elementary physics, and elementary differential equa-
tions. The closely related problem of determining the motion of a particle propelled
upwards from the surface of the earth is a little more complicated technically. Intuition
tells us that the particle will rise to a maximum height and then fall back to earth. In-
tuition also suggests that since friction acts downward when the particle is rising and
tends to shorten the rising time while friction acts upwards when the particle is falling
and tends to lengthen the falling time, the particle will take longer to fall than to rise.
It is non-trivial to show that this is indeed true, but the argument is not beyond the
understanding of an elementary class; see [1, p. 39], [6, p. 526]. The approach is to
find the time 7, taken for the particle to reach its maximum height y(z,,), and then to
show that y(2#,,) > 0. This means that the rising time is #, while the falling time is
more than ¢,,.

The assumption that the force of friction is proportional to velocity is convenient, as
it produces a linear differential equation as a model. However, it is quite controversial.
In many situations, experiments suggest that it is a plausible assumption, at least as an
approximation [4]. However, there are other situations in which it is far from a good
approximation. For example, it appears that the drag in air on a skydiver or parachutist
is approximated reasonably well by a constant multiple of the square of the veloc-
ity [5]. Also, it has been suggested that the drag on a golf ball is approximated well
by a constant multiple of v!*. However, the motion of a golf ball is more complicated
because of its backspin [2]. More generally, the force of friction depends on many fac-
tors, including the density and viscosity of the fluid in which the particle is travelling
and the shape of the particle. The Reynolds number is a dimensionless quantity that
is important in determining the drag force. For very small Reynolds numbers the drag
force is approximated well by a linear function of velocity, while for somewhat larger
Reynolds numbers the drag force is approximated better by a quadratic function [5].

It is natural to ask whether a particle propelled upwards takes longer to fall to earth
from its maximum height than it takes to rise to this maximum height for frictional
forces that are nonlinear functions of velocity. Since linear and quadratic retarding
forces are at best approximations, we would like to answer the question for a general

force function. The purpose of this Note is to establish that the falling time is greater
than the rising time in general.

2. Let y(z) be the height of a particle above the surface of the earth at time ¢, and
let v(z) = y'(¢) be the velocity at time 7. Then upward motion corresponds to positive
velocity. We assume that the particle is projected vertically upward from the surface
of the earth at time ¢+ = 0 with a positive initial velocity vy. We assume that the only
forces acting on the particle are a constant downward gravitational force —mg and
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a retarding force of function — f(v). The retarding nature of the force of friction is
described by the requirement

vf(v) >0 (v#0), €]

ie., f(v) >0if v > 0 and f(v) < 0if v < 0. From physical considerations it might
also be reasonable to assume that f(v) is monotone non-decreasing in v for —oo <
v < 00, but we do not need to make any such assumption. We do, however, require
that the function f is smooth enough to guarantee uniqueness of solutions of the initial
value problem (2); continuous differentiability of f is ample for this purpose.

The motion may be described by the autonomous first order initial value problem

mv' = —mg — f(v), v(0)= vy 2

Then the height y(z) may be obtained by integration of the solution for v with
y(©0) =0. For t =0, v(0) = vy > 0 and v'(0) = —g — f(vo)/m < 0. Thus v de-
creases initially, and since solutions of an autonomous first order differential equation
are monotone, v decreases for all time. An equilibrium of (2) is a solution of

mg + f(v) =0,

and since f(v) > 0 for v > 0, all equilibria are negative. If (2) has no equilibria, v
continues to decrease and tlim v(t) = —oo. If (2) does have at least one equilibrium
—00
and if v* is the largest equilibrium of (2), then tlim v(t) = v*, and v* is the terminal
—>00
velocity. In either case, v is positive on some interval 0 < ¢ < ¢, and v is negative for

t > t,,. Thus the particle rises to a maximum height at #,, and then falls for ¢ > t,,.
On the interval 0 < ¢ < ¢, separation of variables in (2) gives

O mdy
fvo mg+ f(v)
Since v(z,) = 0, we have
vy
t, = f m—dv 3)
o mg+ f)

On0 <t < t,, v > 0 and therefore f(v) > 0.
Fort = t,,, we use v(t,,) = 0 as an initial condition, giving the initial value problem

mv = —mg — f(v), v(t,) =0. 4)

For ¢t > t,, v < 0 and therefore f(v) < 0. Separation of variables in (4) gives

O mdu
———— = —(t — 1y). 5)
/0 mg + f(v)
If we take t = 2t,, in (5), we obtain
0 mdv
by = _ 6)
/v(ztm) mg + f(v)
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Comparison of (3) and (6) gives

/”0 mdv /0 mdv o
o mg+ f(v) vy Mg+ f(V)

In the integral on the left side of (7), v > 0 and thus f(v) > 0, while in the integral
on the right side of (7), v < 0 and thus f(v) < 0. Thus the integrand on the left side

of (7) is less than the integrand on the right side of (7). In order to have equality in (7),
we must have

vg = v(0) > —v(2t,). (8)

We may use the same argument for every initial point (7, v(t)) with 0 < 7 < 1,
on the rising part of the solution curve v(¢). Our interpretation of (8) is that if v(7)

is the velocity at time 7, the rising time is #,, — T and the velocity (¢,, — t) after z,, is
v(2t,, — ) and it satisfies

v(T) > —v 2ty — T) ©))
for every 7,0 < t < t,. Integration of (9) using y'(¢) = v(¢), y(0) = 0 gives

V(o) = f " o()dr > — / " 0@ty — DT = y(tn) — y(21).
0 0

This implies y(2¢,,) > 0 and thus establishes that the time to fall from maximum height

is greater than the time to rise to maximum height for arbitrary retarding force of
friction.

3. Introductory courses in differential equations (and introductions to differential
equations in calculus courses) have always concentrated on techniques for explicit
solution, usually beginning with the method of separation of variables. Recently, it has
become common to include some geometric and qualitative ideas, certainly direction
fields and possibly stability analysis of equilibria of first order autonomous equations.
Our purpose in this Note is to obtain some qualitative information about the behaviour
of solutions by beginning with an explicit solution method and using it in a qualitative
way. The result that we obtain by this approach is much more general than the result
obtained by explicit solution in the case of a linear force of friction, and the proof
is actually more concise. However, the result is obtained by following the argument
of the linear case; in order to discover the general result one must first work out the
special case.

In [3], C. Groetsch analyzes the two-dimensional projectile motion problem of a
projectile sent up from the surface of the earth in a non-vertical direction with a fric-
tional force that is a function of the magnitude of the velocity vector. He is able to
obtain some qualitative information about the nature of the trajectory. However, an es-

timate of the relation between the rising and falling appears to be a much more difficult
question.
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Designing a Calculational Proof of Cantor’s
Theorem

Edsger W. Dijkstra and Jayadev Misra

Cantor’s Diagonalization The one purpose of this little Note is to show that formal
arguments need not be lengthy at all; on the contrary, they are often the most compact
rendering of the argument. Its other purpose is to show the strong heuristic guidance
that is available to us when we design such calculational proofs in sufficiently small,
explicit steps. We illustrate our approach on Georg Cantor’s classic diagonalization
argument [chosen because, at the time, it created a sensation].

Cantor’s purpose was to show that any set S is strictly smaller than its powerset
S (i.e., the set of all subsets of S). Because of the 1-1 correspondence between the
elements of S and its singleton subsets, which are elements of gS, S is not larger
than S, and our proof can now be focussed on the “strictly”, i.e., we have to show

that there is no 1-1 correspondence between S and g S. We can confine ourselves to
non-empty S.

1. PROOF FORMAT AND NOTATION. Eventually we present our proof in a for-

mat, due to W.H.J. Feijen, in which consecutive proof stages are separated by a con-
nective and a justification. Thus,

p
= {J}
q
{M}
r

would show a proof of p = r in which J justifies the conclusion g from p, while M
explains why g and r are equivalent. In our proof we use = and <, the latter connective
being the converse of =, i.e., (p = q) = (g < p).

In writing quantified formulae, we use the angle brackets, (), to delineate the scope
of the dummy, and the double colon, ::, to separate the dummy from the quantified
term, as in (Vx :: p.x). Function application, as in the preceding “p.x”, is denoted
explicitly by an infix dot.

Besides “substituting equals for equals”, we use the Rule of Instantiation, viz., that
for any expression y in the range of the dummy x

(Vx :: px) = p.y.
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