Inver se Problems Light: Numerical Differentiation
Martin Hanke; Otmar Scherzer
The American Mathematical Monthly, Vol. 108, No. 6. (Jun. - Jul., 2001), pp. 512-521.

Stable URL:
http://links.jstor.org/sici ?sici=0002-9890%28200106%2F07%29108%3A 6%3C512%3A1 PL ND%3E2.0.CO%3B2-A

The American Mathematical Monthly is currently published by Mathematical Association of America

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals'maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Mar 14 19:29:41 2007


http://links.jstor.org/sici?sici=0002-9890%28200106%2F07%29108%3A6%3C512%3AIPLND%3E2.0.CO%3B2-A
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html

Inverse Problems Light: Numerical
Differentiation

Martin Hanke and Otmar Scherzer

1. INTRODUCTION. Reliable numerical simulations of technical processes require
detailed knowledge of the underlying physical models. Consider the simulation of heat
transport in a one-dimensional homogeneous medium, where the heat conductivity
depends on the temperature. In this case the temperature distribution u is the solution
of a one-dimensional parabolic differential equation

u = (a@uy) , O0<x<1,0<t<T, (1.1)

involving a nonlinear diffusion coefficient a : R — R*. Problem (1.1) also serves as a
model for the saturation of porous media by liquid flow, in which case a(u) is related
to the capillary pressure of the pores.

In certain industrial applications a numerical simulation may require solving (1.1)
for u. We call this the direct problem. In these simulations it is crucial that a coeffi-
cient a(u) be used that is not only qualitatively correct but also reasonably accurate.
Unfortunately, tabulated values for a () from the literature often provide only a rough
guess of the true coefficient; in this case simulations are not likely to be reliable.

Consequently, identification of the diffusion coefficient a(u) from experimental
data (typically, u(x, t) for some abscissa x € (0, 1) and 0 < t < T) is often the first
hurdle to clear. This is the associated inverse problem.

A standard method to solve the inverse problem is the output least squares method,
which tries to match the given data with simulated quantities using a gradient or New-
ton type method for updating the diffusion coefficient. Alternatively, one can con-
sider (1.1) as a linear equation for a(u). To set up this equation requires numerical
differentiation of the data [6]. This approach is called the equation error method.

It must be emphasized that inverse problems are often very ill-conditioned: for ex-
ample, small changes in a(-) have little effect on the solution # in (1.1), and con-
sequently one cannot expect high resolution reconstructions of a in the presence of
measurement errors in u. Indeed, small errors in # may cause large errors in the com-
puted a if they are not taken into account appropriately.

Numerical differentiation of the data encompasses many subtleties and pitfalls that
a complex (linear) inverse problem can exhibit; yet it is very easy to understand and
analyze. For this reason one could say that numerical differentiation itself is an ideal
model for inverse problems in a basic numerical analysis course.

To support this statement we revisit a well-known algorithm for numerical differ-
entiation of noisy data and present a new error bound for it. The method and the error
bound can be interpreted as an instance of one of the most important results in regular-
ization theory for ill-posed problems. Still, our presentation is on a very basic level and
requires no prior knowledge besides standard n-dimensional calculus and the notion
of cubic splines.

Groetsch’s book [4] presents other realistic inverse problems on an elementary tech-
nical level. Further examples and a rigorous introduction to regularization theory for
the computation of stable solutions to these examples can be found in [1].
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2. SETTING OF THE PROBLEM. Suppose y = y(x) is a smooth function on 0 <
x <1 and noisy samples y; of the values y(x;) are known at the points of a uniform

grid A={0=x) <x; <--- <x, =1}. Let h = x;4; — x; be the mesh size of the
grid and suppose

|y — y(x)| <8, 2.1)

where § is a known level of noise in the data. For the moment we assume that the
boundary data are known exactly:

yo=y(0) and ¥y, =y(1).

We are interested in finding a smooth approximation f’(x) of y’(x), defined for all
x € [0, 1], from the given data y;, with some guaranteed (best possible) accuracy.

If this material is to be presented in class, the precise notion of smoothness depends
on the level of the course. In principle, the Sobolev space H 2[0, 1] of all functions f €
C'[0, 1] with square integrable second derivative is the appropriate choice. However,
C?[0, 1] would also be all right (see Section 3), but then the following error bounds
are no longer optimal.

Many textbooks on numerical ana1y51s lack a satisfactory treatment of numencal
differentiation. Usually, the treatment is restricted to the consistency error of sophisti-
cated finite difference quotients while the stability problem due to error propagation is

often ignored. Combining consistency error and propagation error for one-sided finite
differences, one arrives at the bound

”*‘T Y@< Oh+5/1),  x<x<x, 22
for the total error provided that y € C2[0, 1]; for a very nice pedagogical treatment
of this subject, see [3]. The right-hand side of (2.2)—as a function of h—is plotted

in Figure 1 (solid line): it attains a minimal value of O (+/8) for h ~ /8. When h is
smaller, the bound (2.2) deteriorates.
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Figure 1. Qualitative behavior of the error bounds (2.2) and (2.7) versus A for fixed § = 1074,
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There is a trivial solution to the stability problem: discard data until the spac-
ing between the grid points is about +/8 (this is sometimes called regularization by
coarse discretization). This is not very satisfactory. Each datum carries information
that should somehow be put to work. Another shortcoming of finite difference schemes
is the lack of smoothness of the resulting approximations of y’: the finite difference ap-
proximations are only piecewise constant functions.

We therefore take a different approach—one that uses all the data and leads to a

smooth approximation. Let
1 1/2
lgll = ( [ g dx)
0

denote the £*-norm of a square integrable function over (0, 1). With the aim of taming
the wild oscillations in the approximate derivative that typically appear when differen-

tiating noisy data, it appears natural to pose the numerical differentiation problem as a
constrained optimization problem:

Problem I. Minimize | f"|| among all smooth functions f satisfying f(0) = y(0),
f@) =y(), and

1 n—1

S G- fa) < 8. 2.3)

i=1

n—1
Then, take the derivative f] of the minimizing element f, as an approximation of y'.

It is important that the exact solution y belongs to the class of smooth functions over
which the minimum is taken. In fact, given the uncertainty in the data, all functions f
satisfying (2.3) can be considered as solution candidates. The minimizer of Problem I
is the particular candidate that is ‘smoothest’.

If the minimizing element f, of Problem I satisfies the constraint (2.3) with strict
inequality (i.e., the constraint (2.3) is inactive) then f, must be the ‘trivial solution’

£(x) = y(0) +x(y(1) — y(0)), (2.4)

i.e., the straight line interpolating the two boundary values. To see this consider f; =
(1 — 1) f, for sufficiently small nonnegative ¢: by assumption, f; satisfies the con-
straint (2.3), and || f|| = (1 —#) || £/l so that || £'|| must vanish in order to be mini-
mal. This shows that f, is the linear interpolant of the given boundary data. This case
occurs if and only if £ satisfies the constraint (2.3).

Excluding this trivial case, the minimizer f, satisfies (2.3) with equality, and
hence, can be calculated using the method of Lagrange. If 1/ denotes the cor-

responding Lagrange multiplier for constraint (2.3), the equivalent formulation of
Problem I is:

Problem II. Minimize
1 n—1
OLf) = —— 3 (5 = F @) +alfI? @5)
i=1
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among all smooth functions f satisfying f(0) = y(0), f(1) = y(1), where o is such
that the minimizing element f, of (2.5) satisfies

1

fOl(xl =8% (2.6)
1

The derivative f] of the minimizing function f, is then an approximation of y'.

Problem II is a special instance of a general method known as Tikhonov regulariza-
tion; in this context « is called the regularization parameter, and the way « is chosen
in Problem II is called the discrepancy principle [2].

Except for the interpolatory constraints at the boundary of the interval, (2.5) has
been investigated and solved by Schoenberg [10] and Reinsch [8], who showed that
the solution of Problem II is a natural cubic spline over the grid A. Reinsch also gives
a constructive algorithm for calculating this spline. The whole algorithm including the
determination of the Lagrange multiplier 1/« takes only O (r) operations, but this is a
different story that could fill another note.

Our main interest is the error f, — y’, i.e., the error of this particular way of numer-
ical differentiation. We have the following result, which appears to be new; a proof is
given in Section 5.

Theorem 2.1. Let y” be square integrable over (0, 1) and let f, be the minimizer of
Problem II. Then

17 =yl = /B (Rl + 3 1) @7

The theorem says that, as long as & > (8/]|y”||)'/?, the error bound is of the same
order as that for finite differences; see (2.2). However, the bound (2.7) remains of
order 0(«/3) when & — 0, without the need to discard any information. The error
estimate (2.7) is sharp in the sense that for § = 0, i.e., noise-free data, the right-hand
side coincides up to a multiplicative constant with the best-possible worst case bound
for the interpolating spline; see Lemma 4.2. We can also give a hand-waving argument
to illustrate the sharpness of the second term on the right-hand side of (2.7) as # — 0.
To this end we integrate by parts and use the boundary values of f, to obtain

1 1
I —y1% = fo (f = yYodx = — fo e W =Y. 28)

The Cauchy-Schwarz inequality ensures that the right-hand side of (2.8) is bounded by
I £« — YW £ — ¥"|l; the first factor is approximately § as 4 becomes small, while the
second factor is bounded by 2 ||y”|| because of the triangle inequality and the setting
of Problem 1.

Although Theorem 2.1 may not surprise those who are acquainted with the literature
on Tikhonov regularization, we emphasize that the standard theory in [1] and [2] does
not cover a result like this. The reason is the somewhat nonstandard combination of
the penalty term || /|| in (2.5) and the smoothness assumption on the exact solution y.

The remainder of this article is organized as follows. In Section 3 we prove that the
minimizing element f, is a natural cubic spline over the grid A. Section 4 summarizes
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basic error estimates in spline approximation. A proof of Theorem 2.1 is contained in
Section 5. Finally, numerical results and comments are given in Section 6.

3. THE MINIMIZING SPLINE. There are two ways to prove existence and unique-
ness of the minimizing element f; of (2.5). One possibility is to consider this problem
as a differentiable optimization problem over a convex domain in H2[0, 1]. This ap-
proach is technical and requires involved mathematical prerequisites if the derivation
is to be rigorous. The technique that we use verifies directly the optimality of the
corresponding spline function. The shortcoming of our approach is that the character-
ization (3.1) of the minimizing element f, seems to appear from nowhere, but we feel
that the simplicity of our treatment is fair compensation for this.

Let f. be a natural cubic spline over A, i.e., a function that is twice continuously
differentiable over [0, 1] with f,”(0) = £, (1) = 0, and coincides on each subinterval
[x;_1, x;] of A with some cubic polynomial. We show that the minimizer f, is uniquely

determined by connecting the jumps of f,” at the interior nodes x = x; with the values
f * (xi) thl‘Ollgh

n " 1 ~ .
i Gat) = f(a—) = m(yi—f*(xi)), i=1...,n—1 (3.1)

The boundary values of f, have been fixed to be f.(0) = ¥, and fi.(1) = y,. For a
constructive algorithm for computing f; see [8].

For any function g with square integrable second derivative and boundary values
g(0) = g(1) = 0, integration by parts yields

1 1 n Xi
f g'flldx = g/ (1 f/ (1) — g (0)f(0) fo gfldx==3" f g f!" dx
i=1 Y Xi-1

0
n
_ Z f///
- *
i=1

where we have used the properties of the natural spline f,. Since g vanishes at the
boundary, this simplifies to

g
x=xi_

9
[xi—1,%i]

1 n—1
/0 g'f, dx = Zg(xi)(f:/(xi'l‘) - f:/(xi_))-
: i=1

Using (3.1), this yields

1 2 n—1
20 fo ¢! dx = =3 g(x) (5 — £.). (3.2)
i=1

Now let f be any function with square integrable second derivative and boundary
values f(0) = ¥ and f (1) = ¥,. Then, the functional ® defined in (2.5) satisfies

1 n—1
OS] = BLfd = — D (F () = o) (£ () + fuls) = 25)

i=1

1
Fallf = f1 + 2 f (" — f) 10 dx.
0
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Inserting (3.2) with g = f — f, for the last integral on the right-hand side gives

1 n—1
OLF1 = OLf) = — D (F() = L) (f () + fulxi) = 250)
i=1

2 n—1
+allf = £+ p— Z(f(xi) — fx) (i — fulx))
im1

1 n—1
= — Y (F) — L) +als” = £

i=1

This proves that ®[ f] — ®[ f,] > 0 for the whole class of candidates f allowed in
Problem IL. Furthermore, if equality holds, then f — f, must be a linear function with

vanishing boundary values; hence, f = f.. Consequently, f; is the unique minimizer
of Problem II.

The technique that we have employed to show that f, is the minimizer of ® is
standard and applies to any quadratic functional.

4. PRELIMINARIES ON SPLINE APPROXIMATION. Before proving Theo-
rem 2.1, we collect some preliminary results that provide background information

on splines. Each of these facts is easy to prove, but for the reader’s convenience we
provide appropriate references.

Lemma 4.1. Let s be the natural cubic spline that interpolates the exact data y(x;)

atx =x;,i =0, ...,n. Then s" is the best approximation of y" in L2(0, 1) from the
space of linear splines over A, i.e.,

lIs” = y"I1> + lIs"11> = 11y"1I%. 4.1)
Proof. See [5, Section 6.2.1]. |

Lemma 4.2. Let s be the natural cubic spline over A that interpolates the exact data
yxj)atx =x;,i=0,...,n Then

I I h
lIs" =¥l < =1y"Il.

b4
Proof. The proof follows that of Theorem 1.3 in [12]; it actually simplifies because
in our context s” — y” € L£2. At the end of the proof one must apply the inequality
s =" < IIy"|l, which follows from Lemma 4.1. |

We also use the following approximation property of piecewise constant splines:

Lemma 4.3. Let g have a square integrable derivative over [0, 1], and let x be the

best approximation in £L*(0, 1) of g from the space of piecewise constant splines over
A. Then

lg—xll <nhligll.
Proof. See [11, Thm. 6.1]. |
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5. PROOF OF THEOREM 2.1. Lemma 4.2 ensures that it suffices to study the error

Il /1 — s'|l, where s is the interpolating natural cubic spline for the exact data y(x;),
i=0,...,n.

To this end, let e = f, — s and consider the best approximating piecewise constant
spline x of ¢’ with respect to £2(0, 1), i.e.,

1 [
Xy = Xi = iz—f e'dx. 5.1
Xi—1

Rewrite ||¢'||2 as

1 1 1 n X
le'l|? = f e — x)dx +f exdx = f e —x)dx+ in/ e dx
0 0 0 =

Xi—1

1 n
- fo e — 0 dx+ Y xilelr) — eG )
i=1

1 n—1
= /0 e —x)dx + Ze(xi)(xi — Xi+1) +e(Dxn —e0)xa

i=1

1 n—1
= / ¢ —x)dx+ Y e@)(xi — xis1) = I + b, (5.2)
0

i=1
where we have used the fact that e(0) = e(1) = 0 (since f, and s interpolate y at the
boundary). It remains to bound the two terms /; and I, in (5.2). For the first term we
use the Cauchy-Schwarz inequality and Lemma 4.3 to obtain
L < llellle = xl <hlelllle"]l.
The formulation of Problem I implies that || f|| < [|y”|l, and hence
el < WA+ U™ < 21y"1 (5.3)
by Lemma 4.1. Therefore we obtain the following bound for ;:
I <2l 1y"1l- (5.4)

Next we bound I, using the Cauchy-Schwarz inequality in R*~! and (5.1). This
yields

) < Zez(x,)z — Xis1)’
= Zez(xz)zhz (/ l

By construction,

2
e(x)—e(x+h)) )

Ze @) = Z (fulw) — y(x)” < 4ns?,
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and hence

n—1 Xi+1 2
I <4n®s?) ( / / le"(1)| dt dx) < 4n’s? Z ( f / " el dtdx)
i=1 Xi—~1 Xi—1 Y Xji—1
" 2
< 4n8? Z < f le”(2)] dt) )

This last integral can be bounded using Cauchy-Schwarz and (5.3) again:

i+1
2 < 4n822/ |e"(t)|2dtf dr < 8822”1 < 64582 |y"|%

-1

Inserting this and (5.4) into (5.2) we finally obtain

le'l* < 2hNe Y"1l + 881" (5.5

Completing the squares permits us to conclude from (5.5) that

2 2
(el =rly )" = (hIY"I +~BY81Y"1'2) .
This yields

le'll < 2hly"Il + /88 Ily" 112,
and Lemma 4.2 implies that

’ ’ ’ ’ ’ U h ”
L= Y1 < el + Is" = Y1 < 2h1Y"1 + V381111 + ol D B u

6. NUMERICAL RESULTS AND CONCLUDING REMARKS. Theorem 2.1 ex-
tends in a straightforward way to the situation when the boundary data of y are also
perturbed. In this case one can consider the function

Y(x) = y(x) + Jo— y(0) +ex,

where ¢ = ¥, — y(1) + y(0) — ¥y. Then Y (0) = J; and Y (1) = y,, and hence The-
orem 2.1 applies to Y. Note that Y” = y”. Consequently, if § is replaced by 24 in
Problems I and II then Theorem 2.1 yields the same bound as before for || f, — Y’||,
and since ||Y' — y'|| = |e] < 24 the same type of bound results for || £, — y’|| as well.

For the inverse problem of determining the diffusion coefficient a(-) in (1.1), con-
sidered in [6], an industrial client provided temperature measurements of u(x;, ¢;) at a
few thermocouples at locations x; and equidistant times ¢; € [0, T']. A crucial step of
the equation error method used in [6] requires knowledge of u,(x;, t), i.e., numerical
differentiation of the given data. The left-hand plot in Figure 2 shows the measure-
ments u(0, ;) (the circles) and the corresponding smoothing cubic spline. The right-
hand plot shows both the numerical derivatives computed with finite differences (the
dashed, piecewise constant function) and the smoothing spline (solid line).

For the purpose of reconstructing a, the piecewise constant approximation is useless
for its lack of smoothness; the exact solution u of the parabolic equation (1.1) is known
to be smooth so that a cubic spline approximation is much more appropriate. The entire
algorithm for reconstructing the diffusion coefficient is described in [6].

June/July 2001] 519



600, T T T T 0.02

O
5 0.01F

500

4501

-0.01F

400

Figure 2. Given data (left) and their numerical derivatives (right)

All temperature measurements turned out to be multiples of five °C; consequently
the finite difference quotient approximation of u, takes only a few distinct values. On
the other hand, this allows an estimation of § in (2.1); we took § = 2.5 presuming a
rounding to the closest multiple of five in the measuring process. With this value of §
the Lagrange multiplier 1/ was tuned so as to satisty (2.6).

The idea of smoothing data by cubic splines has a long tradition, especially among
statisticians; see [13], which summarizes early work in this area, and also [9].

Beyond the cubic spline setting there are many other approaches to the topic of
this paper. A good place to search for additional literature is [7], which focuses on
the mollification method. We caution, however, that many numerical schemes impose

artificial boundary conditions on y, which may lead to annoying boundary artifacts for
practical data sets.
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