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1. Introduction 

During the last years, spline functions have found widespread application, 
mainly for the purpose of interpolation [•]. However, there may be a demand 
to replace strict interpolation by  some kind of smoothing. Usually, such a situation 
occurs if the values of the ordinates are given only approximately, for example if 
they stem from experimental data. In the case in which, for theoretical reasons, 
the form of the underlying function is known a priori, it is recommended that  
the latter be approximated by an appropriate trial function which is fitted to 
the data points by application of the usual least squares technique. Otherwise 
a spline function may be used. The following algorithm wilt furnish such a spline 
function, optimal in a sense specified below. Its application is mainly for curve 
plotting. 

2. Formulation 

Let x i, Yi, i =  0 . . . . .  n be given and assume that 

x0< x l <  ... < x~, 

(the treatment may easily be extended to the case of confluent abscissae). The 
smoothing function ] (x) to be constructed shall 

x~ 

(l) minimize fg" (x )Zdx  
x0 

among all functions g (x) such that  

(2) ~. (gI~)--Yq~s, geC*[xo, ,~]. 

Here, 8y~>0, i = 0  . . . . .  n and S~_0 are given numbers. The constant S is re- 
dundant and is introduced only for convenience. I t  allows for an implicit rescal- 
ing of the quantities 8y~ which control the extent of smoothing. Recommended 
values for S depend on the relative weights By(*. If available, one should use 
for ~Yi an estimate of the standard deviation of the ordinate y~. In this case, 
natural values of S lie within the confidence interval corresponding to the left- 
hand side of (2) : 

(3) N - - ( 2 N ) ~ S ~ N + ( 2 N ) ~ ,  N-----n+1. 

Choosing S equal to zero leads back to the problem of interpolation by cubic 
spline functions, or more generally, by  spline functions of order 2 k - - t ,  if we 
replace the second derivative in (t) by  the derivative of order k. Here, the special 
case k = 2  is mainly used, because it  leads to a very simple algorithm for the 
construction of the function ](x). Moreover, cubic splines are easily evaluated and 

t3 Num¢~. Math. Bd. to 



178 C.H.  REINSCH : 

give in general sat isfactory results. However ,  the min imum principle (1) influences 
the shape of the function ](x)  much  more in smoothing ( S > 0 )  than  in inter- 
polat ing (S=0) .  Hence,  it m a y  be interesting to ex tend  the t r ea tmen t  of (i), (2) 
to the  case of higher der ivat ives  in (l). 

3. Cubic Splines as Solution of the Minimum Principle 

The  solution of (t), (2) m a y  be obtained by  the s tandard  methods  of the 
calculus of var ia t ions [2]. Thus,  by  introducing the auxil iary variable z together  
with the Lagrangian pa ramete r  p, we have to look for tile min imum of the 
functional 

~n 

" x ~ d x  + " g (xi) - yi ~ + z ~ (4) fg ( )  -s} 
X0 

From the corresponding Euler-Lagrange equations,  we determine the opt imal  
function / (x) : 

(5) / " " ( x )  = o ,  x i  < x < x i + ~ ,  i = o . . . . .  n - 1 ,  

0 if k = 0 , 1  ( i = 1 , . . . , n - - t )  

(6) t(k) (xi)_ _ t(~) (xi)+ = 0 if k = 2 (i = 0 . . . . .  n) 

2p  l ( x i ) -  yi if k = 3 (i = 0 . . . .  n),  
ay~ 

with /(k) (xi) ± = lira ](~) (x i i h). For  sake of a uniform notation,  we use 
h,o 

l"(xo)_ = l'"(xo)_ = l"(x~)+ = l'"(x~)+ = O. 

(5) and (6) show tha t  the ex t remal  function l ( x )  is composed of cubic parabolas 

(7) / ( x ) = a i + b i ( x - - x i ) + c i ( x - - x i ) Z + d i ( x - - x i )  3, x ~ _ x < x i + l  

which join at  their  common endpoints  such tha t  / , / ' ,  and / "  are continuous. 
Hence,  the solution is a cubic spline. 

Inser t ing (7) into (6) we obtain relations among the  spline coefficients. A short 
manipula t ion  yields 

f rom k = 2: 

(8) Co = c .  - -  0 ,  d~ = ( g + l  - g ) / ( 3  h i ) ,  

f rom k = 0: 

(9) bi = (ai+x - -  ai) /hi  - -  g hi  - -  di h~, 

from k = t : 
0 o )  T c  = O r a ,  

from k = 3 : 
( t t )  Q c ~ - p D - ~ ( y - - a ) .  

Here, the following nota t ion  is used: 

]~i = X i + l  - -  X i ,  

c = ( q  . . . . .  c~_~) T, 

i = O , . . . , n - - t ,  

i~0,  . . . , n - - t ,  
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Y = (Y0, Yl . . . . .  y~) r 

a = (a o, a 1 . . . . .  a,,) r ,  

D = diag (Oyo . . . . .  6y,,), 

T a positive definite, tr idiagonal mat r ix  of order n - -  t : 

tii = 2 (h,:_ 1 + hi)~3, t~,i+l = ti+l,i "-~ hd3,  

Q a tridiagonal ma t r ix  with n + t rows and n - -  1 columns: 

qi-l,i = t / h i - l ,  qii = -- t/hi-1 -- t/ho qi+l,i = t/hi. 

A left-hand mult ipl icat ion of (11) b y  QTDZ separates the variable c: 

(12) (QT D2 Q +p T) c=pQT y, 

(t3) a = y  --p-lD~ Qc. 

Thus, if the value of the Lagrangian parameter  p is given, we obtain the vector  c 
from (12) and the vector  a from (t3). The remaining coefficients bl and dl are 
now computed  f rom (8) and  (9). Note  tha t  the mat r ix  corresponding to (t2) has 
band form with five non-zero diagonals. This mat r ix  is positive definite, if p => 0. 

4. Determination of the Lagrangian Parameter  

The  expression (4) has to be minimized also with respect to z and  p, leading 
to the  conditions 

(14) /5 z = O, 

(15) 
~=o 6yi / 

By  applicat ion of (12) and (13) the  left-hand side of (15) is easily expressed as 
F(p)~ where 

(t 6) F(p) = lID Q (QT D~ Q + p T)-' QT yHz. 

From (14) we conclude t h a t  either p = 0 or z = 0. 

The  first case is only possible if F(0)=< SL This applies, if the given da ta  
points are such t h a t  the s t raight  line fi t ted to them b y  usual least squares prin- 
siple satisfies condition (2). F rom (t 2) we obtain c =  0 and from (t3) b y  a l imiting 
process 

a = y  -- V 2 Q (QTD~ Q)-I QTy. 

Thus, the cubic spline reduces to this s traight  line. 

I f  F ( 0 ) >  S~, we have p & 0  and z = 0 .  Hence, equal i ty holds in (2) and p mus t  
be determined f rom the equation 

(17) F(p) = S~. 

I t  is easy  to show tha t  F(p) is a strictly decreasing, convex function if p=> 0, 
where F(p)-->O as p - + o o .  Hence, there exists one and only one positive root  
of (t 7). There is also at  least  one negat ive root. However,  i t  can be shown tha t  
the value of the  expression (1) is greater for each negat ive root  than  for the 
positive root. 

t3* 
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We use N~WTON'S method to compute this positive root. If we start with 
p = 0, the convexity of F(p) guarantees global convergence. Let us introduce the 
abbreviation 

U=~)-I¢= (QT D~. Q.+.ib T)_I QTy. 

Then we have F(p)2= uTQTD ~ QU and 

F dF/dp = urQrh 2 Q (du]dp) 
(is) 

=purT(QrD2Q +p T)-X Tu - -urTu .  

For the computation of u we need the Cholesky decomposition RTR of the 
positive definite band matrix QTD~Q+p T. This symmetric decomposition m a y  
be used also for the computation of the right-hand side of (18). Hence, we obtain F 
from the triangular decomposition of QTDZQ+p T, a forward substitution with 
R T and a backward substitution with R. A multiplication with the tridiagonai 
matrix T and a second forward substitution with R T yields FdF/dp. 

Now the algorithm is: 

Start with p----0. 

(i) Chotesky decomposition RTR of QTD~Q+p T. 
(ii) Compute u from RTRu=QTy and v=DQu, accumulate e=vTv. 

(iii) I] e greater S 
Compute ]=urTu and g=WTw where RTw~ Tu, 
replace ib by ib+ (e -- (se)~)l(t-p xg), 
restart with step (i), 

Otherwise 
(iv) Compute a=y--Dv,  c=ibu and bi, di according to (8), (9). 

Another way to determine the Lagrangian parameter is to apply NEWTON'S 
method to the function F(t//~) --SI, starting with ~ =  0 and producing the recip- 
rocal value of lb. Proceeding along the same lines, this alternative way needs only 
minor modifications of the outlined algorithm. When tested with few examples, 
convergence was always reached with a slightly reduced number of iterations. 

5. Testresults and ALe, Or. Program 

Interpolation is frequently used in connection with numerical differentiation 
of a function which is given only incompletely by a table. Splines have been 
used to reduce the error due to the inherent discretization. I t  is clear, however, 
that all methods based on interpolation give results which reflect the accuracy 
of the data. The error part introduced by incorrect ordinates depends on the 
order of the derivative, the stepwidth of the table, and the accuracy of its entries. 
If it is dominant, smoothing should replace interpolation. 

For demonstration we used a table of sin(x), x=O ° (t °) 180 ° rounded to 
four decimal places (By----51o--5IVY). Approximations to the derivatives of order 
k = t ,  2, 3 were computed from difference quotients, interpolation and smoothing 
by cubic splines. In the table, we list the corresponding mean-square errors 
obtained from comparison with the true values. 
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Table .  Mean-square error o] numerical derivatives o] sin (x), computed either by 
interpolation (t), (2) or by smoothing (3) 

Order  (0 (2) (3) 
D i f f e r e n c e  C u b i c  sp l ine  Cubic  s p l i n e  
q u o t i e n t  S ~ 0 S = t 8 0  

0 3.01o - -  5 3.01o - -  5 1.31o - -  5 
t 2 .61o--  3 3-41o - -  3 0.21 lo - -  3 
2 0.26 0 .67  0.0042 
3 28 74 0.t  6 

The application of smoothing for curve plotting is demonstrated in Fig. t. 
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Fig. t. Smoothing of data points ( × ) b y  a cubic spline, 2~y i is marked in the upper 
left-hand corner, n ~  100, S = 9 0  

The results were produced by the following ALGOL program which corresponds 
to the modified variant of the algorithm. A rational version of the Cholesky 
decomposition is used. 

Input: 
nl, n2 
x,y, dy 

number of first and last data point, n2> nl.  
arrays with x[ i ] ,y [ i  1, dy[i]~(--2) as abscissa, ordinate and relative 
weight of i-th data point, respectively, ( i = n l  (t) n2). The components 
of the array x must be strictly increasing. 
a non-negative parameter which controls the extent of smoothing: the 
spline function / is determined such that 

n$ 

F, ((/(x[i]) -- yEi]) ldy[i]) f 2 < s, 
i~n.1 

where equality holds unless ] describes a straight line. 
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Output: 

a, b, c, d arrays,  collecting the coefficients of the cubic s p t i n e /  such tha t  wi th  

h = xx  --x[i] we have  [(xx) ---- ((d[i] × h  + vii]) × h  + b[i]) × h  + a[i] 
if x[i] <= xx  < x[i + 1], i = n l  . . . . .  n2 --  t .  
Fur thermore ,  a[n2] = ] (x[n2]) and c[n2] = 0 
while bin2] and din2] are left undefined. 

procedure smooth(n1, n2) data: (x, y,  dy, s) result: (a, b, c, d); 
value nl ,  n2, s; 
integer nl, n2; 
real s; 
array x, y,  dy, a, b, c, d; 

begin 
integeri, ml, m2; reale,/,/2, g,h,p; 
a r r a y r ,  rl ,  r2, t, t l ,  u , v  [n1--1:  n 2 + Q ;  
m l : = n l - - l ;  m2:-----n2+l; 
rim1] : =  r[nl] : =  rl[n2] : =  r2[n21 : =  r2[m2] :----- 
u[ml] :=u[nl]  : =  u In2] :---- u [m2] :----p :----- 0; 
m l : = n l + t ;  m 2 : = n 2 - - t ;  
h : =  x [ m l ] - - x [ n l ] ;  1 : =  (y[ml] - -y[nl l ) /h;  
for i : =  m l  s t e p  I unt i l  m2 do 
begin 

g:----h;  h : - - x [ i + l ] - - x [ i ] ;  
e : = / ;  / : - - - - - (yF+l]--y[ i] ) /h;  
a [i] : = l - e ;  t[i]:= 2 X ( g + h ) / 3 ;  tl[i]:= hi3; 
r2F] : =  dy[i--t]/g; r[i] := dy[i + l]/h; 
,1[/] : =  - # F ] / g - @ F ] / h  

end i; 
for i :=  ml step I until m2 do 
begin 

b[i] : =  ,[i]  x , [ , ]  + r l [ , ]  ×~1[i] + , e l i ]  × , e F ] ;  
c[i] : = rF] X r l F  + t] + r l[q  X r2[i + I ] ; 
d[i]: = "F] x ~eV + 2] 

end i; 
/ 2 : =  --s;  

next iteration: 
for i : =  ml step t until m2 do 
begin 

r l [ i - - l ]  : =  l x r E i - - t ] ;  r2[i--2] : = g x r [ i - - 2 ] ;  
r[/] : - -  t / (p  x bF] + i F ]  - - / x r l [ / - - t ]  - -  g x r 2 F - - 2 ] ) ;  
u[i] : =  a[i] -- r l[ i  -- t ] x u [ i - -  t ]  - -r2[ i - -2]  x u [ i - - 2 ] ;  
/ :  = p x ~[i] + tl[i] - h x r~ [i - t ]; g : = h; h : = d [i] x p 

end i; 
for i : =  m2 step - - I  until ml do 

u[i] : =  rEi] x u[i] -- rl[i] x u[i + l] -- rZ[i] x u[i + 2] ; 
e : = h : = 0 ;  
for i : =  nl step I until m2 do 
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begin 
g : :  h; h : =  ( u F + l ] - u F ] ) l ( x F + l ] - x F ] ) ;  
v[i] : =  (h --g) ×dy[i] ×dyEi]; e :=  e + vii] × (h--g) 

end i; 
g::v[n2]:=--h×dy[n2]×dy[n2]; e : = e - - g × h ;  
g:=lZ;  t Z : = e x p x p ;  
if/2>= sV/2<=g then go to/ in;  
/ : =  o; h : =  (~[ml] --v[nZ])/(x[m~] -- x[ . l ] ) ;  
for i : :  mt step t until m2 do 
begin 

g : :  h; h:= ( v [ i + l ] - - v [ i ] ) / ( x [ i + l ]  --x[i]);  
g : :  h --g--r1 F --t] ×r F --t] --r2[i--2] × r [ / - -  2] ; 
/ : : / + g x r [ i ] × g ;  r [ q : : g  

end i; 
h : : e - - p × / ;  if h ~ 0 then  g o  to /in; 
p : =  p + (s --/2)/((sqrt(s/e) +p) ×h); go  to next iteration; 

c o m m e n t  Use negative branch of square root, if the sequence of abscissae x[i] 
is strictly decreasing; 

/in: 
for i : :  nl  step t until n2 do 
begin 

aE/] :=  y[i] - p  xv[i];  
c [i] :=  u[i] 

end i; 
for i :=  nl  step t until m2 do 
begin 

h : =  x[i + t ] -  x[/]; 
d[/] : =  (c [ /+  1] --c[/])/(3 xh);  
b[i] : :  ( a [ / + l ] - - a [ i ] ) / h - - ( h x d [ i ] + e [ i ] )  ×h 

end i 
end smooth; 
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