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Abstract

Assuming only Newton’s Laws of Motion, we use

plane geometry to argue that the paths of the plan-

ets are elliptical. The proof here follows a lecture

of Richard Feynman, as related in Feynman’s Lost

Lecture, by Goodstein and Goodstein [1]. This is in-

tended as a series of two or three lectures for honors

calculus; extensive exercises are provided which stu-

dents can work through on their own.

Kepler, Newton, and Feynman

Johanes Kepler’s Astronomia Nova, published in
1609, contained two startling observations about
the motion of the planets around the sun, which
later became known as Kepler’s first and second
laws. Kepler stated that

1. the orbits of the planets are ellipses with the
sun at one focus, and

2. the time it takes a planet to travel from one
position in its orbit to another is propor-
tional to the area swept out by a planet in
that time.

Ten years later he published a third law:

3. the time it takes a planet to complete an en-
tire orbit is proportional to the three-halves
power of the longer axis of the ellipse.

Kepler’s discoveries in celestial mechanics came
a mere 66 years after the publication of Coperni-
cus’ On the Revolutions of the Celestial Spheres,
which corrected the Aristotelean earth-centered
universe. Copernicus proposed a sun-centered
∗Supported by a grant from the Fund for Excellence in
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system in which the planets travel in cir-
cles. However, as more sophisticated instruments
(these included giant measuring tools–the tele-
scope was not invented until 1610!) and data be-
came available in the later 16th century, Coper-
nicus was due for a challenge. Kepler’s new laws
reconciled observation and theory.

Although Kepler’s observations were correct,
he was unable to explain why the planets be-
haved as they did. This task was completed by
the scientific giant Isaac Newton as part of his
Principia, published in 1687, in which he pro-
posed his groundbreaking theory of motion. As
a crowning touch, Newton used his laws of mo-
tion to deduce that the paths of the planets are
elliptical. Moreover, he did this using only plane
geometry, for although Newton had invented the
powerful tools of calculus, he needed to explain
his discoveries in a way that most scientists of his
day would understand.

When preparing a lecture for a freshman
physics class in 1964, the physicist Richard Feyn-
man decided to prove the law of ellipses as New-
ton had–without refering to calculus. The proof
here follows Feynman’s lecture, as related in
Feynman’s Lost Lecture, by Goodstein and Good-
stein [1]. Following a nineteenth-century argu-
ment by James Clerk Maxwell, Feynman deviates
somewhat from Newton’s proof, as Newton used
some arcane properties of conic sections which
are not known today, but still manages a com-
pletely geometrical proof.

In following Feynman’s proof, some knowledge
of conic sections, vector addition, Newton’s laws
of motion and gravitation, and Kepler’s laws will
be helpful.
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Law of Ellipses

Three Definitions of an Ellipse

Conic sections were a serious subject of study
for mathematicians of Newton’s day–in fact, their
knowledge of the subject was much more sophis-
ticated than that of mathematicians today! We
will start out with three of the basic definitions
of an ellipse.

1. Tack-and-String Definition Pick any two
points. These will be called the foci of the
ellipse. The set of all points at which the
sum of the distances to the two foci is some
fixed number is an ellipse. Equivalently, affix
two tacks to a board, tie each end of a string
to a tack, and draw the curve created by a
pencil which stretches the string taut.

    + this length

focus focus

        = constant

this length

2. Reflection Property Again, pick any two
points as the foci. The curve whose tan-
gent at any point forms equal angles with
the lines to each focus will be an ellipse. Be-
cause of this property, a large elliptical wall
forms a whispering gallery–anything spoken
at one focus is reflected to the other focus.

focusfocus

angles are equal

3. Equation For any fixed real numbers a and
b, the set of points (x, y) in the plane which
satisfy

x2

a2
+
y2

b2
= 1

will be an ellipse.

Exercise 1 Starting with the equation of the ellipse,
we will find the coordinates of the foci, and verify the
tack-and-string definition and the reflection property.

1. Graph the ellipse x2

4
+ y2

9
= 1.

2. The semimajor axis of an ellipse connects the center
with a point on the ellipse farthest from the center,
while the semiminor axis connects the center with a
point on the ellipse closest to the center. What do

a and b represent in the equation x2

a2 + y2

b2
= 1?

3. Now let’s find the coordinates of the foci.

(a) Argue that, if the tack-and-string definition
is true, the foci of the ellipse must lie on the
semimajor axes.

(b) Suppose a > b and the foci of the ellipse x2

a2 +

y2

b2
= 1 are located at (c, 0) and (−c, 0). Show

that the length of the string in the tack-and-
string definition must be 2a.

(c) Show that c =
√
a2 − b2.

(d) What if b > a? Find the coordinates of the
foci in this case.

4. Now we will verify the tack-and-string definition–
that is, we’ll show that if (x, y) is any point at which
x2

a2 + y2

b2
= 1, then, assuming a > b, the distance

from (x, y) to the focus (−
√
a2 − b2, 0) plus the dis-

tance from (x, y) to the focus (
√
a2 − b2, 0) is a fixed

number (in fact, it is equal to 2a).

(a) Suppose l1 is the distance from (x, y) to
(−
√
a2 − b2, 0) and l2 is the distance from

(x, y) to (
√
a2 − b2, 0).

1 l2l

(a, 0)(-a, 0)

(0, b)

(0, -b)

(x, y)

2 22 2(-  a - b , 0) (  a - b , 0)

Use the Pythagorean Theorem to show that

l21 = (
x

a

√
a2 − b2 + a)2, and

l22 = (
x

a

√
a2 − b2 − a)2.

(b) Conclude that l1 + l2 = 2a. Hint: l2 is the
positive square root of (x

a

√
a2 − b2 − a)2.

5. Starting with the tack-and-string definition we’ll
prove the reflection property–that is, we’ll show that
a line intersecting the ellipse which forms equal an-
gles with the lines to the foci is a tangent to the
ellipse.
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(a) First, we will construct the line described by
the reflection property.

P

V

(focus)
F J

(focus)

α
β

l

Suppose point P is on an ellipse with foci F
and J . Draw lines PF and PJ . Now extend
line PF by a distance equal to the length of
PJ, and label point V as shown. Construct
the perpendicular bisector to V J and call this
line l. Argue that the angles labelled α and β
are equal. Hence, l is the line described by the
reflection property.

(b) A tangent to an ellipse is defined to be a line
which intersects the ellipse in only one point.
We will show that line l is a tangent.

P
Q

ellipse?

V

(focus)
F J

(focus)

i. Suppose line l intersects the ellipse in an-
other point, say, point Q. Use the dia-
gram above to argue that the lengths of
QV and QJ are equal.

ii. The tack-and-string definition says that
the sum of the lengths of PF plus PJ
equals the sum of the lengths of QF plus
QJ. Explain, with reference to the dia-
gram, that that cannot happen (unless,
of course, P and Q coincide). Conclude
that Q is actually outside the ellipse and
l is tangent.

6. Is line l the same tangent defined by calculus? We’ll
show that it is.

(a) Use calculus to show that the slope of the tan-
gent line to the ellipse at the point (x0, y0) is

− b
2x0
a2y0

.

(b) (Hard) Show that the intersection of the line

passing through (x0, y0) with slope − b
2x0
a2y0

with the ellipse x2

a2 + y2

b2
= 1 is exactly at

(x0, y0)–and no other points. The calculations
are somewhat easier if you use the parametric
form of the equation for an ellipse;

x = a cos t, and y = b sin t.

(Why is the parametric form equivalent?)

The Circle Construction of an Ellipse

We will show that the following construction is
equivalent to the above definitions of an ellipse.

Draw a circle with center O. Fix a point A
inside the circle which is not the center. Pick any
point B on the circle and connect it to points O
and A. Find the intersection of the perpendicular
bisector to the line AB with the line OB. Now
allow B to move around the circle. The set of all
such intersection points will form an ellipse.

perpendicular
bisector

A

center

B

O
B’

B’’
fix another
point

point
movable

Why? As the diagram below shows, the circle
construction is equivalent to the tack-and-string
definition. The radius of the circle is equal to the
length of the string. Notice also that the perpen-
dicular bisector satisfies the reflection property
and hence is tangent to the ellipse.

these two add
  up to the radius

O

B

A

Exercise 2 We will investigate how the location of
point A affects the figure.

1. First, try moving point A.

(a) With a ruler and compass, draw something
like this:
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B

O

A

moving
point

perpendicular
bisector

point
fixedintersection

point

Now let the point B move around the circle
and find the intersection point for each B.
Find enough points to be reasonably confident
of the figure.

(b) Find the analog of the tack-and-string defini-
tion in this case. That is, describe the rela-
tionship between the lengths of the lines from
the intersection point to points O and A.

(c) What can you say about the reflection prop-
erty? Show that a ray of light emanating from
the center of the circle will be reflected so that
it appears to come from point A.

(d) What happens if point A is on the circle? At
the center? Construct diagrams in each case.

2. So far, we’ve used this construction to come up with
four conic sections: the line, circle, hyperbola, and
ellipse. How can we get the parabola?

(a) Picture the circle getting bigger and bigger. A
piece of an extremely large circle will appear
to be a straight line, and lines connected to
the faraway center of the circle will look par-
allel. We can think of the circle at infinity as a
straight line. Its center is the point at infinity
and the radii of the circle will be parallel lines.

infinity

radii are
parallel

circle at

point at
infinity

Now suppose that O is the point at infinity, fix
A, and construct the diagram. Here’s a start.

B

O

perpendicular
bisector

moving
point

A

fixed
point

B’

B’’

B’’’

point at
infinity

(b) Describe how a ray of light emanating from
point A will be reflected in the parabola.

(c) What if A were on the other side of the circle?

Newton’s Dynamics1

Now that we have developed some of the prop-
erties of conic sections we’ll need later, let’s look
at planetary orbit, as Newton described it. New-
ton’s first two laws of motion are

1. (Principle of Inertia) If no forces are acting
on a body, it will either stay at rest or con-
tinue travelling in a straight line at constant
speed, and

1We’ll need to use vectors in this section. If you
haven’t seen vectors before, here’s a brief introduction. A
vector is a directed line segment, often used to represent
some physical quantity such as force, with the following
properties:

• Two vectors u and v emanating from the same point
may be added by completing the parallelogram they
describe, as shown.

u u+v

v

The vector u+v is the diagonal emanating from the
same point.

• The length of v is denoted ‖v‖.
• Multiplication of v by a positive real number k re-

sults in a vector kv which has the same direction
as v and length k‖v‖. If k is negative, kv has the
opposite direction to v and length |k|‖v‖.

v

v-1/2

v3/2
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2. the change in motion of a body is propor-
tional to and in the direction of any force
acting on the body.

Using these two laws, Newton showed why Ke-
pler’s observation that the planets sweep out
equal areas in equal times is true. Suppose a
planet travels from A to B in a certain unit of
time.

A
Sun

B

c

If no force were acting on the planet, it would
continue on to point c after another time unit
has elapsed. However, the gravitational force di-
rected towards the sun pulls the planet towards
point V . The sum of the intertial force directing
the planet towards c plus gravity directing it to
V causes the planet to arrive at point C. We
can continue this process to find points D, E,
etc. Here’s a diagram similar to the one Newton
drew.

A

B

Sun

C

DE

V

c

d
e

Let’s see why the areas covered in each unit of
time are equal. Take any two successive triangles,
extend their common side, and draw parallels as
shown:

A
Sun

E

e

C

D

B

d

these areas
are equal

these
distances

are equal

Since C is the midpoint of Bd, the distances
between the parallel lines are equal. The two
shaded triangles have the same base and height,
and hence the same area. Since each triangle rep-
resents the area swept out by the planet in one
unit of time, Newton’s mechanics have proved
Kepler’s second law!

The Inverse Square Law

Note that we haven’t used the fact that the grav-
itational pull of the sun is inversely proportional
to the square of the radius yet. We’ll use it now,
to compute the changes in the velocity vector.

The diagrams in the last section represent the
orbit as a succession of straight lines, rather than
a smooth curve. If we let the unit of time ∆t go
to zero, the diagram looks something like this.

P, ∆tat time     later

Sun

r
∆θ

θ

P, at a certain
time

P , the position of the planet, is represented in
polar coordinates by the pair (r, θ), which are
both functions of time, t. ∆θ represents the angle
traversed in time ∆t.

At this point, Feynman deviates from New-
ton’s argument. Instead of breaking the orbit up
into equal-time pieces, he breaks it into equal-
angle pieces. If the angles are small, the areas
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swept out are approximately proportional to the
square of the radius, that is,

area ≈ constant · r2.

Let v be the velocity vector, and use ∆v to de-
note the change in v during the time ∆t. Note
that ∆t is now the time taken to traverse the an-
gle ∆θ. ∆v will be a vector pointing towards the
sun. The length of ∆v, denoted ‖∆v‖ is the to-
tal change in the planet’s velocity on the interval
∆t. Newton’s inverse square law tells us that

‖∆v‖ = constant · 1
r2

∆t.

Since r2 is proportional to area,

‖∆v‖ ≈ constant · ∆t
area swept out in ∆t

.

But the area swept out in ∆t is just a constant
multiple of ∆t, by Kepler’s second law. Therefore
we can cancel area against time, and

‖∆v‖ ≈ constant

that is, the change in velocity with respect to
change in angle is constant.

Exercise 3 We don’t need to take the inverse-square
law of gravitation for granted–we can derive it, as Newton
did, from Kepler’s third law! We’re going to prove the
inverse square law for circular orbits.

1. Assuming the action of gravity does not vary on a
circular orbit, the planet will travel with constant
speed. The orbit can be approximated by a regular
polygon. Let the vector P represent position, ∆P
change in position, and ∆2P change in ∆P.

show these are
similar triangles

P1∆θ

∆θ P2

∆P

P2∆

∆θ

∆θ

Show that the exterior angle marked is equal to ∆θ,
and use that to argue that the shaded triangles are
similar. Conclude that

‖∆2P‖
‖∆P‖

=
‖∆P‖
‖P‖

.

2. Assume ∆θ is small. Let r be the radius of the circle,
and T the time taken to complete one revolution,
and approximate ‖P‖ and ‖∆P‖ in terms of r , T ,
and ∆t. Show that

‖∆2P‖ ≈ 4π2r(∆t)2

T 2
.

Since Kepler’s third law states that

T = constant · r
3
2 ,

then

‖∆2P‖ ≈ constant · (∆t)2

r2
.

3. Remember that we’re actually trying to find the
length of ∆v. The velocity vector v equals 1

∆t
∆P,

so ∆v is 1
∆t

∆2P. Conclude that acceleration due

to gravity (that is,
‖∆v‖

∆t
) is inversely proportional

to r2.

Exercise 4 We’ll prove the assertion that area swept
out over equal angles is proportional to the square of the
radius. Assume that ∆θ is small enough that it makes
sense to approximate the areas by triangles.

r∆θ

∆θ

1

2r
triangle 2

triangle 1

Here are two pieces of the orbit. The radius is the length
of the bisector of ∆θ. Construct perpendiculars to the
radius, as shown, and argue that the shaded triangles are
similar. Moreover, show they have the same area as the
original triangles. Then show

area of triangle 1

area of triangle 2
=
r2
1

r2
2

and conclude that area is proportional to the square of

the radius.

The Velocity Diagram (Hodograph)

Any point along the orbit corresponds to a veloc-
ity vector which is tangent to the orbit and whose
length signifies the speed at which the planet is
travelling. Translate all the velocity vectors to a
point. This is called a velocity diagram or hodo-
graph.
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velocity vectors

orbit

velocity diagram

What is the shape of the figure formed by the
ends of the arrows in the velocity diagram? Let’s
break the orbit up into equal-angle pieces, and
compute the velocity vector after each ∆θ.

changes in
velocities

orbit

v

∆v

∆v

∆v

v
v
v

v

v

∆v

velocity 
vectors

∆θ
∆θ

∆θ∆θ

Note that

• Each ∆v has the same length, since ‖∆v‖ =
constant.

• Each ∆v points ∆θ beyond the previous one,
since ∆v points towards the sun in the orig-
inal diagram.

So, if the orbit is closed, then the figure created
by the ∆v’s is a regular polygon with exactly
360◦

∆θ
sides.

∆

∆v

v

∆v
∆θ

∆θ

Notice that the angles created by the lines be-
tween the ends of the velocity vectors and the
center of the polygon are equal to ∆θ. This
means that the angle swept out from the cen-
ter of the velocity diagram is equal to the angle
swept out from the sun. As ∆θ → 0, we get a
circle.
Exercise 5 If the orbit of the planet is not closed,

is the velocity diagram still a circle? Suppose the orbit

is a hyperbola. For some values of θ, a ray from the sun

will not intersect the orbit (Why?). If we break the orbit

up into equal angle pieces, does the relationship ‖v‖ =

constant still hold? Sketch the velocity diagram for a

hyperbolic orbit.

The Shape of the Orbit

Now we know the shape of the velocity diagram,
but we actually started out trying to find the
shape of the orbit. We’re going to need the fol-
lowing:

The Tangent Principle If two curves
(in polar coordinates) r1(θ) and r2(θ)
have the same tangent at every θ,
then they are the same, up to scaling.

1
r (  ) r (  )θ 2 θ

θ θ

So, if we can show that the tangent to the orbit
at every point is the same as the tangent to an
ellipse, then the orbit itself is an ellipse.

Here’s a planet orbiting the sun.
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l
θ

P

orbitSun

Draw the velocity diagram for the orbit by trans-
lating all velocity vectors to a point A.

O

A

B
l’

θ

Suppose l is the tangent line to the orbit at point
P . Since the velocity vector at P is also tangent
to the orbit, the line l′ in the velocity diagram is
parallel to line l. Let B be the intersection of line
l′ with the circle, and O the center of the circle.
As we have remarked before, the angle swept out
in the orbit is equal to the angle swept out from
the center of the velocity diagram. Hence angle
AOB will be equal to θ.

Now rotate the entire diagram clockwise by
90◦.

θ

P’

A

B

l’
p

O

Construct a perpendicular bisector p to the seg-
ment AB. Call the intersection of p with OB P ′.
Notice that what we have just done is exactly the
circle construction of an ellipse! So P ′ is a point
on an ellipse and p is the tangent to the ellipse.
Since line l′ is perpendicular to our original line
l, p is parallel to it. That is, the tangent to the
ellipse constructed above and the tangent to the
orbit agree at every θ. By the tangent principle,
the orbit of the planet must be an ellipse.
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