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Abstract

The geometry of reflection and refraction explains the

apparent position of a rainbow relative to the sun,

and calculus shows why light is concentrated in the

rainbow. Exercises include the derivation of Snell’s

Law and the Law of Reflection, an explanation for the

different colors in the rainbow, and an exploration of

secondary and tertiary rainbows. This is intended as

a one-hour lecture for honors calculus, with exercises

which students can work through on their own.

Observation of Rainbows

What do you need to make a rainbow? Of course,
you need at least two things, rain and sun. Closer
examination reveals more details–but not more
ingredients! Not all rainbows are alike. Suppose
you see a rainbow at sunset (or sunrise).
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Fig. 1

A rainbow made by the setting sun appears to
be a semicircle centered at the point on the hori-
zon opposite the sun, with the angle of elevation
from the observer to the top of the rainbow be-
ing about 42◦. Earlier in the day, the picture is
a little different.
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The rainbow is at the base of an imaginary cone,
whose

• tip is at the observer,

• axis is the line from the observer to the sun,
and

• angle between side and axis is 42◦.

You can create rainbows–all you need is a
sunny day and a garden hose or spray bottle
which can produce a fine mist. With a little ex-
perimentation, you should be able to see behavior
similar to Figure 3.

Another phenomenon which you may have ob-
served is the secondary rainbow. When the con-
ditions for rainbows are especially good, there
will be another, fainter rainbow above the pri-
mary rainbow. If you have a protractor handy,
you will notice that the angle of elevation of the
secondary rainbow is about 51◦. When condi-
tions are extremely good, might it be possible to
see a still fainter tertiary rainbow? Or an infinite
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series of fainter rainbows?1
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What Happens in the Raincloud?

Let’s focus more closely on the raincloud which
produces the rainbow. Light comes from the sun
and encounters drops of water. The direction of
the light is altered by two phenomena we’ll dis-
cuss in detail–refraction and reflection.
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Fig. 4

In fact, the complex behavior which produces a
rainbow can be explained by looking at a single
raindrop. Here’s a sketch which shows the path
of light travelling through a raindrop to create a
rainbow.
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1There is a difference between mathematical possibility
and physical possibility!

Fig. 5

In order to understand Figure 6, we’ll have to
know a little about the behavior of light as it
travels from air to water, and back again.

Law of Refraction (Snell’s Law)

Light travelling from source to observer takes the
quickest path. Usually this is a straight line,
but if the light travels through different media
(say, both air and water) it will change direction
slightly due to the fact that the speed of light
varies in different media. For instance, the speed
of light is slower in water than in air, which causes
the path to bend at the point of entry.
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Why? The most direct path from source to ob-
server travels through too much water to be the
quickest, but the path minimizing the amount of
water the light travels through is too long to be
the quickest. The actual quickest path is a com-
promise between these two.
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In fact, we can compute the path exactly! The
exercise below shows that the path of least time
is found when

sin(α) = k sin(β)
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where α and β are the angles of incidence and
refraction, respectively, and k is the ratio of the
speed in the source medium to the speed in the
observer’s medium. Notice that if the positions of
the source and observer are reversed (so that the
source is in water and the observer is in air), the
quickest path between the two is unchanged. So
light travelling from water with incidence angle
β will have angle of refraction α.

Exercise 1 Follow the steps below to verify that
the quickest path from source to observer is given when
sin(α) = k sin(β).
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1. In the diagram above, a, b, and d are fixed, and the
other variables are functions of x. Find D1 and D2

in terms of x.

2. Let v1 be the speed of light in medium A and v2 the
speed in medium B, and show that the time taken
to complete the path is

√
a2 + (d x)2

v1
+

√
b2 + x2

v2
.

3. Now use the derivative to show that the above quan-
tity is minimized when

d x

D1v1
=

x

D2v2

and conclude Snell’s Law (let k = v1
v2

).

Law of Reflection

Light which strikes off a mirror or other surface
has the following behavior:
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In other words,

angle of incidence = angle of reflection.

It’s interesting to note that refraction and re-
flection are two manifestations of a single law,
called Fermat’s Principle, which states that the
light which reaches your eye is the light which has
travelled along the quickest path from its source.
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Whether you look at your hand in a mirror or
underwater, the rays you see are those which have
taken the quickest path to your eye.2

The Turning Angle

Now that we can account mathematically for
some of the behavior of light, let’s revisit the
raindrop model. To make things simpler we’ll
suppose that the raindrop is perfectly spherical,
and that it makes sense to look at everything in
two dimensions. Suppose light strikes the drop
with incidence angle α, is reflected by the back
wall of the drop, and then is refracted again on
leaving the drop. By what angle is light turned
by its encounter with the raindrop?

2Actually the behavior of light is more complicated
than that. Light can travel along all possible paths from
the source to the observer–but those rays travelling very
close to the quickest path reinforce each other, while the
others cancel each other out, so all the light appears to
have taken this path. But that’s another story...(cf Feyn-
man, QED [1]).
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Let α be the angle of incidence and β the angle of
refraction, which is related to α by Snell’s Law.
As the ray travels to the far side of the drop, it
moves along the base of an isoceles triangle whose
sides are both radii of the drop. After it reflects
off the inside wall of the drop, the ray travels
back through the drop and completes another,
identical isoceles triangle. As the picture shows,
the incidence angle for the light leaving the drop
will now be β. As we have already noted, light
travelling from water into air with incidence angle
β will have angle of refraction α.

Suppose T (α) is the turning angle, that is, the
total angle by which the ray is turned by its en-
counter with the raindrop, measured clockwise
from a straight path.
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Light entering the drop is turned by α β (why?)
as is light leaving the drop. The reflection causes
a turn of 180◦ 2β. We can add up all the angles

to get

T (α) = (α β) + (180◦ 2β) + (α β)
= 180◦ + 2α 4β.

So light entering the drop at an angle α is turned
by the angle 180◦ + 2α 4β.

Concentration of light

We’ve seen that if light enters a raindrop at an
angle α then (some of) it is turned by an angle
T (α). But this doesn’t explain why you only see
the turning effect along a certain band which is
42◦ above the axis to the sun.
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What happens is that although in fact light is
turned through various angles, more light (much
more) reaches the observer from the marked band
than from elsewhere.

A little calculation—and a little calculus—
shows why. We’re going to compute the rate of
change in turning angle T (α) with respect to α.
In other words, we’re going to figure out dT

dα . Af-
ter we’ve done, and after we’ve figured out for
which values of α the derivative dT (α)

dα is zero,
we’ll consider what all this calculus has to do
with the concentration of light at 42◦.

Differentiating both sides of

T (α) = 180◦ + 2α 4β

by α gives
dT

dα
= 2 4

dβ

dα
.

But what is dβ
dα? We can differentiate both

sides of the refraction law

sin(α) = k sin(β)
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by α to get

cos(α) = k cos(β)
dβ

dα
,

and putting it all together,

dT

dα
= 2

4 cos(α)
k cos(β)

.

Remember that the derivative of a function
evaluated at a point allows us to find the lin-
ear approximation to the function at that point.
That is,

T (α) ≈ T (α0) + T ′(α0)(α α0)

as long as α α0 is small. If we can find a point
α0 where T ′ = 0, then T (α) ≈ T (α0) for any α
close to α0. This means precisely that every ray
of light entering with incidence angle near the
angle where T ′ = 0 is turned by approximately
the same amount.

Now let’s find α0. Suppose

0 =
dT

dα
= 2

4 cos(α0)
k cos(β0)

.

With a little algebraic manipulation,

k2 cos2(β0) = 4 cos2 α0,

and hence

k2(1 sin2(β0)) = 4(1 sin2(α0)).

Now use the law of refraction to substitute for
sin(β0)

k2 sin2(α0) = 4 4 sin2(α0)

and solve for sin(α)

sin2(α0) =
1
3
(4 k2).

If k = 1.33, then α0 = 59.4◦ and so T (α0) =
138◦.
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Since the line from the raindrop to the sun and
the line from the observer to the sun are approx-
imately parallel, the angle of elevation from the
line to the sun is 180◦ 138◦ = (presto!) 42◦,
our “magic number”.

So all the rays for which α α0 is small will
appear to come from the same point, precisely
42◦ from the axis to the sun. To demonstrate
this point graphically, let’s assume each value of
α between 0◦ and 90◦ is equally likely, and find
the distribution of T (α).

Choosing the values α =
0.0◦, 0.5◦, 1.0◦, ..., 89.5◦, 90.0◦ we obtain the
following frequency distribution for T (α):
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Fig. 14

The “spike” around 138◦ is what produces the
band of light at 42◦.

Exercise 2 When calculating the distribution of T (α),

we assumed that all values of α, 0◦ ≤ α ≤ 90◦, are equally

likely. Actually, assuming the light rays entering the drop

are parallel and equally distributed, what is the actual

distribution of α?

The Colors of the Rainbow

So far, we’ve explained why the rainbow appears
as a band of light in the sky, but we haven’t
said anything about the colors of the rainbow.
The color separation in a rainbow is due to the
fact that the constant k in the Law of Refraction
is slightly different for different colors of light.
When white light is refracted, each of the com-
ponent colors is turned by a different amount.
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Exercise 3 For red light, k ≈ 1.3318, while for violet

light, k ≈ 1.3435. Should red appear above or below

violet?

Secondary Rainbows

Why does the light sometimes reflect in the rain-
drop and at other times pass through it? The
answer is that only some of the light exhibits the
behavior we’ve describing–each time the light en-
counters the wall of the drop, some of it is re-
flected and some “escapes”.
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The point is that enough light follows the path
described above that we can see a rainbow.

The phenomenon of the secondary rainbow ap-
pears when light strikes below the “equator” of
the raindrop and is reflected twice before leaving
the drop.
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It is fainter since light is less likely to reflect twice
than to reflect once.

Exercise 4 Let’s investigate the secondary rainbow.

1. Where should the secondary rainbow appear? Show
that the turning angle in this case is given by

T (α) = 360◦ + 2α 6β

and follow the same steps as above to show that dT
dα

is 0 when T (α) is approximately 129◦.

2. Will red be on the top or bottom? Find the turn-
ing angle for red and violet light in the secondary
rainbow.

3. How and where might a tertiary rainbow appear?
Will red be on the top or bottom? Is it possible
that fourth or fifth rainbows might appear?
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