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 A rider on a bicycle goes down a road, steering a path with the front tire, or perhaps

 just weaving back and forth. If the tires pass through a puddle, we can see from the

 tracks that the back tire follows a path similar to that of the front tire. Suppose we
 know the path of the front tire precisely; what is the path of the back tire? A related

 question is: If the front tire travels some distance, how far does the back tire travel? It

 seems obvious from experience that the back tire travels a shorter path than the front
 tire. Bicycle folklore says that after a long trip the back tire will show about 10% less

 wear than the front tire. Is it possible to verify the folklore?
 In this article we derive and solve differential equations for the path of the back tire,

 given the path of the front tire. For a parametric form of the front-tire path the differ-

 ential equations for the path of the back tire are a pair of coupled nonlinear differential
 equations.

 These equations for the back-tire path are a simple example of vector Riccati equa-

 tions. In a few idealized cases, we can solve them directly, with geometrical arguments
 or by "guess-and-check." More realistic cases require more sophisticated methods. We
 use both regular perturbation (matching terms of the solution's Taylor expansion in

 terms of a small parameter) and iteration (successive approximation) techniques. We'll
 then derive some quantitative rules for the distance the back tire travels compared to
 the front tire.

 The formulation and solution of the differential equations for the back-tire path

 given the front-tire path is an example of a forward or direct problem. In contrast, an

 inverse problem would be: Given the paths of both the front tire and the back tire, de-
 termine which was the path of the front tire. This inverse problem is explored in the
 well-known article, "Which way did the bicycle go?" [9], which leads to an elementary
 calculus problem relating the tangent lines of the two paths. We use this same relation
 of the tangent lines in formulating the differential equations for the direct problem.
 The solution of the direct problem will also give another way to characterize the front-
 and back-tire paths in terms of magnitude of the oscillations. This provides another
 elementary way to solve the inverse problem in special cases when the paths are sinu-
 soidal.

 Investigating the dynamics of bicycles has been a favorite topic in physics for a long

 time, and there are many references in the physics education journals [1, 2, 4, 5, 3, 6, 7],
 particularly with reference to the stability of a bicycle. There are fewer references to
 bicycles in the mathematics literature [9, 10], generally dealing with the paths of the
 tires. This article provides an elementary application of coupled nonlinear differential
 equations to a familiar situation. The application and methods are suitable for classes
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 on methods of applied mathematics and differential equations. A Maple worksheet

 showing the computations and figures is available at the MAGAZINE website: http://

 www.maa.org/pubs/mathmag.html.

 Model equations

 Assume that the path of the contact point of the front tire of a bicycle is given para-

 metrically as a function of time as (xf (t), yf (t)). The contact point is where the tire
 touches the road. The problem is to determine the path of the contact point of the rear

 tire, represented parametrically by (Xb(t), Yb(t)). Let a be the wheel-base of the bike,
 that is, the distance between the front and back contact points. As the handlebars are

 turned, the front tire more or less swivels on the contact point below. Actually, de-

 pending on the design of the bicycle, the front contact point moves slightly relative to

 the back, but we will treat a as a constant. Analyzing how this assumption affects the

 results would be a good exercise in modeling. The dimensions of a, Xb (t), Yb (t), Xf (t)
 and yf (t) are in the units of distance.

 We draw on a primary physical fact (the main ingredient in [9]): the tangent vector

 to the path of the rear tire always points to the contact point on the path of the front

 tire. Since the wheel-base is constant, we may express this fact as a pair of differential

 equations for the path of the rear-tire contact point:

 X' (t)
 Xb(t) + a + Xf(t

 y, (t) =y()
 Yb(t) + a + - ()

 This pair of equations can be rearranged as

 XI (t) Xf (t) - Xb (t) (la)

 /(X4)2 + (y )2 a

 Yb (t) yf (t) - Yb (t) (lb)
 I()2 + (y/)2 a

 This says that the unit velocity vector for the back tire points in the direction (unit

 vector!) of the wheel-base of the bicycle. Taking a closer look, equation (1) is a relation
 between two unit vectors. There is no way to determine the magnitude of the velocity

 vector (x4(t), y (t))T. With this in view, call the speed of the back tire point v(t) =

 V(Xb4)2 + (yl)2. Rewriting (1) gives

 xI (t) = v (t)xf(t)-Xb(t) (2a)
 b ~~~a

 y/ (t) = v (t) Yf (t) - Yb(t) (2b) b ~~~a

 If we can express the speed of the back-tire point in terms of the known front-tire

 speed, then we will be able to express the differential equation for the back-tire path
 in terms of (Xb(t), Yb(t)) and known quantities.

 Think of the back-tire velocity as though the velocity vector of the front tire is
 dragging the back tire along. The velocity of the back tire will be the component of
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 the front-tire velocity in the direction of the back-tire motion. The back-tire speed is
 the magnitude of this projection, found using the dot product:

 /X () Xf()Xb (t))

 VY' (= t). (Yf) Yb() (3)

 With this, the right sides of equations (2) are expressed in terms of the given quantities
 (Xf (t), yf (t)) and (x' (t), yI (t)) and the unknown track (Xb(t), yb(t)). This puts our
 equations (2) into a nice form: derivatives of the unknown quantities are expressed in
 terms of the unknown quantities and various known quantities.

 Expression as a Riccati equation

 We rewrite the equations for the bicycle back tire in an alternative form, relating
 them to the standard theory for matrix Riccati equations. Although we will not pursue
 solving the equations in this form, the matrix form suggests some other approaches
 to analyzing the equations theoretically and solving them efficiently with numerical
 methods.

 This application of matrix Riccati equations to bicycle tire tracks is a very elemen-
 tary and easily derived example; other less elementary applications of Riccati equa-
 tions arise in transmission line theory, random noise theory, variational equations, and
 control theory [8].

 Insert expression (3) into (2) and collect terms

 1 F12 + t X t
 XI (t) = 2I [f(t) {Xf (t) - Xb(t)} + yf(t) {Xf(t) - Xb(t) {yf (t) - Yb(t) (4a)

 Yb(t) = I [X (t) {Xf (t) - Xb(t) jyf (t) - Yb(t)I + Yf(t) Iyf (t) - Yb(t)J ] . (4b)

 Now the quadratic form characteristic of Riccati equations is explicit, but cumbersome.

 For a more elegant presentation, we write the equations in terms of the quantities
 wi (t) = Xb(t) - Xf (t), and W2(t) = yb(t) - yf (t)). A little work leads to:

 w(t) = 2 [X[f(t)w 2(t) + y[ (t) Wl (t)W2 (t)] - (t) (5a)

 w -(t)= [x[f(t)wl(t)w2(t) + yf(t)w2(t)]- y(t). (5b)

 Let W(t) = [wl(t), w2(t)]T be a 2 x 1 matrix (or vector). Then equations (5) can be
 expressed as

 W'(t) - I [W(t) FT(t) W(t)] + F(t) = 0,

 where F(t) = [Xf (t), y, (t)]T. This is a special case of the general Riccati matrix dif-
 ferential equation treated by Reid [8, equation (2. 1), page 1 1], where linear terms are
 allowed in addition to the quadratic term in our equation. This demonstrates the re-
 markable likeness between the equations for such simple things as bicycle paths and
 complicated things like random noise theory. Matrix Riccati equations can arise even
 from familiar physics.
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 Some simple paths for the front tire

 We check our modeling by seeing that the differential equations predict the right be-
 havior in cases where we already know what happens.

 Simple case I: A straight path, no turns, constant front-tire speed Suppose the
 path of the front tire is a straight line, say along the x-axis. Our experience tells us that

 if the front-tire path is a straight line, then the back tire should follow behind on the

 same straight line. We leave it to the reader to verify this directly from the differential
 equations, which are easy to solve in this case. This is recommended as a way to get

 to know the equations better. Set

 Xf (t) = Vf t, yf (t) = 0.

 After writing down the differential equations for Xb(t) and Yb(t), it is easy to check
 that the solutions are

 Xb(t) = -a + Vf t, Yb(t) = 0.

 Thus, the back tire follows a straight line, lagging by only the wheel-base of the

 bicycle.

 Simple case II: A large circular path Take the path of the front tire to be a large
 circle. From our experience riding a bike around a circle, the back-tire contact point

 trails behind and inside the circular front-tire path. In steady state, the angle between
 the circle and the bike body (wheel-base) should be constant, as shown by the symme-

 try of the system. Since the bike is of constant length and makes a constant angle, the

 back-tire contact point follows a concentric circular path. The situation is depicted in
 FIGURE 1. The question now becomes: "What is the radius of the inner circle of the
 back tire?".

 Set some notation: Let c be the radius of the large circle traced by the front-tire

 contact point. Let a be the wheel-base of the bike. Let b be the (unknown) radius
 of the inner circle traced by the back tire. Remember that the velocity vector of the
 back tire contact point will point at the contact point of the front tire. But the velocity
 vector of the back-tire contact point is perpendicular to the radius vector of the back-

 tire contact point. As seen in the diagram, a right triangle is formed by the back-tire

 Figure 1 The tracks of the front and back tires, the radii, and the bicycle wheel-base
 when the front tire follows a circular path
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 contact point radius vector (of length b), the bike wheel-base vector (of length a), and

 the front-tire contact point radius vector (of length c). Therefore, a2 + b2 = c2 and so

 b = c2-a2.
 How much less does the back tire travel? The ratio of the length of the paths of the

 small back-tire circle to the large front-tire circle is /c2- a2/c = /1 - a2/c2.
 In this situation, a limiting case occurs as the radius of the large circle goes to

 infinity. Then we can consider the front path to be a straight line, for instance, the

 x-axis. According to our results, the radius of the back-tire path also goes to infinity,
 which we should expect, since its path is also a straight line.

 We now formulate this in terms of the differential equations; say that the front tire

 starts at (c, 0). Then, convenient parametric equations are

 Xf (t) = c cos(cwt), yf (t) = c sin(c t).

 After computing v(t) from formula (3) and simplifying (2), the differential equa-
 tions for the coordinates of the back contact point become

 dX = (cco/a 2) (c cos (ct) -xb(t))(sin(cOt)xb(t) COS(cot)yb(t)) (6a)
 dt

 dY = (cco/a 2) (c sin(cot) -yb(t))(sin(cot)xb(t)- cos(cot)yb(t)) (6b)
 dt

 Although equations (6) look difficult to solve, a solution by inspection is readily
 possible. The previous geometric analysis suggests that the solution should have the
 form

 Xb(t) = bcos(cot - g) and Yb(t) = bsin(ot -)

 where b is the radius, and Vf = arcsin(a/c) is the phase shift indicating the back tire
 trails behind the front tire. Insert this trial solution into the differential equation; using

 standard trigonometric identities you will see that it works, with b = - a2.

 Simple case III: A stunt circular turn with rear tire as pivot Another limiting
 case occurs when the radius of the front-tire circle shrinks to a, the wheel-base of
 the bicycle. In this case, the front tire is turned at a right angle to the bike body and
 moves in a circle of radius a. According to our formula, the radius of the back-tire
 path should be 0. This is a stunt turn, a spin or pivot on the back tire. Physically, the
 back-tire contact point remains motionless.

 For this special case, solving the differential equations is easy: Say that the front

 tire starts at (a, 0), the back tire is positioned at the origin; as in the previous example,
 write parametric equations for the path of the front tire, and write out the differential
 equations, with initial conditions Xb(O) = 0 and Yb(O) = 0. It will then be clear that
 Xb(t) = 0, and Yb(t) = 0 satisfy the initial conditions and the differential equations.
 Therefore, by the uniqueness theorem for first-order ordinary differential equations,
 this is the unique solution.

 When the front path is a sine curve

 Set-up and numerical analysis Assume that the front tire follows a sine curve. Ex-
 perience suggests that the back-tire track should also follow a sine curve with a phase
 shift and a smaller amplitude.

This content downloaded from 184.171.155.199 on Fri, 20 Apr 2018 12:31:36 UTC
All use subject to http://about.jstor.org/terms



 278 MATHEMATICS MAGAZINE

 Start by introducing the path of the front tire, written parametrically as

 Xf(t) = st, yf (t) = Af sin(tst). (7)

 In this set-up, s is a speed parameter that converts time to distance. Let t be a spa-

 tial frequency, so that one oscillation of the front tire takes 27r/4 units of horizontal

 distance or 27r/ls units of time. Let Af be the amplitude of the front-tire oscillation.
 As usual, call a the wheel-base of the bicycle. When we incorporate the parametric

 equations (7) into the differential equations (2), with an appropriate substitution of the

 velocity (3), we arrive at the following equations for the x- and y-coordinates of the
 back tire:

 dxb (t) S {st -Xb (t) }

 dt L a

 Af cos(4st)4s{Af sin(4st) -yb(t)} st -Xb(t) (8)

 a a

 dyb (t) F s{st - Xb(t)}
 dt [ a

 + Af cos(ast)tsfAf sin(4st) -Yb(t)}Af sin(tst)-Yb(t)
 a a

 We choose Xb(O) = -a, Yb(O) = 0 as reasonable initial conditions, but other initial
 conditions are possible.

 These equations are certainly difficult to solve analytically; we will first find ap-
 proximate numerical solutions, for which we need to choose specific values for the
 parameters. We will take a = 1, which, in SI units, means that the wheel-base is 1 me-
 ter long; this is reasonable (although just a little short for most adult bicycles, which
 have a measured wheel-base of slightly more than one meter). Take the amplitude of

 oscillation Af to be 0.3 meters, the speed s to be 5 meters per second and the fre-
 quency t to be 1. The graph of the numerical solution, rescaled to show the details, is
 shown in FIGURE 2. Of course, the actual path looks far less oscillatory.

 The path of the back tire has the general form of a sine curve. Note that the am-
 plitude of oscillation of the back tire is less than the amplitude of oscillation of the

 0.3-

 front-tirept

 0.2 re-t

 y (meters) /

 0.1 ~~~~~~~~~~~~~~~~~~~~~~ack-tire path

 -0.2-

 -0.3-

 Figure 2 Scaled view of the paths of the front and rear tires, computed numerically with
 a =1, Af=O0.3, s=5, and t 1
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 front tire, and the back tire is slightly phase-shifted behind the front tire. This seems

 reasonable.

 A good guess at an approximate solution Based on the numerical solution, we can

 make a good guess at the approximate solution. Since we expect a path similar to the

 front-tire path, we guess a parametrization, Xb(t) = st - a, and yb(t) = Ab sin(tst -
 t), where Ab is the amplitude of the back-tire path and 4 is a phase shift. Note that
 this cannot be the exact solution, because here the horizontal distance between the

 tires' contact points is a in these formulas; in reality, it must be shorter.
 From the differential equation (2) (in a slightly different form) we know

 yf (t)-Yb(t) dyb (t)
 Xf (t) -Xb (t) dXb (t)

 Our assumptions make the left-hand denominator equal to the wheel-base a. Using the
 chain rule and rearranging the equation, we get

 dYb (t) dt
 Yb(t) = yf(t)-a (10)

 dt dXb (t)

 Inserting the guessed solution and the known front-tire formula into equation (10)

 yields

 Ab sin(4st - Vt) = Af sin(4st) - a4sAb cos(4st -)-
 S

 Since this equation must hold for any time, choosing t = 0 we get the phase shift

 V = arctan( a) (11)

 and using t = 7r/(2st), we get the amplitude

 A f
 Ab- A

 1 + 2a2

 We can plot the guess along with the numerical solution to the equations on scaled
 axes to compare them in FIGURE 3. Except for a short transient, the guess seems

 to be identical with the numerical solution. The difference between the numerically

 0.3 /

 y front-tire path

 0.2-

 y(meters)

 0.1 \ack-tire path

 mjeters) 1 11 20

 guessed path

 -0.2-

 -0.3

 Figure 3 A scaled plot of the front-tire path, the numerically computed back-tire path
 and the guessed solution
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 0 14

 0. 2

 0 1

 (meters) 0.0

 0.06

 0.04 -

 0.02 -

 5 0 1
 x (meters)

 Figure 4 The difference between the numerically computed back-tire path and the si-
 nusoidal guess

 computed back-tire path and the guessed solution is plotted in FIGURE 4; except for

 the transient, the difference is about a centimeter, less than 5% of the magnitude of
 the back-tire oscillation. The solution Ab sin(tst - 4r) was a very good guess, and the
 back-tire path is nearly a sine curve. Is there another way to justify the guess?

 A solution based on linearized equations The amplitude of the front-tire oscillation
 is small compared to the other physical parameters. Furthermore, as the amplitude of

 the front-tire path goes to zero, that is, the path approaches a straight line, the back-
 tire path approaches the same straight line. We can see that the back-tire path depends

 on the front-tire amplitude. This suggests that we take the amplitude of the front-tire

 oscillation to be a small parameter in the differential equations.

 We will assume that the back-tire path can be expressed as a power series based
 on this parameter. Inserting the power series expansion into the differential equations

 and gathering like terms gives a sequence of linear differential equations that we can

 solve. In applied mathematics, this method is called a regular perturbation expansion.
 Regular perturbation is routinely used in all applications where we need to solve a

 nonlinear equation, at least approximately.

 To work out the details, assume

 Xb(t) = XbO(t) + AfXbl(t) + O(A2), (12a)

 Yb (t) = YbO(t) + Af Ybl (t) + O(A2), (12b)

 and insert these expansions into equations (8) and (9) to get a perturbation expansion.
 It is not necessary, but using a symbolic computation system simplifies matters.

 Zeroth order Inserting the posited form of the solution, expanding and compar-
 ing the terms with no coefficient of Af, we find an equation for the leading order term

 dXbo(t) s3t2 S2 tXbO(t) s {lXbO(t)} (13)

 dit a2 -2 2 ? a2

 with initial condition XbO(O) =-a. Note that this is a Riccati equation because of
 the term XbO(t)2. However, the right-hand side can be easily factored and the equation
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 solved as either a separable equation or by inspection (or checked!) to yield

 XbO(t) = st - a. (14)

 Likewise we can find the leading order equation for ybo(t), using the new information
 from (14)

 dYbo (t) _ SYbO(t) (15)

 dt a

 with initial condition Ybo(O) = 0. Because this equation is linear and homogeneous
 with 0 as initial condition, the solution must be identically zero:

 YbO(t) = 0. (16)

 This proves the zeroth order perturbation solution agrees with the formulas in Simple
 Case I. To lowest order of approximation, the motion of the back tire following a front
 tire weaving back and forth with small amplitude is a straight line.

 First order We equate the terms of the Xb equation with coefficient Af, and insert
 the now known solutions (14) and (16), to find

 dxbl (t) _ 2sXb (t) (17)

 dt a

 with initial condition Xbl (0) = 0. The result is a homogeneous linear differential equa-
 tion, and is therefore easy to solve:

 Xbl(t) = 0. (18)

 The equation for Ybl (t) is more interesting. Comparing terms with one power of Af,
 and using all of the previous information about XbO, Ybo and Xbl, we find

 dYblI(t) -s
 _______ _= - [sin(tst) - Ybl(t)]0 (19)
 dt a

 The solution with initial condition Ybl (0) = 0 iS

 -at cos(tst) + a?e(-a ) + sin(tst)
 YbI(t) -+2 2

 It is easy to use standard identities to write this solution as

 sin(tst- /) sin(Vf)e-st Ybl t= - /1? + 2a2

 with Vf as in (l1).
 We now assemble the power series expansion of the solution by substituting XbO(t),

 Xbl (t), Ybl (t), and yb2(t) into (12). Ignoring quadratic and higher orders of the front-
 tire oscillation amplitude, we have the following parametric equations for the motion
 of the back tire:

 Xb(t) = st - a (20a)
 St

 Yb(t)= Afsin(~st - t/r) sin (t/r)e -a Yb(t) = Af 1 i -2,,2 /1 i -2,2(20b)
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 0.004

 y (meters)

 0.002 -

 0 \ 5gS XI 1 0 15
 x(meter

 -0.002-

 -0.004

 Figure 5 The difference between the numerically computed and the perturbation solu-
 tions

 We could do some additional work to compare terms with coefficients A}f, using the
 known XbO(t), Xbl (t), ybo(t), and Ybl (t) to derive linear equations for Xb2(t) and yb2(t).
 However, before we do that let's stop and examine graphically what we have so far.

 Plotting the perturbation solutions (20) parametrically, we discover that the back

 path appears identical with the numerical solution, even including the short transient.
 In fact, superimposing the perturbation solution with the numerical solution simply

 yields another copy of FIGURE 2. The difference of the numerically computed back-

 tire path and the perturbation solution is plotted in FIGURE 5. The transient difference

 is nearly zero, and the difference is less than 2% of the amplitude of the back-tire

 oscillation. The back-tire path is very nearly a sine curve with an exponential transient.

 This explains why the guess was a good approximation except for the transient.

 As mentioned above, with more work we could derive additional terms in the per-

 turbation expansion to get an even better approximation. However, it appears that we
 now have a solution that sufficiently explains and confirms our intuition about the back

 tire.

 A general front-tire path

 Now assume that the front-tire path is given by Xf(t) = st and yf(t) = Af f(st),

 where s is a speed parameter and f(.) is a bounded continuously differentiable function
 whose maximum value is scaled to be 1. Then the amplitude of the motion of the front
 tire is a small parameter Af . Additionally we assume that f(0) = 0 so the motion of the
 front tire starts at the origin. Again we will discover an approximation for the motion

 of the back tire by means of regular perturbation expansion.
 Looking back at the work in the previous section, we see that the expansions

 for XbO(t), Ybo(t) and Xbl(t) don't involve Af or the front-tire function f. Therefore,
 the equations and their solutions will be the same, yielding again XbO(t) = s t - a,

 YbO(t) = 0, and Xbl (t) = 0. The equation corresponding to (19) for the first-order term
 Ybl (t) using all of this information simplifies nicely to

 dybl (t) sf(st) sYbl (t)
 dt a a
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 with initial condition Ybl (0) = 0. The solution can be written

 t sf(su) -s(t-u1)
 Ybl(t) = e a du.

 Joa

 Estimating this integral shows that Ybl (t) is bounded by st/a, since f(st) is bounded

 by 1. We can get a better bound by doing some deeper analysis of the integral, which
 is a convolution.

 Introduce the variable w = s (t - u), and find that

 a

 Ybl (t) = f(st-aw)e-w dw.

 Then let gt(w) = f(st - aw)I[o, (s/a)t](w), where I[o, s](w) is the indicator function on
 [0, S], which is 1 for w E [0, S] and 0 otherwise. Note that gt(w) is continuous, since

 as w -> st/a then f(st - aw) -? f(O) = 0 by the assumption that f(.) was C1 and
 starts at the origin (f(O) = 0). Also gt (w) is bounded by the bound on f(*), which we
 have assumed to be 1. With this notation

 r00

 Ybl(t) = f gt(w)e-wdw,

 and the nature of the function as a Laplace transform is clearly revealed. Then

 IYbl(t)I = f gt(w)e-w dw

 < f Igt(w)Ie-w dw

 r00

 < e-wdw = 1.

 This means that the amplitude of the back-tire motion never exceeds the amplitude

 of the front-tire motion, a reasonable conclusion.

 Another formulation and solution by iteration

 Formulation and diagrams For a nonparametric front-tire path, given as yf =
 f(xf), an interesting alternative differential equation for the back-tire path results. Of
 course, any such front-tire path could be put in parametric form and studied using
 methods from the previous sections. However, looking at the bicycle equations in
 this new form provides a simple derivation of an unusual form of nonlinear delay-
 differential equation, interesting in its own right. The method of successive approxi-
 mations is a typical way to solve nonlinear equations; the bicycle equation provides a
 nontrivial example in a situation where we have an answer to check against. A good

 principle of research in applied mathematics is to solve a problem in two different

 ways and compare the answers. Fortunately for us, both solution methods yield the
 same results!

 As before, take a to be the wheel-base of the bicycle, and assume the front tire starts
 at the origin, so f(O) = 0. Then the back tire starts at the coordinate (-a, 0). Let the
 path of the back tire be given as a function g(Xb) of the x-coordinate of the back tire,
 Xb. Then we know for example that g(-a) = 0.
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 front-tire path

 back-tire path

 horizontal length

 Figure 6 A schematic diagram of the front-tire path, the back-tire path, the bicycle span-
 ning the paths (dashed line), and the projection of the bicycle along the axis giving the
 horizontal length

 We use our notation to express the horizontal distance between the front and back
 tires, as seen in FIGURE 6:

 Xf - Xb = a2- {f(Xf) -g(xb)}

 This gives an implicit relationship between Xf and Xb, assuming that we know the

 back-tire path g(Xb). Using the fundamental fact that the tangent vector to the back-
 tire path points in the direction of the bicycle, we can write

 dg (Xb) f(xf) - g(Xb)
 dxb Wa2- {f(xf ) -g(xb)}

 Again, remember that Xf is given implicitly in terms of Xb, so that there is really only
 one independent variable Xb in the differential equation. We can rewrite this equation

 slightly more transparently if we set Xf = Xb + A. Then the differential equation is

 dg(xb) f(xb + A) - g(Xb) (21)

 dXb - a2 - {ffxb + A) - g(Xb)}2

 Although the differential equation (21) now looks more familiar, it still hides quite
 a bit of difficulty. Since the right side contains not only the unknown function g(Xb),
 but also an advanced argument on the right side, Xb + A, this might seem to be a
 simple delay-differential equation. But this hides an important fact: the delay itself
 depends on the unknown function g(Xb) through the implicit relationship Xf = Xb +

 /a2 _ {f(xf)- g(xb)}2. Therefore, this differential equation has the unknown func-
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 tion appearing not only nonlinearly on the right side, but nonlinearly in the argument

 of the right side too!

 The method of successive approximations is a typical way to solve such an equation.

 First, approximate the horizontal distance A between the front- and rear-tire contact

 points of the bicycle by the wheel-base a. Generally, this will be an overestimate for

 the horizontal distance, but it will be close if the amplitude of the paths is not large.

 Equation (21) then becomes

 dg(xb) f(Xb + a) - g(xb) (22)

 dXb Sa2-{f(Xb+a) -g(xb)2

 For a given front-tire path and a known wheel-base this equation is easy to solve nu-

 merically.
 The next approximation replaces the horizontal distance A with

 /a2 - {f(xb ? a) - g(xb)}2.

 This will also be larger than the true horizontal distance, but clearly a closer approxi-

 mation. The equation becomes

 dg(xb) f ?b + la -{f(xb ? a) - g(xb)}) - g(xb) (23)
 dXb 2

 d - a2 jf(xb ? /a2- f((xb ? a) - g(x)}) - g(Xb)}

 Now the differential equation is clearly more complicated since already the un-
 known function appears in the argument of the right-hand side as well as nonlinearly.

 Nevertheless, we can still solve the differential equation numerically. Conceptually,

 one could use a simple scheme such as the Euler method: Given an initial condition
 such as g(-a) = 0, and knowing the given function f(xf ), the value of the right hand

 side can be calculated to give the slope of g(Xb) at Xb = -a. Then g(-a + h) can be es-
 timated, and the process can be repeated. In practice, of course one uses a more sophis-

 ticated technique such as a Runge-Kutta method, or a multi-step predictor-corrector
 method.

 Numerical computation of the back-tire path for comparison As an illustration,
 we use the iteration procedure to calculate the path of the back tire when the front-
 tire path is a sine curve as before. Then we can compare the numerical solution of
 the coupled Riccati equations for the parametric form with the solution calculated
 numerically by the iteration procedure described above.

 We use f(xf) = Af sin(xb), with front-wheel oscillation amplitude Af = 0.3 and
 wheel-base a = 1 (the same parameters as before). Substituting this information
 into (22), we find an equation that we can solve numerically.

 Plotting the numerical solution along with the zeroth order iteration solution gives
 a figure that, in print, is virtually indistinguishable from FIGURE 2. For a color version
 that shows the slight difference, see http:llwww.maa.org/pubs/mathmag.html. Already,
 the zeroth order application of this method is almost good enough to fool the eye.

 For better results, we can solve the differential equation numerically from the first-
 order approximation. We can even take one more step in the iteration process to obtain
 the complicated equation
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 0.3 sin [Xb + 112-[0.3 sin (xb+ 1x + 1)-g(xb)2 -g(xb)] g(xb)

 dXb 2

 12 0.3 sin(Xi(xb + /12- {O.3 sin(xb + 1)- g(Xb)}2) -g(Xb) - )(Xb)J|

 Despite its complicated appearence, the equation can still be solved numerically, with

 an expected improvement in results. For the purposes of comparison, we present in

 TABLE 1 all the different solutions for the case where the front tire follows a sine

 curve. This gives a comprehensive view of the quality of each of the approximate

 solutions.

 TABLE 1: Comparison of the various solutions to the numerical solution. The rows are

 approximations at various xb-values, the columns are the various solution methods. The
 methods labeled go, gi, and g2 are, respectively, the zeroth, first, and second order itera-
 tion methods. The values are rounded to 5 decimal places.

 Iteration Sol.
 Numerical Perturbation

 Xb Sol. Sol. go g1 92

 0 0.09998 0.10036 0.10097 0.09995 0.09997
 1 0.21934 0.21912 0.21986 0.21932 0.21934
 2 0.17756 0.17713 0.17720 0.17757 0.17756

 3 -0.01191 -0.01273 -0.01520 -0.01174 -0.01192
 4 -0.18601 -0.18538 -0.18780 -0.18593 -0.18601
 5 -0.18603 -0.18557 -0.18642 -0.18600 -0.18603

 6 -0.01541 -0.01440 -0.01268 -0.01555 -0.01540

 7 0.17077 0.17028 0.17277 0.17068 0.17077

 8 0.19890 0.19851 0.19947 0.19887 0.19890

 9 0.04531 0.04426 0.04296 0.04544 0.04531
 10 -0.15100 -0.15066 -0.15355 -0.15090 -0.15100

 Conclusions NVe have shown that if the path of the front tire of a bicycle is specified,
 it is possible to derive the corresponding path of the back tire. In some geometrically

 simple cases, such as a large circular path for the front tire, it is possible to derive
 the corresponding back-tire path precisely. In some other reasonable geometric cases,
 such as a sinusoidal front-tire path, it is not possible to find the corresponding back-tire
 path precisely, but we can derive approximations to any desired degree of accuracy. In
 this paper, we have solved the approximation equations to first order, which seems
 sufficient for most purposes. In fact, the approximation techniques are easy to apply
 for any reasonably general front-tire path. The only limit to being able to express the
 solution analytically is the ability to evaluate a convolution, or equivalently to solve
 a first-order linear differential equation. Of course, in any case, the equations for the
 back-tire path can be solved numerically.

 The coupled nonlinear differential equations for the back-tire path are easy to ex-

 press and fairly easy to solve when the front-tire path is given parametrically. When

 the front-tire path is given directly as a function of the position down the road, the dif-
 ferential equations assume the more challenging form of an unusual delay-differential
 equation, where the delay even depends on the solution. Nevertheless, the problem
 can still be handled through successive approximations. The solutions found numeri-
 cally, whether by regular perturbation or successive approximations all agree, and with
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 about the same amount of work, so the choice of technique should be determined by

 the available information or purpose of the solution.

 Our analysis sheds light on the relative distances traveled by the front and back

 tires in special cases. If the front-tire path is a large circle, the back tire follows a

 concentric circle, and should experience less wear than the front tire, because the ratio

 of the circumferences is I1 - a2/c2. Likewise, if the front tire weaves back and forth
 along a sine curve, with an amplitude Af and spatial frequency $, then the back tire

 also follows a sine curve with the smaller amplitude Af I21 + a242. Although it is not
 possible to express the arc length of a sine curve with a simple analytic expression, the

 proportionality of the expressions for the functions show that the arc length traveled

 by the back tire is proportionately less than that traveled by the front tire. Of course, if

 the path is perfectly straight, both tires go the same distance.

 Can we verify the folklore that on a long bike trip the back-tire wear is less than
 that of the front tire? Probably not, even though the analysis in this article supports the

 folklore. Too many other variables intervene in the reality to be modeled so simply.
 For example, if the back-tire inflation is less than the front tire's, it will wear more.

 The style of riding, including braking, sliding, and skidding, can affect the wea r too.

 However, we do offer two somewhat practical consequences from the solutions.
 First, presented with two intertwined sinusoidal functions, known to be the paths of

 the front and back tire of a bike, we can now confidently know that the path with the
 larger amplitude is the front tire, and the path with the proportionally smaller amplitude

 is the back-tire path. With additional inspection, knowing that the tangent vectors from

 the back-tire point with fixed distance to the front-tire track, we can find which way

 the bicycle went. Second, the solutions of the general front-tire path case show that the

 amplitude of the back-tire path never exceeds the amplitude of the front-tire path, that
 is, in this model the bike doesn't "fish-tail."

 This bicycle problem shows that moderately complicated nonlinear differential

 equations can be found even in simple everyday experiences. Better yet, we were able
 to apply several different techniques, yielding solutions of various kinds, giving better
 understanding of both the everyday experiences and the techniques.
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