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 (Unfortunately my referee disagrees with this over-optimistic estimation
 as to what constitute 'minor quirks', and has consequently downgraded my
 'proof to a mere 'argument'. While I concur, I still enjoyed writing the
 article.)

 Reference

 1. Georg Pick, Sitzungber, Lotos, Naturwissen Zeitschrift, Prague, 19
 Ü899) do. 311-319.

 J. TRAININ

 Edificio La Roca 27, Paseo del Altillo 11, 1 8690 Almuñécar, Granada, Spain
 e-mail : traininjohn2 @ telefónica, net

 91.71 Deleting blocks of names from a list
 Introduction

 In order to write school reports for my sixth form classes I am provided
 with a list, in the form of a table within an electronic document, of all the
 students in the relevant year group. Before typing my comments into the
 appropriate boxes, I remove the names of all the students that I do not teach
 from this list by deleting the rows that they occupy. Below is a fictitious
 and very much scaled-down year group consisting of ten students, three of
 whom I teach (those in bold):

 1 Alison Anderson

 2 Elaine Barker

 3 Peter Brown

 4 George Costanidis
 5 Sandeep Desai
 6 Paul Hutton

 7 Stuart Jackson

 8 Milāna Pavlov

 9 Helen Sagar
 10 Stephanie Smith

 When there is a run of students in the list that I do not teach then I can

 highlight their names and delete them all in one go. In the above list, for
 example, I could have eliminated the names of these students in three block-
 deletions. Having just performed this procedure for my lower sixth classes, I
 ended up having to carry out 25 block-deletions in order to remove the 74
 students that I did not teach from the year group of size 106. I wondered
 whether I had been somewhat unfortunate in having to perform so many
 deletions - what would the expected number be in this case, and in the more
 general situation? Of course, knowledge of the expectation alone is not
 sufficient to determine how unlucky (or possibly lucky) I had been. We would
 also need to ascertain the variance of the required number of block-deletions.
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 An anonymous referee pointed out to me that an equivalent version of
 this problem does actually appear in the literature, stated within the context
 of tossing a coin. If, without loss of generality, we replace each of the
 students that I do teach by a tail and each of those that I do not teach by a
 head then the number of block-deletions corresponds to the number of runs
 of heads. The distribution of the number of runs of heads (when a coin is
 tossed h + t times, resulting in h heads) and its expectation appear as
 problems in [1] - Problem 23 of Chapter II and Problem 28 of Chapter IX
 respectively - although there are no hints or suggestions as to how to
 proceed.

 We split this paper into three sections. The first contains my original
 solution to the problem, based on the ordered partitioning of positive
 integers into sums of non-negative integers. In the second section we solve
 the problem via an application of indicators - this arose as a result of a
 suggestion by the referee, who also mentioned that Ross [2, p. 312] finds the
 expectation using this method but does not consider the variance. In the
 final part we calculate some higher moments of the number of block-
 deletions and use these results to make a conjecture regarding its distribution
 when the list becomes large.

 The partition method

 Suppose that a year group has k students, t of whom I teach and n of
 whom are not taught by me. We can approach the problem of finding the
 expected number of block-deletions from the list by considering ordered
 partitions of n into sums of t + 1 non-negative integers. We shall refer to
 an ordered partition of p into q non-negative integers as a p-q partition. We
 may easily establish a one-to-one correspondence between n-(t+\)
 partitions and the selections of t students from the list. For ease of reference
 let us call students that I do and do not teach t-students and n-students

 respectively. For 1 < m < t - 1, the (m + l)th term in the partition is
 equal to the number of n-students between the rath and (m + l)th t-
 students, while the first and last terms in the partition are equal to the
 number of students preceding the first t-student and following the last t-
 student respectively. Zero terms in the sum are created by consecutive t-
 students, and also by any such student occupying the first or last position in
 the list. To take an example, the 7-4 partition corresponding to the list given
 above is 1 + 0 + 4 + 2. The number of selections of t students from k,

 and consequently the number of n-(t + 1) partitions, is .

 Note that, for a particular selection of t t-students from k, the number of
 zeroes in the corresponding n-(t + 1) partition plus the number of blocks of
 n-students in the list is equal to t + 1. Let us define the random variable Z to
 be the number of zeroes in the n-(t + 1) partition corresponding to a random
 selection of t t-students from the list, and let D be the number of blocks of n-
 students that need to be deleted. We then have that D = t + 1 - Z, giving
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 E(D) = t + 1 - E(Z) and Var(D) = Var(Z). In order firstly to obtain
 E (D) we shall calculate E (Z) and then use the relationship in the previous
 sentence.

 Suppose that a particular n-(t + 1) partition has exactly m zeroes. If we
 remove these zeroes then we will have an n-(t + 1 - m) partition for which

 all the terms are positive. Furthermore, there are I distinct n-(t +1)
 \ m I

 partitions with exactly m zeroes that will, on removing those zeroes, give the
 same n-(t + 1 - ni) partition. There is an obvious one-to-one
 correspondence between n-(t + 1 - m) partitions for which all the terms are
 positive and the (n - 1 - 1 + m)-(t + 1 - m) partitions (to obtain the latter
 simply take 1 from each of the terms of the former). A similar argument to

 tells us that the number of (n - 1 - 1 + m)-(t + 1 - m) partitions is

 / n - 1 \ _. There thus u It + l\( n - 1 \ distinct ,. . , There _. are thus u distinct ,. . ,
 \n - t - 1 + ml \ m j\n - t - 1 + m)
 n-(t + 1) partitions with exactly m zeroes, giving us

 HM-f:!-;:,'.)

 * + (/!- 1)\

 -«♦.>("♦:-■).
 , (A I"- M I and a vM/ I * \ /»- + *\ on using the results , m\ \ = n\ I and a > I , = , to

 \m) \m-\) £ç\k)\n + k) , \r + n)
 be found in [3, p. 53 and p. 58] for example. Note that = 0 for integers

 \mj
 m and n with m < 0 or m > n, so it is possible that the sums given above
 contain terms whose value is equal to zero. From this we obtain

 E(Z) . (, + 1} x _JÛ!L. x (" + < - D' . ^Lli),
 (n + i)! n!(i - 1)! n + t

 and thus

 E(!» - , + i - ÍÍLLQ . »<L±J).
 n + / n + í

 For the case in which n = 74 and / = 32 we have E (D) « 23, so it would
 appear that I had not been particularly unfortunate in having to perform 25
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 such deletions. However, in order to check this, we ought to calculate the
 variance of D:

 Var(D)rj = Var(Z)r

 - X mAl + l\i n~l \ lk\lt{t + 1}f

 -4iai'JU:-Hî)o2
 -HfTi-l-riHîlO1-

 where we have used, once more, the previously stated results from [3].
 From this we obtain, after a considerable amount of simplification, that

 Var(D) ■ („ + t)Hn + ,-!)•
 For our particular case we have Var (D) ~ 5, which does tend to confirm
 that the 25 block-deletions I had to carry out were not a particularly extreme
 outcome.

 The indicator method

 We can also approach the problem of finding E (D) by using random
 variables called indicator functions. We define the indicator Ir of the event
 that a run of n-students begins at the r th position, so that

 if the first in the list is an n-student

 0 otherwise

 and for r > 2

 if the (r - 1 ) th is a t-student and the r this an n-student

 0 otherwise.

 Then we have

 E(l,) - Pfc - 1) - ¡¿j-IBft) - Pfc - 1) ■ (.^,.,)
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 for r > 2, from which we obtain
 + t \ n + t n + t

 ]T/r = £(E(/r)) = £p(/r = l)

 _ n n¿!

 n + t ~2 (n + t){n + t - 1) n + t
 We can also use these indicator functions to calculate Var (D), although

 this requires a little more thought since Var(D) = Var(Z"=í/r) and
 Xrí í Var(/r) are not necessarily equal here because the indicator functions
 are not independent. For example,

 P(/i)P(/2) =  (n + t)2(n + t - 1)

 the latter being a consequence of the fact that a block of n-students in a list
 cannot start at both the first and second positions. We have

 E(D2) = E(("¿'/r)2) = "fE(/r/r)+ X E(Wy)+ I E (/,/,),

 where the first sum is equal to n (t + 1)1 {n + i), the second is equal to zero
 (as blocks of n-students cannot start at consecutive positions) and the third
 sum can be evaluated using the fact that

 EM-pp-n/,.!)-! sīf5r if'"or;= '
 [ (n + t)(n + t-l)(n + t-2)(n + t-3) Otherwise.

 This gives us

 Var(D) = E(Z)2) - {E(D)}2

 n(f+l) 2nt(n-l) nt(n-\)(t-l) (n(t+l)\2
 =

 n + t (n + t)(n + t-l) (n + t)(n + t-l) \ n + t I

 nt(n-l)(t+l)

 " (n + t)2(n + t-lY
 as before.

 Limiting distributions

 It is interesting to consider the behaviour of E (D) and Var (D) as one or
 both of n and / become large. On fixing t we see that E (D) -> t + 1 and
 Var (D) -> 0 as n - » ©o, which is as we might expect intuitively since the
 larger n becomes the less likely we are to find consecutive t-students in the
 list and the less likely t-students are to occupy the first or last positions in
 the list. On the other hand, if we allow both n and t to increase without
 limit, subject to the constraint n = pt for some positive integer p, then we
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 have E(D) - > °° and Var(Z)) - > °o. We can, however, say something
 about the relative behaviour of E (D) and Var (D) in this case. Since

 w ,™ k;(k - l)(r + 1) = t{n-\)
 Var(D) w ,™ = („ + t)Hn + , - 1) = (, + 0(n + r-l)E(D)'

 we see that

 E(£>) -^- „ 1 - -^- -^2+/?+-así-^°o. „ F
 Var(D) F /?

 Finally, let us see if we can obtain any more information about the
 nature of the scaled limiting distribution of D. In other words, we consider
 the distribution of Dl Var (D) as n and t become large. In order to do this
 we calculate scaled higher central moments of D. Adopting the notation and
 definitions given in [4, p. 51], the £th central moment, ak, of D is defined to
 be E((D - E(D)f). So, in particular, we have a2 = Var(D). In all of
 what follows we shall assume that n = pt for some positive integer p, and
 that h, t > 2.

 Let us consider the skewness and kurtosis of D, given by

 skw(D) = . * . and kur (D) = -£, respectively.
 (VÖ2) . tf5

 Skewness provides us with a measure of the degree of asymmetry of a
 distribution while kurtosis gives us its degree of peakedness (see [5] and
 [6]). We find, after a considerable amount of effort, that

 _ nt(n - \)(t + \)(n - t){t - n + 2)
 °3 " _ (n + i)3(« + * - l)(i + t - 2)

 and

 =

 °A =

 where/(n,i) =

 n4 + (3i2 - 5i - 5)n + 3(i3 + 4i + 2)n2 - t{\\t2 + 12f + 6)n + í2(í2 + 7í + ó),

 noting that in the case n = t (that is, p = 1) the fourth central moment
 takes the particularly simple form

 _ (t - \)(t + 1)(3;2 - At - 3)
 °4 ~ _ 16(2* - l)(2t - 3)

 From the above we obtain

 " _ "'(" - oc + !)(n - oc - n + 2) X :: ((n + r)2(n + 1 - x)f 2
 ( } " _ (n + í)3(n + í - l)(n + í - 2) :: X \ nt{n - \){t + 1) /

 _ (n-t)(t-n + 2)\/n + t- 1
 ~ (/i + i-2)Vwf(fl-l)(f+l)'
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 It is clear, on disregarding the trivial cases, that skw (D) = 0 if, and only if,
 n = t or n = t + 2. However, if we allow t (and hence n) to increase
 without limit, we see that lim skw (D) = 0. We also have

 (n + t)4(n + t-l)(n + t-2)(n + t-3) \ nt(n-l)(t+\) )

 =

 Then, noting that the dominant term in/ (/?/, /) is 3p2 (p + 1) /5, we have

 k (D) = (t(p+ I)- I)(3p2(p+ I)f5 + O(f4))
 Pí2(pí - 1)(/ + l)(/(p + 1) - 2)(t(p + 1) - 3)'

 from which we see that lim kur (D) = 3.

 Any normal distribution has skewness 0 and kurtosis 3 so we might
 conjecture, on the strength of the above results, that the sequence
 {D/ Var(D) : t = 2,3,4, ... } converges to the standard normal
 distribution, in the sense that the cumulative distribution function of
 Dl Var (D) converges to that of the standard normal distribution. Note that
 we cannot appeal directly to the central limit theorem here to provide
 confirmation of this since the indicator functions used to define D are not

 independent (nor all identically distributed). It would be interesting to
 conduct a series of Monte Carlo simulations in order to investigate further
 the possibility that the limiting distribution is standard normal.
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 I am grateful to the referee for suggesting that I also approach this
 problem via indicator functions, and for pointing out that the consideration
 of higher moments might be worthwhile.
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