
 

 
Visualization of Matrix Singular Value Decomposition
Author(s): Cliff Long
Source: Mathematics Magazine, Vol. 56, No. 3 (May, 1983), pp. 161-167
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2689577
Accessed: 17-01-2018 00:50 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and
extend access to Mathematics Magazine

This content downloaded from 132.198.129.164 on Wed, 17 Jan 2018 00:50:34 UTC
All use subject to http://about.jstor.org/terms



 Visualization of Matrix Singular Value Decomposition

 CLIFF LONG

 Bowling Green State University

 Bowling Green, OH 43403

 A real matrix is frequently used as a finite representation of a real function of two variables,

 especially as a tool for studying continuous functions in numerical analysis and computer

 graphics. It is also advantageous to use continuous functions to provide visualization for matrix
 techniques such as singular value decomposition (SVD). We will illustrate how this factorization

 technique can be thought of as providing least square best fit approximations to functions of two

 variables. The basic theory of SVD (sometimes called basic structure of a matrix) will be

 presented, one simple example given for clarification (similar to those found in [7]), and then a
 matrix representation of a sculptured head of Abe Lincoln will be used to illustrate the geometry
 involved. For ease in understanding, we'll restrict our attention to real matrices and refer the

 reader to [2], [4], [9], and [11] for the proofs.

 Singular value decomposition of a matrix is a technique which represents any given matrix as a
 sum of rank 1 matrices, i.e., it yields a finite series expansion for a matrix. For example, the matrix

 3.01 0.01 - 2.99
 A= 2.99 -0.01 -3.01 (1)

 2.00 -4.00 2.00]

 can be written as the sum of three rank 1 matrices in a rather obvious decomposition:

 3 0 -3 0 0 0 .01 .01 .01
 A= 3 0 3 + 0 0 0 + -.01 -.01 -.01

 0 0 0 2 -4 2- 0 0 0

 A less obvious decomposition (which results from the theorem stated below) is:

 1 10 0 0 1 1 1

 2 2 6 r 6 6
 A = 6 1 1 + 2r6 0 0 0 + -4 1 1 1 .(2)
 0-- 100
 2 2 1 2 1 r 6 r

 ~0 0 0 i r r/6 r - 0 0

 In matrix singular value decomposition, the matrix need not be square nor real, and the rank 1
 matrices are chosen, normalized and ordered for usefulness in solving problems. The theory of
 singular value decomposition is not new (according to [10, p. 78] it was established for real and
 square matrices in the 1 870s by Beltrami and Jordan and later developments are referenced in [8]).
 However, its current importance and extensive use is due to the existence of an efficient and
 numerically stable algorithm developed by Golub in the 1960s ([5], [6]). The technique is regularly
 used in solving least square problems and computing pseudoinverses of matrices. It is certain to be
 used even more extensively now that good computer programs are readily available (e.g., Moler [4]
 and software packages such as EISPACK, LINPACK and IMSL). An application to digital image
 processing by Andrews and Patterson [1] inspired my interest in SVD, and comments such as
 [it is] "The most reliable method for computing the coefficients for general least square
 problems..." [4, p. 195] and "... it is not nearly as famous as it should be" [11, p. 142] have kept
 me going.

 The key theorem for SVD of matrices is the following.
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 THEOREM. Any real matrix A can be factored as A = PSQT, where P and Q are orthogonal and S
 is diagonal with diagonal elements ai > 0 (called the singular values of A) [9, p. 18].

 COROLLARY. Any real m X n matrix A can be expressed as a finite sum of rank 1 matrices in
 normalized form, that is, A = al R a2R2 + ? * ak Rk, where k min(m, n) and

 (1) aI a2> O * * * Ur>0=r+?I = ?r+2= * =an, rankA =rk.
 (2) R =iA 4iT where Ai is the ith column of P and a unit eigenvector of AAT, and qi is the ith

 column of Q and a unit eigenvector of ATA.

 (3) each Ri has the sum of the squares of its elements equal to 1 (this follows from 2).

 The proofs of these results depend on the fact that ATA and AAT are real, square and symmetric,
 and each has nonnegative eigenvalues and a complete set of orthogonal eigenvectors. (In fact ATA
 and AAT have precisely the same nonzero eigenvalues and the square roots of these are singular
 values ai, 1 < i < k of both A and AT.)

 To illustrate how the decomposition stated in the Corollary proceeds from the Theorem,
 consider our previous example. The matrix A is first factored as in the Theorem:

 1 1 6 0 0 1 0

 A=PSQT= 0 0 - I 0 2 r6 0 1 2 1

 0 1 0 0 0 _ 1 1

 Next, this factorization can be written as the sum E aipAqfT, where the ai are the diagonal entries of
 S, A1 the ith column of P and qi the ith row of Q.

 0

 A =6 l [ 0 + 2A]

 + 100 I1 I. r A]-
 C2

 Multiplication of the A-iciT yields the desired decomposition A = aI RI + a2R2 + a3 R3, which we
 have noted in (2). As an illustration of some of the matrix ideas used in obtaining the Corollary
 from the Theorem, we now establish part 2 for a square matrix A and for q, the first column of
 Q, i.e., we'll show that ATAq-I = aq. Since P is orthogonal and S diagonal, we have ATA =
 (PSQT)T(pSQT) = (QSTpT)(pSQT) = QSTP- PSQ-I = QSTSQ I = QS2Q' . But then, if eI is
 the column vector [1 0 ... O]T , we have

 ATAi = QS2Q = el = Qal2 = alql.

 It is equally easy to show that the matrix Ri = A T has the sum of the squares of its elements
 equal to 1 (i.e., it has Frobenius norm IIRIIF equal to 1). This property allows the SVD of a matrix
 A of rank r to be used to find an m X n matrix B of rank I < r that minimizes IIB-AII F. This
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 (3, 3,2)

 ( 1 .~~0,,1 . 31013,-29 ) =

 (39,29 -4)

 FIGURE I

 problem was posed and solved by Eckart and Young [3] who show that the first 1 terms of the
 SVD of A sum up to just such a matrix B [9, p. 26]. Thus the sum of the first 1 terms of
 the singular value decomposition is a best rank 1 approximation to the matrix A in the sense of the
 Frobenius norm (i.e., in the least squares sense). In fact,

 |IA - a1R1- a2R2 - -aR lF=2 1 + *+ ? r2.

 While the Corollary suggests a way to determine the factorization A = PSQT, this method is
 not numerically stable for nearly singular matrices and should be replaced by an algorithmic
 approach such as that of Golub.

 Now for some geometry! To a real m X n matrix A, we can associate a surface containing the

 points (xi, yj, aij) where (xi, yj) are lattice points on a rectangular grid. For example the matrix A
 given by (1) can be associated to the surface shown in FIGURE 1. This surface can be thought of as

 a piecewise hyperbolic function z = ax + bxy + cy + d on the 3 X 3 grid points (xi, yj1 aij).
 Alternatively, given a continuous real function f defined over a rectangular grid, we may

 associate a real matrix A with entries the function values f(xi, yj) = aij and treat the matrix A as a
 finite approximation to the surface z =f (x, y). The singular value decomposition of this matrix A
 then gives a further approximation to the surface. Conversely, the related surface can be used to
 " visualize" the singular value decomposition. (Similar visualization techniques have been used for
 one-variable Taylor series and Fourier series expansions and should be utilized more often in the
 two-variable setting now that 3D computer graphics programs are more readily available.)

 For illustrative purposes, we obtained a finite approximation to a bust of Abe Lincoln (using a

 crude homemade scanning device which allowed for a 49 x 36 matrix). The original sculpture and
 finite approximation (called ABE) are shown in FIGuRE 2. The related matrix A was then factored
 to produce a finite expansion of ABE using rank 1 matrices from a SVD. The surfaces shown in
 FIGuRE 3 represent surface approximations to ABE by keeping only a specified number of terms

 from the finite series expansion. The surface marked Al represents the approximation A- aIR
 the surface A2 represents the approximationofA by the two-term decompositionA -GaR1 + a2R2,
 and so on. It is somewhat surprising that the rank 5 approximation to ABE (of a possible 36) is so

 recognizable. This means that the tail-end terms of the series A =ai Ri are not all that
 important, and suggests that the matrix might be somewhat ill-conditioned (actually a1/a6 33
 and the ratio al/a36, called the condition number, is approximately 2000). Note that two different
 approximation techniques are used on the original sculpture. The first is the grid size which
 determines the matrix size m X n. The second is related to the relative sizes of the singular values

 ai of the matrix. Thus our first step reduced ABE to 49 X 36 real numbers and our second step for
 surface A5 reduced him to just 5 X (49 + 36) + 5 = 430 real numbers.
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 FiGuRE 2

 A Al A2

 A3 A4 A5

 FIGURE 3. Singular value decomposition of "A BE."
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 These procedures for reducing a continuous image to a finite set of real numbers are of

 particular importance in image processing techniques [1]. Specifically, dropping the tail-end terms

 of the singular value decomposition can be associated with eliminating the "snowy" feature of a
 TV picture (i.e., noise elimination from a picture transmission). The essential information of the
 picture is carried by the earlier terms of the decomposition and associated with the larger singular

 values, while the more random noise (unless of significant size) is associated with the smaller
 singular values and discarded.

 The omission of small singular values is also significant for handling problems involving

 inverses of ill-conditioned matrices. (Many least square approximation problems fall into this
 category.) If a matrix A is decomposed as in the Theorem, A = PSQT, and if A ` exists, then since
 P is orthogonal and S is diagonal, it follows that A - ' = (PSQT) I = QS- IpT where S- I is a
 diagonal matrix with i th diagonal entry a I. This is a factorization of A as in the Theorem, so
 the Corollary applies. Thus if we know the singular value decomposition of a nonsingular matrix,
 then we also have a decomposition of A - I. For example, the matrix A in (1) is shown in factored
 form in (3), and its SVD derived in (4). From the above discussion, we have

 3.01 .01 -2.99 -1

 A- 2.99 -.01 -3.01

 2 -4 2

 I I I I~~ ~ ~~ 01 1 0
 C2 A6 Al 6 ?2 ? 2

 = 0 2 1 0 C6 0 0 0 1
 V6 V3 12

 1 1 1 L ? 100 1I 1
 =2 CV V3 6 02 C2

 1 1 6 O01

 +6 0 [001]
 I

 I T T + 1 0o[+ %6 %3
 =-RI + -2R2 + 3 R3

 6 ~~~~~12

 =a'RrT+ a) R T ?a) R T

 This shows that the least significant rank 1 matrix in the SVD of A (i.e., R3 which has smallest
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 I-~~~~~~~~~~~~~~~~~~L

 FIGURE 4(a). Rank r approximations, A rto A.

 2 3A+ - = -' K , -

 FIGURE 4(b). Corresponding pseudoinverses, A, (not to scale).

 coefficient a3) becomes the most significant rank 1 matrix in the SVD of A-l. Thus if the

 condition number of a matrix is large (a, << a,), the inverse is dominated by an insignificant part
 of the original matrix. This suggests that small changes in A (such as round-off errors or other
 noise) can seriously affect A-l and such matrices are then called ill-conditioned. Rather than
 allow this noise to dominate the inverse, it seems more appropriate to ignore it and replace the
 corresponding diagonal terms of S-1 by 0. When this is done, the matrix A-l is essentially
 replaced by an effective pseudoinverse. The decision of which values a-1 to replace by 0 depends
 not only on the ratio au/ai but also on the order of computer machine precision and the
 application involved.

 For our 3 X 3 matrix A, the surfaces of FIGURE 4 show how A is dominated by the smallest
 term of the singular value decomposition, and suggest that while A + might be a good replacement
 for A in certain applications, this decision should not be taken lightly. The shape of the surface
 is being emphasized in FIGURE 4 with the scales chosen for viewing convenience. The maximum
 surface height for A + is actually about 200 times that of A .

 When a matrix A is either square singular or nonsquare, then A` fails to exist and a
 pseudoinverse of A is given by A += QS+ PT where S+ is diagonal with di = au7 if ai + 0 and
 di = 0 if ai = 0. Thus if A has rank r and singular value decomposition A = Z7=ai Ri then

 A + =l R IT + a- R 2T+ **+ a-1 I R T_ I + a- 'R T

 We show in FIGURE 5 the pseudoinverse A + of ABE, and Al+ through A ,the pseudoinverses
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 A3 A4 A5

 FIGURE 5. Pseudoinverses of "A BE" and Ar.

 of our rank 1 through rank 5 approximations of ABE. The heights are again adjusted for viewing
 convenience (in fact A + has terms of much larger magnitude than the others). It is the " shape" of
 the matrices which is emphasized. It should be noted that while A5 is a good approximation to A,

 A 5 is not a good approximation to A +. Listing the singular values for a given problem frequently
 aids the user in deciding on an effective rank e for a matrix, and then A + is used in place of A +.
 These substitutions provide the reliability for the SVD method in solving least square problems,
 since small changes in the original matrices are not allowed to dominate the pseudoinverse.
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