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Chapter 7 Distance and Approximation

The Singuiar Value Decomposition

In Chapter 5, we saw that every symmetric matrix A can be factored as A = P
where P is an orthogonal matrix and D is a diagonal matrix displaying the eiger
ues of A. If A is not symmetric, such a factorization is not possible, but as we lea
in Chapter 4, we may still be able to factor a square matrix A as A = PDP™, w
D is as before but P is now simply an invertible matrix. However, not eve
is diagonalizable, so it may surprise you that we will now show that every
(symmetric or not, square or not) has a factorization of the form A = PDQT,
P and Q are orthogonal and D is a diagonal matrix! This remarkable result is
gular value decomposition (SVD), and it is one of the most important of all m
factorizations.

In this section, we will show how to compute the SVD of a matrix and then
sider some of its many applications. Along the way, we will tie up some loose enq
answering a few questions that were left open in previous sections.

The Singular Values of a Matrix

For any m X n matrix A, the n X n matrix ATA is symmetric and hence canb
thogonally diagonalized, by the Spectral Theorem. Not only are the eigenvalu
ATA all real (Theorem 5.18), they are all nonnegative. To show this, let A be anej
value of ATA with corresponding unit eigenvector v. Then

1l

0 = JJAV|? = (Av) - (4v) = (AV)TAv = vIATAV

vIAv = AMvev) = AvP = A

il

It therefore makes sense to take (positive) square roots of these eigenvalues.

%ﬁﬁi’%ﬁiﬂﬁ If A is an m X n matrix, the singular values of A ate the

roots of the eigenvalues of A”A and are denoted by oy, . . ., 0. It is co
to arrange the singular values so that oy, = 0, = = 0. :

Example 7.3;

Find the singular values of

o
I
[ B
—_ O

Solution  The matrix

ATA-—-[I‘ 1 0]
1 0 1

_ [z 1}
1 2
has eigenvalues A, = 3 and A, = 1. Consequently, the singular values of A are.

VA, = V3ando, = VA, = L. '

[one B
- D e
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To understand the significance of the singular values of an m X n matrix A,
consider the eigenvectors of AA. Since A4 is symmetric, we know that there is an
orthonormal basis for R" that consists of eigenvectors of ATA. Let {v,.. ., . be such
a basis corresponding to the eigenvalues of ATA, ordered so that ;= A, == A,
From our calculations just before the definition,

A= "Avi"2
Therefore, ’ o; = \/X: = lAvi]

In other words, the singular values of A are the lengths of the vectors Avy, ..., Ay,
Geometrically, this result has a nice interpretation. Consider Example 7.33 again.
If x lies on the unit circle in R? (i.e., |x|| = 1), then '

Ax]? = (4x)- (Ax) = (Ax)T(Ax) = x"ATAx

2 1lijx

=[x x,] } M= 2x? + 2xx, + 242
1 2]lx,

which we recognize is a quadratic form. By Theorem 5.25, the maximum and mini-

mum values of this quadratic form, subject to the constraint |x|] = 1, are A, = 3 and

Ay = 1, respectively, and they occur at the corresponding eigenvectors-of ATA—that

2 -1
is, whenx = v, = E;é] andx = v, = [ ljg]’ respectively. Since

NAVinz = VIT ATAV.' = A

for i = 1, 2, we see that o, = |Av,| = V3 and o, = ||Av,| = 1 are the maximum
and minimum values of the lengths |Ax| as x traverses the unit circle in R?

Now, the linear transformation corresponding to A maps R onto the plane in R?

@~  with equation x — y — z = 0 (verify this), and the image of the unit circle under this

transformation is an ellipse that lies in this plane. (We will verify this fact in general
shortly; see Figure 7.18.) So o, and o, are the lengths of half of the major and minor
axes of this ellipse, as shown in Figure 7.19.

We can now describe the singular value decomposition of a matrix.

y
A
2l multiplication
by A
4
f -\ . i
SN |
"
_.2-_
Figurs 1.18

The matrix A transforms the unit circle in R? into an ellipse in R Figure 1.18
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- is an orthogonal n X n matrix,

The Singalar Value Decomposition
‘We want to show that an m' X »n matrix A can be factored as

A=U3vT

where Uis an m X m orthogonal matrix, V'is an n X n orthogonal matrix, and X is
an m X n “diagonal” matrix. If the nonzero singular values of A are

0-1 0‘2 A Z U', > 0
. = 0, then 2 will have the block form
0-1 .« 0

, where D=1{|: " ! 1)
0 PR g-r

IR o

and each matrix O is a zero matrix of the appropriate size. (If r = m or r = n, some of
these will not appear.) Some examples of such a matrix 3 with r = 2 are

500

4 0 O 20 s 00 0 2 0

2=[O30},2= 0 2, %= 030,2=000
0 0 0 00

00 0

(What is D in each case?)
To construct the orthogonal matrix V, we ﬁrst ﬁnd an orthonormal basis
{v1,..., v} for R" consisting of eigenvectors of the n X »n symmetric matrix ATA. Then

V=l o v

For the orthogonal matrix U, we first note that {Avy, ..., Av,} is an orthogonal set
of vectors in R™. To see this, suppose that v; is the elgenvector of ATA corresponding ;
to the eigenvalue A;. Then, for i # j, we have

(Av)Av;

= v]ATAy;
T

Vi Ajy;

= A(v;*v) =0

(Av) - (Av)

i

since the eigenvectors v; are orthogonal. Now recall that the singular values satisfy
o; = |Av;|| and that the first r of these are nonzero. Therefore, we can normalize
Avy, ..., Av, by setting

1
u,—=}—Avi fori=1,...,r

This guarantees that {uy, . . ., u,} is an orthonormal set in R™, but if r < m it will not
be a basis for R™. In this case, we extend the set {u,, ..., u,} to an orthonormal bas
fuy, ..., u,} for R™. (This is the only tricky part of the construction; we will descril
techniques for carrying it out in the examples below and in the exercises.) Then we s
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All that remains to be shown is that this works; that is, we need to verify that with
U, V, and 2 as described, we have A = US V™. Since VT = V™1 thisis equivalent to
showing that I

AV = U3
We know that Av;=on; fori=1,...,r
and |Av,| = o; = 0fori=r+1,..., n. Hence,

Av;=0 fori=r+1,...,n

Therefore, AV =Alv, - v,]
= [Av, -+ Av,]
= [Av, - Av, 0 0]
=[O'1Ux"" ou 0 --- 0}

as required. .
We have just proved the following extremely important theorem.

Theorem 7.13  The Singular Value Decomposition

Let A be an m X n matrix with singular values oy = 0, = - = 0, > 0 and

O] = Opyg = - = 0, = 0. Then there exist an m X m orthogonal matrix U,

an n X n orthogonal matrix V, and an m X n matrix = of the form shown ino

Equation (1) such that :
A=UsVT

A factorization of A as in Theorem 7.13 is called a singular value decomposition
(SVD) of A. The columns of U are called left singular vectors of A, and the columns
of V are called right singular vectors of A. The matrices U and V are not uniquely
determined by A, but 2 must contain the singular values of A, as in Equation (1). (See
Exercise 25:) '

§§§§§§§§§5§% 1. 3%: Find a singular value decomposition for the following matrices:
; 1 10 bl
i = =11 0
i (a) A [O 0 1} b) A

0 1
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Solution (a) We compute

0
ATA = 0
1

S e
[ I R

and find that its eigenvalues are A, = 2, A, = 1, and A; = 0, with corresponding

eigenvectors
1 0 -1
1,1{0}, 1
0 1 0

B> (Verify this.) These vectors are orthogonal, so we normalize them to obtain

1/v27] 0] -1/V2
vv=|1/V2|, ,=1{0], = 1/V2
0 1 0

The singular values of A are o, = V2,0, = V1 = 1,and 0; = VO = 0. Thus,
1/vV2 0 -1/V2

2 0 0
Vv=11/V2 0 1/\/2 and 2:[{ ) 0}
0 1 0
To find U, we compute
[1/V2
w=to= 2 1LY
Yoot V210 01 o 0
1 1f1 1 0]|° 0
and u2=—Av2=—~[ 0 =[]
oy 110 0 1] i 1

These vectors already form an orthonormal basis (the standard basis) for R?, so we.

have

Uz[l o]

01

N\
This yields the SVD
110 10\/5001/\/51/\60 r
A=loo 1/ o 1Jlo 1 o) © 0 l=wv
~1/V2 1/V2 0o

@~  which can be easily checked. (Note that V had to be transposed. Also note that the
singular value o; does not appear in 2.)
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(b) This is the matrix in Example 7.33, so we already know that the singular values are
1/Vv2 -
o, = V3 and o, = 1, corresponding to v; = [ljé} and v, = [ l/\fz]‘ s

1/V2
3 = \({5 (1) d V——[I/\/i —l/ﬁ]
- o o wd V=lyv: yvz
Fof U, we compute

1 1 2/V6

u1=£~Avl=-—1\/~§ 1 0 w\\g} =11/V6

! 01 1/V6

11 0
and ! u2=GL2Av2=-i-1 0 [“iﬁg:’: -1/V2
0 1 1/V2

This time, we need to extend {u;, u,} to an orthonormal basis for R There are
several ways to proceed; one method is to use the Gram-Schmidt Process, as in
Example 5.14. We first need to find a linearly independent set of three vectors that con-
tains u, and w,. If e, is the third standard basis vector in R?, it is clear that {u,, u,, es}
is linearly independent. (Here, you should be able to determine this by inspection, but
a reliable method to use in general is to row reduce the matrix with these vectors as
its columns and use the Fundamental Theorem.) Applying Gram-Schmidt (with
normalization) to {u,, u,, e;} (only the last step is needed), we find

-1/V3
w=| 1/V3
1/V3

- 2/V6 0 -1/V3
o - U=|1/V6 -1/V2 1/V3|
1/v6 1/V2  1/V3

and we have the SVD
1 1 2/V6 0 -1/V3][V3 0 '
A=|1 0|=|1/vV6 —-1/vV2 1/V3|l 0 1 [__z\\g i;£}=UEVT
0 1 1/vV6 1/vV2  1/V3lL 0 o (,i

i

There is another form of the singular value decomposition, analogous to the
spectral decomposition of a symmetric matrix. It is obtained from the SVD by
an outer product expansion and is very useful in applications. We can obtain this
version of the SVD by imitating what we did to obtain the spectral decomposition.
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Accordingly, we have
0-1 e 0 ‘é T
: . 0 V1
A=U2V'=[u - wu,]| i :
0 o, ! T
......................... .g.»b... vn
- -
Vi
"0-1 v 0 '
[ : ] o tiol] v
- ul .. u §ll +1 > s . u ,; -—-..f—--
o B R N
TS TG |
T
L Vi
[oy -0 0] [vi] Vi
= [ul M u,—] ¢ E E + [ur+l ot um] [O] :
T
L0 .- o, vl ] v:
—o'l LI 0 7 r_v]'T‘—
= [ul e ur} : .'. ' '
L0 -+ o, ..VrT
vi
= [0'1111 0',11,] :
\d

=owmvl + -+ ouy’

using block multiplication and the column-row representation of the product. The

following theorem summarizes the process for obtaining this outer product form of
the SVD.

Theorem 17.14

The Outer Product Form of the SVD
Let A bean m X n matrix with singular valueso, = 0, = =0, >0and
Oryy == 0, =0.Letuy,...,u, beleft singular vectors andletvy,...,v,b

singular vectors of A corresponding to these singular ValueS.‘Then o

A=omv] + -+ ouy’

Remark If A is a positive definite, symmetric matrix, then Theorems 7.13 and
7.14 both reduce to results that we already know. In this case, it is not hard to show
that the SVD generalizes the Spectral Theorem and that Theorem 7.14 generalizes the
spectral decomposition. (See Exercise 27.)

The SVD of a matrix A contains much important information about A, as out-
lined in the crucial Theorem 7.15.
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~ Theorem 1.15

Let A = UZV"bea singular value decomposition
o, beall the nonzero singular values of A. Then: -

a. Therankof Aisr. o
. {u,, ..., u} is an orthonormal basis for col(A).

b

c. {4,41,...,u,}is an orthonormal basis for null‘(AT)
d {v,..., v,} isan o;thonqrmal basis for row(4). - -
€. {Vr+1...,V,} is an orthonormal basis for null(4).

Brasf  (a) By Exercise 61 in Section 3.5, we have

rank(4) = rank(UZVT)
= rank(ZV7)
= rank(Z) = r
(b) We already know that {u,, . .., u,} is an orthonormal set. Therefore, it is linearly

independent, by Theorem 5.1. Since u; = (1/0)Av;fori = 1,...,r, each w; is in the
column space of A. (Why?) Furthermore,

r = rank(4) = dim(;ol(A))

Therefore, {uy, . .., w,} is an orthonormal basis for col(4), by Theorem 6.10(c).

(c) Since {uy, ..., u,} is an orthonormal basis for R” and {u,, .. ., u,} is a basis for
col(A), by property (b), it follows that {u,,,, ..., u,,} is an orthonormal basis for the
orthogonal complement of col(4). But (col(4)) = null(AT), by Theorem 5.10.

(e) Since - :
AV, = = Av, = 0

the set {v,+}, ..., Vv,} isan orthonormal set contained in the null space of A. Therefore,
{V+1, . . ., v} is a linearly independent set of n — r vectors in null(A). But

dim(null(4)) = 7 — r

by the Rank Theorem, so {v,y, ..., v,} is an orthonormal basis for null(A), by Theo-
rem 6.10(c). ' '

(d) Property (d) follows from property (e) and Theorem 5.10. (You are asked to
prove this in Exercise 32.)

The SVD provides new geometric insight into the effect of matrix transforma-
tions. We have noted several times (without proof) that an m X n matrix transforms
the unit sphere in R" into an ellipsoid in R™. This point arose, for example, in our
discussions of Perron’s Theorem and of operator norms, as well as in the introduction
to singular values in this section. We now prove this result.



598

Chapter 7 Distance and Approximation

_ Theorem 1.16

Let A be an m X n matrix with rank . Then the image
under the matrix transformation that maps x to Axis

a. the surface of an ellipsoid in R™ if r = #.
b. asolid ellipsoid in R™ if r < n.

Proof Let A = USV7 be a singular value decomposition of the m X n matrix A. Let
the left and right singular vectors of Abe uy, ..., u, and vy, ..., v, respectively. Since
rank(A) = r, the singular values of A satisfy

o, 20,2 =20,>0 and 0,4, =0, = =0,=0
: Xy A
by Theorem 7.15(a). Letx = | : |beaunitvector in R". Now, since Visan orthogonal
x’l

matrix, so is V7, and hence Vx is a unit vector, by Theorem 5.6. Now

T
vi vix
Vix=| ! |x=]| :
T
\A vix

so (vix)* +-+ (vix)* = 1.
By the outer product form of the SVD, we have A = oyl + o+ oyt
Therefore,

i

Ax=couVvix+ -+ cuvx
= (o v, + - + (e vX)u,
=y + “‘.+yrur
where we are letting y; denote the scalar ov'x.
(a) If r = n, then we must have n < m and
Ax =yu; + -+ yu,
Uy

Il

N
where y = | : |. Therefore, again by Theorem 5.6, |Ax| = |Uy| = |y], since U is

Vn :
orthogonal. But -

2 2
(.&.) R = (Z’-") = (V'{X)Z + -0 4 (V;I;X)z =]
[ g,

which shows that the vectors Ax form the surface of an ellipsoid in R™. (Why?)
(b) If r < n, the only difference in the above steps is that the equation becomes

2 2
(&) +...+(z:) <1
01 U',

since we are missing some terms. This inequality corresponds to a solid ellipsoid
in R™.
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7,

Example 7.35

¥

Describe the image of the unit sphere in R® under the aéﬁﬂh‘ibft}‘fliéfmatrix
A= [1 1 0]
0 0 1
Solution In Example 7.34(a), we found the following SVIS of A “
{1 1 OJ_[I OM\/E 0 0} /2 1/V2 o
0 0 1 0 1], 0 1 0

0 0 1
-1/V2 1/V2Z 0

Since r = rank(A) = 2 < 3 = n, the second part of Theorem 7.16 applies; The image

of the unit sphere will satisfy the inequality

2 2 2
(AV 4 (2 21 o 2

1
relative to y,y, coordinate axes in R* (corresponding to the left singular vectors u,"
and u,). Since u; = e; and u, = e,, the image is as shown in Figure 7.20.

AN N
IR

Figure 1.20

In general, we can describe the effect of an m X n matrix A on the unit sphere
in R" in terms of the effect of each factor in its SVD, A = UZ VT, from right to left.
Since V7 is an orthogonal matrix, it maps the unit sphere to itself. The m X n matrix
2 does two things: The diagonal entries 0,41 = 0,4, =+ - = o, = O collapsen — r
of the dimensions of the unit sphere, leaving an r-dimensional unit sphere, which the
nonzero diagonal entries o, . . . , o, then distort into an ellipsoid. The orthogonal
matrix U then aligns the axes of this ellipsoid with the orthonormal basis vectors
uy, ..., u, in R™ (See Figure 7.21.) :

Applications of the SUD

The singular value decomposition is an extremely useful tool, both practicaﬂ‘y'aﬁd
theoretically. We will look at just a few of its many applications. e




