Year
8,060
14,780
7,140
29,980

and addition
lications are
Itiplications.

ose columns

tively, as the
tively, as the

Definition

APPLICATION 2

1.3 Matrix Arithmetic 39

(12} . ;o (12
© IfC_{?_ 3],thenC _[2 3].

The matrix C in Example 11 is its own transpose. This frequently happens with
matrices that arise in applications.

An #n X n matrix A is said to be symmetric if AT = A.

The following are some examples of symmetric matrices:

203 4 0 1 2
[(1)-0] 315 11 -2
45 3 2 -2 -3

Information Retrieval

The growth of digital libraries on the Internet has led to dramatic improvements in the
storage and rétrieval of information. Modern retrieval methods are based on matrix
theory and linear algebra.

In a typical situation, a database consists of a collection of documents and we wish
to search the collection and find the documents that best match some particular search
conditions. Depending on the type of database, we could search for such items as
research articles in journals, Web pages on the Internet, books in a library, or movies
in a film collection.

To see how the searches are done, let us assume that our database consists of m
documents and that there are n dictionary words that can be used as keywords for
searches. Not all words are allowable, since it would not be practical to search for
common words such as articles or prepositions. If the key dictionary words are or-
dered alphabetically, then we can represent the database by an m x n matrix A. Each
document is represented by a column of the matrix. The first entry in the jth column
of A would be a number representing the relative frequency of the first key dictionary
word in the jth document. The entry a; represents the relative frequency of the sec-
ond word in the jth document, and so on. The list of keywords to be used in the search
is represented by a vector x in R™. The ith entry of x is taken to be 1 if the ith word
in the list of keywords is on our search list; otherwise, we set x; = 0. To carry out the
search, we simply multiply AT times x.

Simple Matching Searches

The simplest type of search determines how many of the key search words are in each
document; it does not take into account the relative frequencies of the words. Suppose,
for example, that our database consists of these book titles:

B1. Applied Linear Algebra

B2. Elementary Linear Algebra

B3. Elementary Linear Algebra with Applications
B4. Linear Algebra and Its Applications

BS. Linear Algebra with Applications

40 Chapter | Matrices and Systems of Equations

B6. Matrix Algebra with Applications
B7. Matrix Theory

The collection of keywords is given by the following alphabetical list:
algebra, application, elementary, linear, matrix, theory

For a simple matching search, we just use 0’s and 1's, rather than relative frequen-
cies for the entries of the database matrix. Thus, the (i, j) entry of the matrix will be 1
if the ith word appears in the title of the jth book and 0 if it does not. We will assume
that our search engine is sophisticated enough to equate various forms of a word. So,
for example, in our list of titles the words applied and applications are both counted
as forms of the word application. The database matrix for our list of books is the array
defined by Table 4.

Table 4 Array Representation for Database of Linear Algebra Books

Books
Key Words BL B2 B3 B4 BS B6 B7
algebra 1 1 1 1 1 1 0
application 1 0 1 1 i 1 0
elementary 0 1 1 0 0 0 0
linear 1 1 1 1 1 0 0
matrix 0 0 0 0 0 1 1
theory 0 0 0 0 0 0 1

If the words we are searching for are applied, linear, and algebra, then the database
matrix and search vector are respectively given by

1111110 1
1 6011110 1
L_lo1 10000 o
{1 111100 11
0 000011 0
0 000001 0
If we sety = ATx, then
110100) 3)
1 01100 1 2
111100 0 3
y=[1 101 00| =3
110100 0 3
110010 0 2
00001 1] 0

The value of y; is the number of search word matches in the title of the first book,
the value of y; is the number of matches in the second book title, and so on. Since

1.3 Matrix Arithmetic 41

¥1 = y3 = y4 = y5 = 3, the titles of books B1, B3, B4, and B5 must contain all three
search words. If the search is set up to find titles matching all search words, then the
search engine will report the titles of the first, third, fourth, and fifth books.

Relative-Frequency Searches

Searches of noncommercial databases generally find all documents containing the key
search words and then order the documents based on the relative frequencies of the
keywords. In this case, the entries of the database matrix should represent the relative
frequencies of the keywords in the documents. For example, suppose that in the dic-
tionary of all key words of the database the 6th word is algebra and the 8th word is
applied, where all words are listed alphabetically. If, say, document 9 in the database
contains a total of 200 occurrences of keywords from the dictionary, and if the word al-
gebra occurred 10 times in the document and the word applied occurred 6 times, then
the relative frequencies for these words would be 4% and ig”o" and the corresponding

700
entries in the database matrix would be
age = 0.05 and agy = 0.03

To search for these two words, we take our search vector x to be the vector whose
entries x¢ and xg are both equal to 1 and whose remaining entries are all 0. We then
compute

y=ATx

The entry of y corresponding to document 9 is
Yo =ag -1 -+ag-1=0.08

Note that 16 of the 200 words (8% of the words) in document 9 match the key search
words. If y; is the largest entry of y, this would indicate that the jth document in the
database is the one that contains the keywords with the greatest relative frequencies.

Advanced Search Methods

A search for the keywords linear and algebra could easily turn up hundreds of docu-
ments, some of which may not even be about linear algebra. If we were to increase the
number of search words and require that all search words be matched, then we would
run the risk of excluding some crucial linear algebra documents. Rather than match
all words of the expanded search list, our database search should give priority to those
documents which match most of the keywords with high relative frequencies. To ac-
complish this, we need to find the columns of the database matrix A that are “closest”
to the search vector x. One way to measure how close two vectors are is to define the
angle between the vectors. We will do this in Section 1 of Chapter 5.

We will also revisit the information retrieval application after we have learned
about the singular value decomposition (Chapter 6, Section 5). This decomposition
can be used to find a simpler approximation to the database matrix, which will speed up
the searches dramatically. Often it has the added advantage of filtering out noise; that
is, using the approximate version of the database matrix may automatically have the
effect of eliminating documents that use keywords in unwanted contexts. For example,
a dental student and a mathematics student could both use calculits as one of their

42 Chapter | Matrices and Systems of Equations

search words. Since the list of mathematics search words does not contain any other
dental terms, a mathematics search using an approximate database matrix is likely to
eliminate all documents relating to dentistry. Similarly, the mathematics documents
would be filtered out in the dental student’s search.

Web Searches and Page Ranking

Modern Web searches could easily involve billions of documents with hundreds of
ihousands of keywords. Indeed, as of July 2008, there were more than | trillion Web
pages on the Internet, and it is not uncommon for search engines to acquire or update
as many as 10 million Web pages in a single day. Although the database matrix for
pages on the Internet is extremely large, searches can be simplified dramatically, since
the matrices and search vectors are sparse; that is, most of the entries in any column
are 0’s.

For Internet searches, the better search engines will do simple matching searches
to find all pages matching the keywords, but they will not order them on the basis of the
relative frequencies of the keywords. Because of the commercial nature of the Internet,
people who want to sell products may deliberately make repeated use of keywords to
ensure that their Web site is highly ranked in any relative-frequency search. In fact, it
is easy to surreptitiously list a keyword hundreds of times. If the font color of the word
matches the background color of the page, then the viewer will not be aware that the
word is listed repeatedly.

For Web searches, a more sophisticated algorithm is necessary for ranking the
pages that contain all of the key search words. In Chapter 6, we will study a special
type of matrix model for assigning probabilities in certain random processes. This
type of model is referred to as a Markov process or a Markov chain. In Section 3
of Chapter 6, we will see how to use Markov chains to model Web surfing and obtain
rankings of Web pages.

References

1. Berry, Michael W., and Murray Browne, Understanding Search Engines: Math-
ematical Modeling and Text Retrieval, STAM, Philadelphia, 1999.

SECTION 1.3 EXERCISES

1.

If

3
A=1-2
1

compute
(a) 2A

(¢) 2A—-3B

(e) AB
(g A™BT

N O

2. For each of the pairs of matrices that follow, de-
termine whether it is possible to multiply the first

| : 2 matrix times the second. If it is possible, perform
1 and B = | -3 11 y pres
2 9 4 1 the multiplication.

2 1
o [333]1]
b) A+ B 4 1
@ QAT -36BT i
f) BA -
0 (BA) (b) [6 —4] [1 2 3]
8 —6

(¢)

(d)

W DA OO -

(e)

(Y

®

!
D e

3. For whict
multiply t
would the

4. Write eac,
a matrix e
(@ 3x 4

2xy -
®) x4
2xy 4
3x; -
{c) 2x, 4
Xy —
3x; ~
5 If

verify that
(a) 5A=
ONCOY
6. If
4
as !
verify that
(@ A+B
(b) 3(A+
(© (A+1

7. If

s

verify that
(a) 3(AB)
(b) (AB)T

