
118 INVERSE PROBLEMS

Technology:

MATLAB or other high-level numerical software

4.5.1 Introduction

The surface temperature of a body that is not in thermal equilibrium with its
surroundings changes in time. If the body is warmer than its environment, it
cools as heat "flows" from the body into the environment. The simplest model
of this phenomenon, Newton 's law of cooling, holds that the rate at which the
surface temperature changes in time is proportional to the difference between
the ambient and surface temperatures. If the surface temperature at time t is
u(t), and the ambient temperature is a constant A, then by Newton's law of
cooling

where a, the heat transfer coefficient, is a positive constant. This is a classical
exponential decay model, and the direct problem of determining the surface
temperature has the unique solution

u(t) = A + (w(0) - A)e~at.

This solution depends on three parameters: the ambient temperature A, the ini-
tial temperature «(0), and the heat transfer coefficient a . Of course, observation
of the surface temperature at appropriate times allows the solution of the inverse
problem of determining the parameters A, u(0), and a (see Exercises 2-3).

Newton's law of cooling is purely a surface principle; it involves a bound-
ary condition, and it leads to a surface temperature that depends only on time.
In extended bodies, interior temperatures typically vary not only in time but
also from place to place. For example, the handle of a skillet is usually a bit
cooler than the pan. The physical principles that govern internal temperatures
were first explained by Joseph Fourier (1768-1830) at the beginning of the
nineteenth century. Fourier's analysis hinged on the relationship between heat
and temperature, and on the principle of conservation of energy.

Heat is a form of energy : The heat content of a body is a measure of the total
kinetic energy of the molecules of the body. Temperature, as gauged by a test
body (a thermometer), is related to the average kinetic energy of the molecules
of a body. The heat content of a body depends not only on its temperature,
but also on its mass — a 5-kilogram ball of iron at a given temperature has five
times the thermal energy of a 1 -kilogram ball of iron at the same temperature.
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Heat is also related to the specific type of material. A 1-kilogram ball of cotton
at a given temperature has less thermal energy than a 1-kilogram ball of lead at
the same temperature. These ideas are bound together by the relationship

Q = emu,

where u is the (uniform) temperature of a body, m is its mass, c is a material-
dependent parameter called the specific heat of the substance, and Q is the heat
content. Typical units are calories for Q, degrees Celcius for u, grams for m,
and hence calories per gram-degree for c.

We limit our discussion of internal temperatures to a body with the simplest
geometry—a bar of unit length and unit cross-sectional area, which we imagine
to extend along the unit interval of the *-axis. Suppose the mass density and
specific heat of the material of which the bar is made are p and c, respectively.
We assume that the lateral surface of the bar is insulated so that the spatial
dependence of the temperature is a function of the single variable x. The
temperature of the point of the bar at position jc E [0,1] and at time t ^ 0
is then a function u(x, t). Consider a thin slice of the bar extending over the
interval [x, x + Ax]. The heat content of this slice is then about

cpuAx,

and the rate of change of this thermal energy with respect to time is approxi-
mately

d(cpu)
dt

Ax.

Respect for the principle of conservation of energy demands that this quantity
equal the net rate of flow of thermal energy into the slice, plus the rate, if any, at
which heat is produced within the slice. If the rate at which heat is produced (at
position x and time /) per unit volume is denoted by / = f ( x , t), then the rate
at which heat is produced within the slice is approximately fAx (remember
that we assume a unit cross-sectional area).

Heat may flow into (or out of) the slice only through the left face at x
or the right face at x + Ax. Fourier's law, the final ingredient in the model,
states that the rate of flow of heat through a face is proportional to the negative
temperature gradient, -du/dx, at the face (the reason for the negative sign is
that heat flows from hot to cold). The net flow of heat across the surface into
the slice [x, x + Ax] is therefore

dx dx
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where the proportionality constant, k, is called the thermal conductivity. Adding
this to the rate at which thermal energy is generated internally, we find that the
net rate of change of thermal energy within the slice is approximately

,du -J fe- /AJC.

By the conservation of energy principle, this should match the rate calculated
previously, that is,

d(cpu)
AJC ~ k

du
x+bx /AJC.

dt dx

The precise model results when the interval [jc, x + A x] is shrunk to the point x:

d(cpu)

dt = lim
AJC

or

d(cpu)
dt dx dx

This is Fourier's celebrated heat equation.
The direct problem for the heat equation consists of rinding the temperature

u(x,t) for all positions x G (0, 1) and times t > 0, given certain boundary
conditions, say the temperatures of the endpoints w(0, /) and u(l,r), an initial
temperature distribution u(x, 0), and values of the parameters c, p, and k. These
parameters are, in general, functions of space, time, and temperature.

In the Activities, we treat some relatively simple inverse problems in-
volving the identification and estimation of "distributed" parameters in the
heat model. Specifically, we consider the problem of determining the time-
dependent parameter a(t) in the problem

* = «>£. „<,<. . , > o
w(0,o = «(i,r) = o
u(x, 0) = sin TTX

from observations of the temperature history h(t) = u(.5, t) of the midpoint of
the bar.

We also propose a method for estimating the function b(x) in the problem

b(x)— = — j, 0 < j f < l , r >0
dt dx

«(0,r) = (i(l,0 = 0

«(jc,0) = g(je)

from observations of u.
Finally, we study some aspects of identifying the distributed parameter

k(x) in the steady state (i.e., du/dt = 0 for all x) heat distribution problem

dx dx

4.5.2 Activities

1. Exercise Suppose « is the surface temperature of a body that cools, accord-
ing to Newton's law, in an environment with constant temperature A < w(0).
Show that u(t ) is a strictly decreasing function whose graph is concave-up and
has u = A as a horizontal asymptote.

2. Exercise Measured surface temperatures of a body that cools according
to Newton's law are given at various times in the following table:

M(°F)

5
10
15

72
62
54

Find the ambient temperature, the initial surface temperature, and the heat
transfer coefficient.

3. Problem Show that observations of the surface temperature « of a body
that cools according to Newton's law at three times t\ t2 < h uniquely
determine the parameters A, w(0), and a.

4. Problem Show that if a body cools according to Newton's law, then for any
sequence of times t\ ti < t^ < • • • that forms an arithmetic progession, the
sequence of temperature differences A - u(tk) forms a geometric progression.

5. Exercise Suppose a(t) is a positive continuous function for f > 0. Give
physical interpretations for the following conditions on a function u = u(x, t):


