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Goals:

INVERSE PROBLEMS

Integrate physical and graphical reasoning. Investigate existence and unique-
ness of solutions. Employ graphing calculator to analyze a physical problem.

Mathematical Background:

Quadratic equations, inequalities, parabolas

Scientific Background:

Newton's law of gravity

Technology:

Graphing calculator

2.3.1 Introduction

This module is inspired by the ancient Germanic myth of the Niebelungen, a
race of diminutive malefactors whose golden hoard was stashed at the bottom of
the Rhine river. We treat the problem of locating and identifying a single isolated
gravitational point source. Suppose a point mass m, say a nugget of gold, lies
at the bottom of a calm river that is 1 unit deep. We make the simplifying
assumption that all other gravitational sources are purely homogeneous so that
the gravitational anomaly generated by the point source will be considered
to be the only true gravitational effect. The determination of the gravitational
force on a unit mass on the surface of the river engendered by the nugget at the
bottom of the river is a very simple direct problem. Newton's law of gravitation
holds that this force is equal to a known constant (the gravitational constant)
times the product of the masses, divided by the square of the distance separating
the masses. This is the famous "inverse square" law of gravitational attraction.

In this module we consider the inverse problem of determining the mass
and location of a single nugget from measurements taken at the surface. The
measurements consist of a distance x from a reference point on the surface and
an estimate /LI (obtained, say, by use of a delicate spring scale) of the vertical
component of the gravitational force on the unit mass at position x on the
surface engendered by the nugget below the surface. The situation is illustrated
in Figure 2.5.

The square of the distance between the source nugget and the unit mass
on the measuring device is given by the Pythagorean theorem, 1 + (x — s)2,
and the product of the masses is Im, where m is the mass of the nugget. The
vertical component, /A, of the gravitational effect at the position x on the surface
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Figure 2.5: Vertical Force Engendered by a Point Source

is therefore, by Newton's law of gravitation,

m
M =

1 + (JC - S}
cos 6,

where y is the gravitational constant and 6 is the angle pictured. Since the depth
of the river is 1, we see from the figure that

cos 9 =
V1

and substituting this above we get

li = jm(\X- s)VS/2.

The direct problem in this context is to determine the vertical force ^
on the unit mass at position x on the surface that the mass m at position s at
the bottom of the river engenders. This direct problem clearly has a unique
solution given by the equation above. We will consider the inverse problem of
determining the mass m and position s of the source from observations of the
force ju, at surface sites x. Before getting into this problem we will reformulate
the equation to make our problem a bit simpler. Define new variables M and G,
which we will call the effective mass and effective vertical force, respectively,

by

2/3

A measurement of y. then uniquely determines G and knowledge of M
uniquely determines m. With these definitions, the equation above is easily seen

to be equivalent to

M-G = G(x- s)2.



36 INVERSE PROBLEMS

The inverse problem now is equivalent to determining M , from which the
mass m of the nugget can be obtained, and the location s of the nugget from
knowledge of x and the effective force G at position x. We will call the pair
(x, G) an observation because it consists of observing the effective force G
(obtainable from ^i) at the site x. The inverse problem therefore is equivalent
to determining a pair (s,M), which we will call a source, from observations
(x, G). If a unique source (s, M) is determined, then we have found the location
* and the mass m = M3/2 of the inaccessible nugget without getting wet — a
feat that would surely arouse the envy of the Rhine Maidens!

2.3.2 Activities

1. Question Does a single observation (x, G) uniquely determine the source

2. Question Suppose s is plotted on a horizontal axis and M is plotted on
a vertical axis. What is the shape of the source curve associated with a given
observation (x, G)? (In other words, what is the graph of all possible single-
point sources (s, M) that could account for the observation (x, G)?)

3. Question How does the shape and position of the source curve change
with changes in the observation (x, G)?

4. Calculation Plot the source curve associated with the observation (1,2).

5. Problem Suppose an observation (jc, G) is given, (a) Show that for every
number M > G there are two sources with effective mass M that can account
for the observation, (b) Show that there is a unique source of effective mass
M = G that can account for a given observation (x, G). What is the location of
this source? (c) Show that if M < G, then no source of effective mass M can
account for the given observation.

6. Exercise Explain Problem 5 in intuitive physical terms rather than in
mathematical terms.

7. Question Suppose observations (AJ , G) and (x2, G) are recorded at distinct
sites x\ x2. What is the location of the source?

8. Exercise Find all sources (s, M) that can account for both of the observa-
tions (0, 1) and (1/^2, 2).

9. Question Is {(0, 1 ), (2, 6)} a possible pair of observations? In other words,
is there a single point source (s,M) that can engender both of the observations
(0, 1) and (2, 6)?
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10. Exercise Find all sources that can account for the pair of observations
{(0,1), (1,2)}.

11. Calculation Plot the source curve for the observation (1.12, 2.7). On the
same axes, plot the source curve for the observation (3.1, 4.89). Estimate the
sources (position and effective mass) that give rise to these observations.

12. Calculation Estimate the point on the source curve engendered by the
observation (2.1, 4) that is closest to the origin.

13. Calculation Estimate all sources that can generate the observations
(-1.1, 2.2) and (0.9, 8.9).

14. Calculation Are the observations (1 .2, 3.4), (-2.1, 1.1), and (3.07, 2.7)
consistent? (In other words, is there a source (s, M) that generates these obser-
vations?)

15. Question What is the largest number of possible sources that can account
for a set of two or more observations at distinct sites?

16. Problem Find conditions on distinct observations (JCI ,GI) and (x2,G2)
for which (a) the observations are inconsistent, (b) the observations determine
a unique source, or (c) the observations may be accounted for by two distinct
sources.

17. Problem Suppose two observations with
source (s,M). Show the following:

1= G2 uniquely determine a

(a) The distance between the observation sites is

, , |Gi - G2|
\Xi - X2\ - f^-^- •

(b) The source is located at

(c) The effective mass is

s =
G\x\ G2x2

I - G2

M = GI + G2.

18. Problem Show that at most one source can be located between distinct
observation sites (i.e., given observations (x\, G\), (x2, GI) with x\ x2, there
can be at most one source (s,M), with s between xi and x2, that gives rise to

the observations).



148 INVERSE PROBLEMS

sum is 1, while the other diagonal (SW to NE) sum is 3. Use 'artl' and 'displa',
with the zero vector as an initial approximation, to get a picture of the worm.

10. Computation A 6 X 6 object has row sums (top to bottom) 0, 2,0,2, 6,
0 and column sums (left to right) 2,2, \ 1, 2,2. Try to reconstruct the object
using 'artl' and 'displa' using the zero vector as an initial approximation. Now
add four more views and measurements consisting of a ray through pixels 4,
11, and 18 with sum 1; a ray through pixels 24, 29, and 34 with sum 2; a ray
through pixels 19, 26, and 33 with sum 2; and a ray through pixels 3, 8, and
13 with sum 1. Try to reconstruct the picture using this additional information,
and compare the result with the previous reconstruction.

11. Computation Repeat the previous computations using various (nonzero)
initial approximations, and compare the results with the previous reconstruc-
tions.

12. Computation Repeat the previous computation, blending 5 percent uni-
form random noise into the measurements, and compare the results to the
previous reconstructions.

5.2.3 Notes and Further Reading

The word "tomography" is based on the Greek root "tomos" meaning a cut
or slice. What we have called "views" in this module could be called slices
through the object. The shadowy images sometimes seen in the Activities above
arise from the underdetermined nature of the linear systems involved. In the
tomography community such spurious images are called "ghosts."

The ART algorithm is not new; it dates back to the work of Stefan Kacz-
marz in the mid-1930s (Kaczmarz was murdered in a Nazi roundup of intel-
lectuals following the invasion of Poland in 1939). A convergence proof of
ART, in a more general context than that of this module, can be found, for
example, in C. W. Groetsch, Inverse Problems in the Mathematical Sciences,
Vieweg, Braunschweig, 1993. The ART algorithm has a number of advantages
over direct methods for the tomography problem. Since all components of view
vectors are either zero or one, the view vectors may be stored as bit strings,
and individual projections may be computed very quickly. Also, new view
vectors and corresponding measurements can be easily introduced during the
course of the computation if new data becomes available. Furthermore, a priori
information can be incorporated simply via the initial approximation vector.

"Image Reconstruction from Projections," by R. Gordon, G. Herman, and
S. Johnson, Scientific American, Vol. 233 (October 1975), pp. 56-68, is an
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excellent popular article on computed tomography that gives more details on
the medical technology involved. Ivars Peterson's article, "Inside Averages "
Science News (May 1986), pp. 300-301, discusses an interesting application
of tomography to literature.

5.3 Nonpolitical Pull

Course Level:

Linear Algebra

Goal:

Investigate the instability of a model problem in geophysics.

Mathematical Background:

Midpoint rule, matrix inverses, eigenvalues

Scientific Background:

Inverse-square law of gravity

Technology:

Graphics-symbolic calculator, MATLAB

5.3.1 Introduction

Let's renew our acquaintance with the Rhine maidens (see the module das
Rheingold). But now, instead of a discrete nugget of gold, we wish to identify
a nonhomogeneous mass density w(s), 0 ^ s s 1. Such a mass distribution
engenders an inhomogeneity p.(x) in the vertical force of gravity at the surface.
The relationship between w and ju, is easily obtained as in the earlier module and
is illustrated in Figure 5.5: The vertical component of force AJJ.(JT) at position

I

Figure 5.5: Gravitational Attraction of a Distributed Mass
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x engendered by a mass segment of length A.? at position s on the subsurface is

AJH(JC) = yw(s)((x - .?)2 + I)"1 cos Obs

= y((x - sf + ir3/2

where w(s) is the mass density at position s. The usual summation and limit
process leads to the model

/

i
((x- iy3/2w(s)ds

(here, and henceforth, we take y = 1 for convenience). The problem of de-
termining the gravitational inhomogeneity /u, from the mass density w is a
straightforward direct problem. On the other hand, the problem of determining
the inaccessible mass density w from a known (i.e., measured) gravitational
inhomogeneity /LI is a classic inverse problem.

A notable feature of the model above is that ^i is generally smoother than
w. Even for quite "rough" (e.g., discontinuous) functions w, the function ju. is
infinitely differentiable because it inherits its smoothness in x from the kernel
function ((* - s)2 + 1)~3/2. In "filtering" the function w through the integral we
can expect some of the fine detail in w to be "smoothed out" in the process. The
essential point is that ju, contains less information than w and we can therefore
expect that the inverse problem of reconstructing w from knowledge of jit will
be difficult.

We can form a concrete appreciation for the difficulties involved by study-
ing an approximating discrete problem. One way of doing this comes about if
we replace the integral by an approximate quadrature rule. For example, we
might use the midpoint rule, that is,

where h = l/n and Sj = (j — ^)h for j = 1, . . . , n. Applying this rule to the
model above we have

If we insist that this relationship hold at each of the midpoints x - st for
i = 1, . . . , n, we obtain vectors w and f i , whose components approximate the
values of the functions w and /n,, respectively, at the midpoints of the subintervals
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formed in the discretization process. The vectors w and

151

are related by the
matrix equation

Aw = p.,

where A is the n X n matrix with entries

tnj = h((Si - Sjf + l)-3/2 U =!, . . . ,«.

The discrete model

Aw = ft

may then be taken as an approximation to the continuous model

The program 'geo* will produce, for a given positive integer n, the n X «
matrix A that is the discrete model of the geophysical prospecting problem,
along with the vector s of midpoint samples. It is then easy and entertaining to
visualize the dramatic smoothing properties of the discrete model. For example,
in Figure 5.6 a very rough mass density on 50 midpoints is plotted that consists
of random noise in the interval [0,2]. Applying the matrix A, obtained from

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.6: A Random Mass Density
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Figure 5.7: Resulting Gravitational Inhomogeneity

'geo' with n = 50, to this discrete density results in the very smooth curve

plotted in Figure 5.7. The plot in the second figure represents the smooth,

information-poor function jm, while that in the first figure illustrates the rough,
information rich density w that engenders /u..

Since the direct model appears to reduce fluctuations, i.e., to smooth the

input, it should come as no surprise that the inverse process will tend to magnify

fluctuations in the data. To put it another way, the inverse problem is unstable.

The activities below contain a number of computational exercises in which this

phenomenon is explored. The instability of the inverse problem for the discrete

model can be explained in terms of the condition number of the model matrix

A. This matrix is symmetric and positive definite and its condition number,

relative to the usual euclidean norm || • ||, is the ratio of its largest eigenvalue,
say Xn, to its smallest eigenvalue, say Ai :

cond(A) = A«/A|.

General treatments of the role of the condition number in perturbation analysis

can be found in most numerical analysis texts. We illustrate the possibilities with

a particular example. Suppose that 0 < AI < • • • < An are the eigenvalues of A
and that u t , . . . , un are corresponding orthonormal eigenvectors. If ft = Anun,
then

A\r = ft,
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where w = un. If the right-hand side of this equation is perturbed by

A aAJA = —U]

for some positive scalar a, then the solution of the perturbed system is

a
w + Aw = \in + —U).

The relative sizes of the perturbations are then related in the following way:

II Aw || = AK II i;"! II

II w || A, || ABuB ||

= cond(A)-

Therefore, the relative error in the right-hand side may be magnified by

a factor of cond(A). Linear systems with coefficient matrices having large

condition numbers are called ill-conditioned. Unstable inverse problems give

rise to discrete models with ill-conditioned matrices. The solution of such ill-

conditioned systems is particularly challenging as the data of the problem,

which is represented in the right-hand side of the discrete model, invariably
contains errors. Even if the error is only that which results from representing

the real numbers in a computer in floating-point form, a severely ill-conditioned

matrix can have very unpleasant effects, as will be seen in some of the com-

putations below. In general, data errors are greatly magnified in the solution

process for ill-conditioned problems, and special measures must be taken to

dampen this error magnification. One method for accomplishing this is hinted

at in the activities.

5.3.2 Activities

1. Computation Generate the discrete models A for n = 5, 10, 20, and 40,
and in each case use the MATLAB function 'cond' to find the condition number

of A.

2. Computation Use the program 'geo' to produce the 100 X 100 discrete

model matrix A. Generate various random 100-vectors x, plot x and A\ and

note the qualitative features of both.

3. Computation Show that the matrix A of the discrete model has positive

eigenvalues for n = 5,10, and 20.

4. Problem Find the gravitational inhomogeneity /u, engendered by the con-
stant mass density w(s) = 1 (this is the density used in the program 'geo').
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provided to allow the student to carry out numerical simulations of the inverse
problems with the aim not only of constructing approximate solutions but also
of investigating the inherent instability of the problems.

5.1 Cause and Identity

Course Level:

Linear Algebra

Goal:

Interpret some basic problems of linear algebra as inverse problems of causation
and model identification.

Mathematical Background:

Matrices and linear equations, vector and matrix norms, Gauss-Jordan elimi-
nation method

Scientific Background:

Ohm's Law, KirchhofPs Law

Technology:

MATLAB or other high-level numerical software

5.1.1 Introduction

Linear algebra is the one course in the undergraduate curriculum in which
the issues of existence, uniqueness, and stability raised by inverse problems
get serious, though often inadequate, attention. The direct problem of linear
algebra consists of determining the action of a linear transformation represented
(relative to given bases) by a matrix: Given an m X n matrix A and an n-vector
x, determine the m-vector b = Ax. The inverse causation problem, that is, the
problem of finding all solutions x of Ax = b, probably gets more attention
than any other problem in elementary linear algebra. A less frequently treated
inverse problem is the identification problem: Identify the matrix A, given an
appropriate collection of "input-output" pairs (x, b) satisfying Ax = b. This
module is an elementary presentation of both of these inverse problems for
mX n real matrices.
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First we consider the inverse causation problem. A solution x of this
problem, that is, a vector x <E R" satisfying Ax .= b, where A is a given mX n
real matrix and b G Rm is a given vector, exists if and only if b lies in the range
of A, that is, in the subspace

R(A) = {Ax : x £ R"}.

This subspace is, according to the definition of the action of the matrix A on
a vector x, just the subspace of Rm consisting of all linear combinations of
the column vectors of A. Determining whether b e R(A), that is, whether
a solution exists, and finding all solutions, is accomplished by that excellent
algorithm, the method of Gaussian elimination.

The uniqueness issue is addressed by a subspace of R" associated with A,
the null-space

N(A) = {x e R" : Ax = 0}.

Again the Gaussian elimination algorithm is an effective means of characteriz-
ing the null-space and thereby settling the uniqueness question.

The stability, with respect to perturbations in the right-hand side b of the
solution x of the problem Ax = b, can be quantified in terms of the condition
number of the matrix A. We assume that a unique solution exists for each b, that
is, that A is an invertible matrix. We would like to know to what extent relatively
small errors in b can lead to relatively large changes in the solution x. Suppose
b is a perturbation of the right-hand side b. The size of this perturbation relative
to the size of b, measured in terms of a given norm [| • ||, is then ||b - b||/||b||.
Let jc be the unique solution of the system corresponding to the right-hand side
b, and let x be that corresponding to the right-hand side b. Then

x - x = < llA- ' l l l lb - b||;

hence the matrix norm ||A"'JI gives a bound for the change in the solution
arising from a perturbation in the right-hand side. A relative measure of this

change is obtained as follows:

and hence

llxll llbtl '
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where cond(A) = \\A\\\\A :\\s called the condition number of the matrix
A (with repect to the norm || • |j). The condition number therefore gives an
upper bound for the relative error in the solution caused by a given relative
error in the right-hand side. For matrices with large condition numbers, that is,
ill-conditioned matrices, relatively small perturbations in the right-hand side
can give rise to relatively large changes in the solution. It is in this sense that
ill-conditioned systems are said to be unstable.

We now consider what can be accomplished with linear systems that have
no solution, or too many solutions. In the case when b £ Rm is not in the range
of the m X n matrix A, there is no solution to the problem Ax = b, but all is not
lost. A remarkable relationship between the null-space, range, and transpose
allows the development of a type of generalized solution, and such generalized
solutions always exist. The sort of generalized solution we have in mind is a
least-squares solution, that is, a vector u £ R" that minimizes the quantity
||Ax - b|| over all x £ R", where the norm is the usual euclidean norm. Note
that this minimum is zero if and only if the system has a solution. If u is a
least-squares solution, then for any vector v G R", the function

g(t) = j|A(u + rv) - b||2 = ||Au - b||2 + 2(Av,Au - b)r l |2<2

where (•, •) is the familiar euclidean inner product, has a minimum at f = 0.
The necessary condition g'(0) = 0 for a minimum then gives

(Av, Au - b) = 0,

and hence (v, ArAu - A rb) = 0 for all v G R", That is, if u is a least-squares
solution, then

A rAu = Arb,

where AT is the transpose of A.
Conversely, if ArAu = Arb, then for any x £ R",

||Ax - bf = ||A(x - u) + Au - b||2

= ||A(x - u)||2 + 2(A(x - u),Au - b) + ||Au - bj|2

= ||A(x - u)||2 + 2(x - u,A rAu - Arb) + ||Au - b||2

- b||2,

that is, u is a least-squares solution of Ax = b.
So, least-squares solutions of Ax = b coincide with ordinary solutions of

the symmetric problem Ar Ax = Arb. Now this symmetric problem always has
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a solution since R(AT) = R(ATA) (see Problem 9) and hence A rb £ R(ATA)
for any b £ Rm. Therefore, any linear system Ax = b has a least-squares
solution. However, least-squares solutions need not be unique. Indeed, if u is
a least-squares solution, then so is u + v for any v £ N(A), that is, the set of
least-squares solutions forms ahyperplane parallel to the null-space. Therefore,
if A has a nontrivial null-space, then Ax = b has infinitely many least-squares
solutions. However, one least-squares solution can be distinguished from the
others, namely, the one that is orthogonal to the null-space. There can be at
most one such least-squares solution, because if u and w are both least-squares
solutions that are orthogonal to N(A), then u - w is orthogonal to N(A). Also,
ArA(u - w) = Arb - Arb = 0, and hence u - w £ N(ATA) = N(A) (see
Problem 6). Therefore, u - w £ N(A) n Af(A)1, that is, u = w. On the other
hand, there is always a least-squares solution that is orthogonal to the null-
space (see Problem 10), and hence any linear system has a unique least-squares
solution that is orthogonal to the null-space of the coefficient matrix. If we
agree to accept this notion of generalized solution, then every linear system has
a unique (generalized) solution.

Finally, we briefly consider the identification problem, that is, the inverse
problem of determining an m X n matrix A, given pairs of vectors (x, b) related
by Ax = b. For each such pair we call x the input and b the corresponding
output. Our job is to identify the "black box" A, by "interrogating" it with ap-
propriate inputs x and observing the outputs b. Because we control the inputs,
we can arrange it so that they are linearly independent, and we will assume that
this has been done. It is convenient to express things in matrix form by aggre-
gating the independent inputs Xi, X 2 , . . . , Xp as the column vectors of an n X p
matrix x, and similarly thinking of the corresponding outputs Bi ,B2 , . . . ,B/;

as the column vectors of an m X p matrix B. We say that A is identifiable from
the matrix pair (X, B) if there is a unique m X n matrix A satisfying AX = B.

We consider three cases, each premised on different relative sizes for n
and p. First note that p > n is impossible, since {X,,... ,XP} is a linearly
independent set in R". If p - n, then X is invertible and A is identifiable,
in fact, A = BX } . In this case a simple modification of the Gauss-Jordan
elimination method provides an algorithm for identifying A. The method rests
on the observation that if AX = B, then XTAT = BT. One can therefore
solve for the transpose of the model matrix A by augmenting the transpose of
the input matrix with the transpose of the output matrix and performing the
Gauss-Jordan algorithm in the usual way:

[XT : BT] -+ > [/ : AT] .
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In the last case, when p < n, one suspects that the input-output informa-
tion is insufficient to identify A. This is indeed so since in this case there is
a vector q £ /?" that is orthogonal to Xj , . . . , Xp. Let C be the m X n matrix
whose first row is qr and whose other rows are zero vectors. Then CX is the
m X p zero matrix. Therefore, if AY = B, then, likewise, (A + C)X = B, and
hence A is not identifiable from the information (X,B).

5.1.2 Activities

1. Problem A company manufactures three types of circuit boards. Each
board consists of three types of components, say, diodes, transistors, and resis-
tors. Board 1 requires two diodes, seven transistors, and three resistors. Board 2
requires three diodes, five transistors, and two resistors. Board 3 requires one
diode, nine transistors, and four resistors. Each of the components has a certain
unit cost. Is it possible for the costs (in some monetary unit) of the constituents
of the boards to be 24, 20, and 15 (for diodes, transistors, and resistors, respec-
tively)?

2. Problem Referring to Problem 1, suppose the constituent costs of the
three types of boards are 24, 20, and 28 dollars, respectively, and that the sum
of the unit costs of the three types of components is a minimum. Estimate (to
the nearest cent) the unit costs of the components.

3. Question Does small-determinant imply ill-conditioned?

4. Problem Given an arbitrarily small positive number e, construct a matrix
A with det A = e and cond(A) = I + e.

5. Computation Suppose the finite Laplace transform

F(s) = e~suf(u)du, 0 < s < 1
Jo

is discretized to produce the « X n matrix A with a,;- = e~'J/n , for i,j =
!,...,/!. Find cond(A) for n = 10, 20, 50. For each such N, generate an n-
vector with random components in f — 1, 1] and compute the vector b = Ax.
Plot the vector x and the vector b. Explain the results.

6. Problem Show that N(A) = N(ATA) for any real matrix A.

7. Problem Show that for any real matrix A, R(AT)^ = N(A).

8. Problem Show that if W and V are subspaces of R" and W± = VL , then
W = V.
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9. Problem Use Problem 8 to show that R(AT) = R(AT A) for any real matrix
A.

10. Problem Suppose u is a least-squares solution of Ax = b, and let Pu
be the orthogonal projection of u onto N(A) (i.e., Pu = ^*=1(u,v<-'))v<''),
where {v(1),..., v'*-1} is an orthonormal basis for N(A)). Show that u — Pu is a
least-squares solution that is orthogonal to N(A).

11. Exercise Suppose b = [1,0,2]T and

A =
1 1"
2 0
1 1

Show that the system Ax = b has no ordinary solution, but that it does have a
unique least-squares solution.

12. Exercise Suppose b = [1,0, l]T and

A =

Show that the system Ax = b has no ordinary solution, but that it does have
infinitely many least-squares solutions. Find the least-squares solution that is
orthogonal to the null-space.

13. Exercise Suppose B is a real, symmetric matrix. A given nonzero n X 1
vector y is an eigenvector of B if the n equations in the single unknown ju,

yp- = By

have an ordinary solution. Show that for each nonzero y this equation has the
unique least-squares solution

= (fly.y)
* llyl l 2 '

This quantity is called the Rayleigh quotient for y, and it may be taken as an
approximation to an eigenvalue of 5.

14. Problem Show that there are infinitely many 2 X 3 matrices that produce
the outputs Ll , l ] r and [0, l]r, given the respective inputs [1,1, —l] r and

[-l.l.Of.


