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1 Elementary theory of rainbows and related phenomena

1.1 Preliminaries: the Snell Law of refraction (circa 1620)

Consider a classic Calculus I problem:

To what point S on the shore should the person
swim in order to get from point A to point B in
the least amount of time?

Indices ‘2’ and ‘1’ refer to water and land, respec-
tively. The calculations below list quantities with
index ‘2’ first because the person begins their mo-
tion in water and then continues on land.

Solution: Using the notations of the above figure, we have:

ttotal(x) = twater(x) + tland(x) =
l2
v2

+
l1
v1

= min ⇒

d

dx

(√
x2 +H2

2

v2
+

√
(L− x)2 +H2

1

v1

)
= 0 .

Straightforward calculations (verify) yield:
sinα2

v2
− sinα1

v1
= 0 .

Verifying that this is indeed the minimum of ttotal(x) by Calculus tools such as the first- or
second-derivative tests is, in principle, possible, but quite cumbersome. Indeed, one would
need to solve for the x-value corresponding to the equation immediately above; then imagine
computing t′′total(x) and substituting in it that value of x. This would be quite difficult. A much
easier way would be to simply plot ttotal(x) (e.g., using Mathematica).

We will now use the Fermat’s Principle: Light travels so as to minimize the travel time.

Then, finding the path of a refracted ray of light is mathematically equivalent to the problem
above. Thus, when light refracts, it satisfies the Snell Law :

sinα1

v1
=

sinα2

v2
(1.1)

Since the light speed v in a medium is related to the
light speed c in vacuum as v = c/n, where n is the
medium’s refractive index, then the above equation can
be rewritten as

n1 sinα1 = n2 sinα2 . (1.2)

Equation (1.2) is an alternative form of the Snell Law.
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Side note: If light falls from an optically
more dense medium into optically less dense
one (e.g., from water into air, with nwater >
nair), then total internal refraction will occur
when α2 > (α2)crit. Here (α2)crit is calculated
by setting α1 = π/2 (see the figure on the
left). Then from (1.2) we have (verify):

sin(α2)cr =
n1

n2

.

1.2 Location of the primary rainbow

1.2.1 Brief history

- Aristotle and other ancient philosophers:
Rainbow occurs due to refraction and reflection of sunlight in raindrops; Empirical finding
of locations of primary and secondary rainbows relative to the Sun and observer.

- R. Descartes (1637):
Explained why rainbow is formed and how to find its location.

- I. Newton (1666):
Colors in rainbow (prism experiment).

- E. Halley (around same time):
Location of tertiary rainbow.

- George Airy (1838):
Explained why transition from a rainbow to the sky is not abrupt.

See the website http://www.atoptics.co.uk and the article by J. Adam (posted on the
course website) for references on mathematical physics of rainbows.

1.2.2 Basic idea

The key idea, expressed by Descartes, is that
rainbows are formed due to refraction and
reflection of sunlight by raindrops. More
specifically, this combination of refraction
and reflection occurs stronger at certain an-
gles than it does at other angles. We will
now explain why this is so.
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Let an incoming ray hit a raindrop at an angle α shown
on the left. The ray undergoes a refraction, internal re-
flection, and another refraction, and as a result is turned
by an angle T (α). So, incoming rays incident on the
droplet at different angles α get turned by different an-
gles T . All rays coming into the droplet from a narrow
angular sector ∆α, as shown on the left, will come out
of the droplet in a narrow angular sector ∆T (α) ≡ ∆T .
The more rays “get packed” into this |∆T |, the brighter
is the image seen by the observer.

The number of rays entering the raindrop from the angular sector ∆α is: Nin = ρin ·r∆α ·cosα
(see the figure below, where the last two factors are clarified with dotted arrows). Here ρin is
the density of rays coming at the droplet from one direction (in the figure, this direction is that
of the horizontal). Factor r ·∆α is the length of the arc bounded by the two rays entering the
droplet; it approximates the length of the hypothenuse of the small right triangle seen there.

∆α 

α 

α 

r 

≈ r∆α 

cosα r ∆α 

The number of rays coming out of the droplet in the
angular sector ∆T is, similarly: Nout = ρout ·r∆T ·cosα,
where we have used the fact that the rays come out at
the same angle α to the normal radius at which they
came in: see the figure at the end of this page. Setting
Nout = Nin, as explained above, one finds:

ρout =
ρin ∆α

|∆T |
∼ ∆α

∆T
.

The refraction is the strongest into those angles where
ρout(α) is maximum. This occurs where |∆T/∆α| =
min. Now, ∆T ≈ T ′(α)∆α, and therefore we look for
such α where

T ′(α) = 0,

which is the condition for a critical point, which may be
a local minimum or maximum. We will now show that
T (α) looks as shown on the left.

1.2.3 Calculation of the rainbow location

The turning angle T (α) accumulates from the
turns at points A,B,C as shown on the left.

Point Turning angle

A α− β
B 180◦ − 2β
C α− β
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Thus, the total turning angle is:

T (α) = 2(α− β) + 180◦ − 2β = 180◦ + 2α− 4 arcsin

(
sinα

n

)
, (1.3)

where we have used the Snell Law (1.2) to relate angles β and α:

1 · sinα = n · sin β

(n is the refractive index of water, while the refractive index of air is assumed to equal 1). Now,

T ′(α) = 2− 4
dβ

dα
.

To find dβ/dα, one can either differentiate β(α) and use the Chain Rule, or differentiate the
Snell Law and use implicit differentiation. Either way, one obtains (verify):

T ′(α) = 2− 4
cosα

n cos β
. (1.4)

Next, we need to express cos β in terms of α. To that end,

sin β =
sinα

n
⇒ 1− sin2 β = 1−

(
sinα

n

)2

⇒ cos2 β = 1−
(

sinα

n

)2

,

and so

cos β =

√
n2 − sin2 α

n
. (1.5)

Substituting (1.5) into (1.4) with T ′ = 0, we obtain (verify):

2 = 4
cosα0√

n2 − sin2 α0

,

where α0 is the angle where T ′(α0) = 0. Using elementary algebra and trigonometry, one finds
α0 from the above equation as (verify):

cos2 α0 =
n2 − 1

3
, (1.6a)

or, equivalently, as

sin2 α0 =
4− n2

3
. (1.6b)

Substitution of this into (1.3) yields:

T (α0) = 180◦ + 2 arccos

√
n2 − 1

3
− 4 arcsin

√
4− n2

3n2
. (1.7)

For n = 1.33 (the refractive index of water),
one has:

α0 ' 59.4◦ ,

T0 ' 138◦ ,

180◦ − T0 ' 42◦ .
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Thus, the first figure of Section 1.2 can be re-
drawn in more detail, as shown on the left.

Note that all rays emanating from the sun are
parallel because the Sun is very far from the
Earth. Then the perceived location of the rain-
bow in the sky is also illustrated by this figure.
In particular, one can conclude that the higher
the sun is over the horizon, the lower the rain-
bow arc will appear to the observer.

1.3 Rainbow colors
The origin of colors in a rainbow was explained
by Newton about 30 years after Descartes ex-
plained the mechanism for forming rainbows.
When experimenting with light transmission
through prisms, Newton discovered that the re-
fractive index n depends on the light wavelength
λ: n = n(λ). This phenomenon is called the
dispersion of light and it manifests itself in that
different colors get refracted differently, i.e. are
turned by a raindrop into different angles.

Brute force approach:
Find α0(λ) for each n(λ) from (1.6), then find T (α0(λ)) from (1.7).

Mathematically literate approach:
Use differentials (local linear approximation)! Here, we can proceed along two different venues.

Calculus I venue: Using Eqs. (1.6) and (1.7), we can compute

T (α0(λ2))− T (α0(λ1)) ≈
dT (α0(λ))

dλ
∆λ ,

where λ is any value from the narrow interval [λ1, λ2]. Let us denote T (α0(λ)) = T0(λ). We can
find this function from (1.7) by substituting there n = n(λ) . Then we can find (conveniently
using Mathematica) the quantity

dT0
dλ

=
dT0
dn

dn

dλ
, and hence ∆T0 ≈

dT0
dn

dn

dλ
∆λ ,

where ∆T0 = T0(λ2)− T0(λ1).

Calculus III venue is simpler. First, let

T (α, n) = 180◦ + 2α− 4 arcsin

(
sinα

n

)
.

Then computing the differential of this function of two variables, we obtain:

∆T ≈ ∂T

∂α
∆α +

∂T

∂n
∆n .

However, for the rainbow ray, i.e., for α = α0, ∂T/∂α|α=α0 = 0 . Then:



MATH 235, by T. Lakoba, University of Vermont 6

∆T0 ≡ ∆T |α=α0 ≈
∂T

∂n

∣∣∣∣
α=α0

∆n = −4
∂

∂n
arcsin

(
sinα

n

)∣∣∣∣
α=α0

∆n

= −4

(
−sinα0

n2

)
· 1√

1− ( sinα0

n
)2

∆n =
4 sinα0

n
√
n2 − sin2 α0

∆n.

Substitute here sin2 α0 = (4− n2)/3 from (1.6b) to obtain (verify):

∂T

∂n

∣∣∣∣
α=α0

=
2

n

√
4− n2

n2 − 1
.

Then

∆T0 '
2

n

√
4− n2

n2 − 1
∆n. (1.8)

Using now n ' 1.335 and the values for nred, nviolet shown in the figure at the beginning of
Section 1.3, we obtain a numeric estimate for the width of the primary rainbow:

T0(λred)− T0(λviolet) ' −1.7◦; ⇒ Tred < Tviolet .

⇔

The two figures above illustrate the following. The red ray coming from a given drop (“drop
A”) goes lower than the violet ray coming from the same drop. If the violet ray from drop A
enters observer’s eye, then the red ray from the same drop hits below the eye. Equivalently,
the red ray must come from a drop that is higher then drop A to enter observer’s eye. This is
why red color is seen above the violet color in a primary rainbow.

1.4 Secondary rainbow

Below we show ray paths for the primary and secondary rainbows.

Primary:
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Secondary:

For the secondary rainbow, you will show at home that:

T (α) = 360◦ + 2α− 6β and cos2 α0 =
n2 − 1

8
. (1.9)

You will also compute T (α0), find the angular width of the secondary rainbow, and determine
which color is at its top. Furthermore, if T for the secondary rainbow is interpreted in the same
sense of rotation as for the primary rainbow, one can show that the secondary rainbow occurs
at the local maximum of T (α), as shown in the figure for Sec. 1.6. You will be asked to verify
this in a bonus problem.

1.5 Tertiary rainbow

The tertiary rainbow is formed by rays that have experienced three reflections inside the rain-
drop, as shown below.

One can show that:

T (α) = 2(α− β) + 3(180◦ − 2β) ,

cos2 α0 =
n2 − 1

15
,

T (α0) ' 318.4◦ .

Tertiary rainbows are not observed because:

� After three reflections, much light is
lost, so a tertiary rainbow is faint.

� The sky is very bright near the sun.
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1.6 Alexander’s dark band

In view of what we said in Sec. 1.4 about T (α) for the primary and secondary rainbows (the
left figure above), there will be an angular band in the direction of the rain cloud from which
no reflected and refracted light will get to the observer. In the complete and more complicated
theory of rainbows than that presented above, one shows that there are no sharp boundaries
between lit and unlit regions in the sky. However, the aforementioned band will appear darker
than the rest of the sky; the a schematic above on the right. This band was described around
200 A.D. by a Greek philosopher Alexander, after whom it was subsequently named.

1.7 Halos

Halos occur because of refraction (not reflection!) inside certain ice crystals, which are often
present in the high atmosphere even in hot climates. The most common, 22-degree, halo occurs
because of the refraction in randomly oriented hexagonal columns of ice, shown below.

Finding parameters of this kind of halo follows the ideas that we have used earlier for rainbows.
Namely, the turning angle T (α) has a minimum where T (α) ≈ 22◦. Then, no light is refracted
inside the 22◦ cone (the light does get there due to other mechanisms, though), thus forming a
dark area inside a bright rim. As before, the rim occurs where the density of the refracted rays
is maximum, as shown below on the right. However, certain fine details of halo formation are
still not fully understood.


