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10 Inverse Problems

Part I: Why they may be unstable (and what this means)

In the previous Lecture we have seen that a number of diverse physical problems lead to
the same mathematical model. In a simplified form, that model can be written as

dv

dt
= r(t)v , (10.1)

where v(t) is the solution and r(t) is the exponential rate of change. In fact, to illustrate the
problem that we will study in this Lecture, it will suffice to consider an even simpler model:

du

dt
= r(t) . (10.2)

(Verify that (10.2) can be obtained from (10.1) by replacing v with eu.) In Lecture 9 we
considered a situation which, when applied to equation (10.2), is summarized as follows:

Given the rate of change r(t), find the solution u(t).
This is referred to as the direct problem for Eq. (10.2). In what follows we will refer to the
rate r(t) as data.

In this Lecture, we will first explain that the results of Lecture 9 show that this direct
problem is stable. That is, any small perturbation to r(t) engenders a small perturbation to
the solution u(t). Then we will show that the inverse problem of determining the data r(t)
from the solution u(t) is unstable. That is, certain small perturbations in u(t) may “cause”
large perturbations to r(t). Here and below “cause” refers not to the physical causality but
to the mathematical procedure by which r(t) is reconstructed from u(t). This material will be
presented in Section 1.

In Section 2 we will show a natural way to minimize (but not to eliminate) the error in r(t)
“caused” (in the aforementioned sense) by an error in u(t). In Section 3 we will briefly look at
equations that in some sense extend (10.2) and for which the corresponding inverse problems
are even more unstable than for (10.2). In Section 4 we will consider an “ultimately” unstable
inverse problem, for which arbitrarily small (e.g., within a computer round-off error of 10−16 or
so) perturbations of the solution can “cause” very large changes in the primordial data.

Finally, in Section 5 we will reformulate the problem of Section 4 as a matrix equation
Ax = b and see what difficulties can be encountered when we try to solve it by using the
inverse matrix A−1 (note the similarity in the name with “inverse problem”!). This will lead us
to considering an important characteristic of a matrix called its condition number. In one
special case, we will relate the condition number to the eigenvalues of the matrix, and explain
what role certain eigenvectors play in the instability of the inverse problem.

To conclude this Introduction, we note that not all inverse problems in Nature are unstable.
However, here and in the next Lecture we will focus only on unstable ones.

10.1 Instability of the inverse problem for (10.2)

At the end of Lecture 9 we pointed out that if r(t) is perturbed by a very fast, but not necessarily

small ripple, then the change in u(t) =

∫ t

0

r(t1)dt1 is small (specifically, is proportional to the

period of the ripple). We will now read this statement backwards:
A small change in

u(t) =

∫ t

0

r(t1)dt1



MATH 235, by T. Lakoba, University of Vermont 92

may be engendered by a non-small perturbation of r(t).
That is, if we attempt to restore the data r̂(t) from a solution û(t) that differs from another
solution u(t) by a small ripple, the difference between the corresponding data r̂(t) and r(t) will
not, in general, be small. This is the central theme of this Lecture.

To add quantitative details to the above general statement, let us estimate the error with
which one can derive r(t) from u(t) in the cases when u(t) is smooth and when it has a noisy
component. Let us begin with the smooth case. Assume that u(t) has a bounded second
derivative, i.e. |u′′(t)| ≤ 2M for some constant M (the origin of factor 2 will transpire soon).
The derivative du

dt
in (10.2) can be approximated by a forward difference:

du

dt
≈ u(t+ h)− u(t)

h
, h ≪ 1 . (10.3)

What is the error of this approximation? Recall the Taylor series with a remainder for u(t+h):

u(t+ h) = u(t) + h · u′(t) +
h2

2
u′′(t∗) , (10.4)

where t ≤ t∗ ≤ t+ h. Substitution of (10.4) into the r.h.s. of (10.3) yields:

u(t+ h)− u(t)

h
=

u(t) + h · u′(t) + h2

2
u′′(t∗)− u(t)

h

= u′(t) +
h

2
u′′(t∗) .

Equivalently,
u(t+ h)− u(t)

h
= r(t) +O(h) ,

where O(h) ≤ Mh and M was defined above as the bound for 1
2
|u′′(t∗)|. For simplicity, we

will take this O(h) to be equal to Mh; this will not affect our results but will lighten up some
formulae. Thus, the previous equation becomes:

u(t+ h)− u(t)

h
= r(t) +Mh . (10.5)

This equation “says” that when u(t) is sufficiently smooth, one can improve the approximation
for r(t) by decreasing the step size h.

Now consider the other case where a small (of amplitude ε) noisy component is added to
u(t), so that now û(t) = u(t) + n(t), where u(t) is the same as above. The noisy component
n(t) may represent, for example, noise in experimental measurements. Consider now

û(t+ h)− û(t)

h
=

u(t+ h)− u(t)

h
+

n(t+ h)− n(t)

h

= r(t) +Mh+
n(t+ h)− n(t)

h
. (10.6)

Since n(t) is random, we should identify the worst-case scenario that causes the largest change
to the r.h.s. of (10.6) compared to the r.h.s. of (10.5). This occurs when

n(t+ h) = ε , n(t) = −ε , (10.7)

or vice versa. Graphically, this n(t) is a saw-like ripple shown below:
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Then,
n(t+ h)− n(t)

h
=

2ε

h
,

and Eq. (10.6) becomes:

û(t+ h)− û(t)

h
= r(t) +

(
Mh+

2ε

h

)
. (10.8)

This formula shows that if we keep taking smaller and smaller h to compute the finite
difference on the l.h.s of (10.8), the error in the so-obtained approximation for r(t) = u′(t)
will eventually increase due to the term

(
2ε
h

)
. This means that the problem of reconstruction

of the data r(t) from the solution u(t) is unstable: a small (of magnitude ε) noise in u(t)
“causes” non-small (of magnitude 2ε

h
, where h ≪ 1) noise in the numerically computed r(t).

This numerical noise in r(t) cannot be eliminated as long as some noise in u(t) is present.
However, given the amplitude ε of the noise in u(t), it is possible to mitigate the noise in r(t).
One way to do so is considered in the next Section. A qualitatively different way will be the
subject of the next Lecture.

10.2 Minimization of the error in the reconstructed data for Equa-
tion (10.2)

For a given solution u(t) (which also determines the constant M in Eq. (10.8)) and a given
noise magnitude ε, the error in (10.8) is a function of the only parameter, the step size h of the
numerical differentiation:

error(h) = Mh+
2ε

h
. (10.9)

We now use the freedom of choosing h to minimize this expression:

(error(h))′ = 0 ⇒ M − 2ε

h2
= 0 ⇒ hopt =

√
2ε

M
.

Then the absolute minimum of the error is:

errormin = error(hopt)

= M ·
√

2ε

M
+

2ε√
2ε
M

= 2
√
2εM .

Therefore, for

hopt =

√
2ε

M
, (10.10a)
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one has

r̂opt(t) =

(
û(t+ h)− û(t)

h

)
opt

= r(t) +O(ε1/2) . (10.10b)

This formula shows that by properly choosing the discretization step h, one can keep the error
of the numerically determined data r̂(t) to be relatively small (O(ε1/2)), as long as the noise in
the available solution is also small (O(ε)).

In a homework problem you will be asked to show that by using a finite-difference approxi-
mation to the derivative that is different from the r.h.s. of (10.3), one can slightly improve the
error in the numerically obtained r̂(t).

10.3 More unstable inverse problems; the role of smoothness of the
solution relative to smoothness of the data

Let us recall the central theme of this Lecture. We are considering situations where a small
noisy component in the solution “causes” a non-small noise in the numerically reconstructed
derivative u′(t). This can be reworded as follows. Since the operation of integration reduces the
size of a fast ripple (see the end of Lecture 9), then the inverse operation of differentiation must
amplify a fast ripple. This is what makes the process of numerical differentiation an unstable
problem.

Now, if in some problem, we find the solution by integrating the given data twice, the
repeated integration will reduce the size of any fast ripple twice (note: not by a factor of two,
but two times in a row, — one time after the first integration and the other time after the
second integration). But if we now want to reconstruct the data from a noisy solution, the
repeated differentiation will amplify any fast ripple twice. Thus the instability here will be
even stronger than in the inverse problem for Eq. (10.2).

To provide quantitative details to the preceding statement, consider, instead of Eq. (10.2),
a problem

d2û

dt2
= q̂(t) . (10.11)

Its solution û is related to the data q̂ by:

û(t) =

∫ t

0

(∫ t1

0

q̂(t2)dt2

)
dt1 , (10.12)

where for simplicity we have set the corresponding initial conditions to zero:

u0 = (u′)0 = 0 .

Let q̂(t) = q(t) + q̃(t), where q(t) is smooth and q̃(t) is a large but fast ripple:

q̃(t) = A · cosωt, ω ≫ 1, A ≫ 1 . (10.13)

We are interested in how the ripple q̃ affects the solution in this case. Since the problem is
linear, we have û = u + ũ, where u and ũ are engendered by q and q̃, respectively. Thus, we
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consider

ũ(t) =

∫ t

0

(∫ t1

0

q̃(t2)dt2

)
dt1

=

∫ t

0

(∫ t1

0

A cosωt2 dt2

)
dt1

=

∫ t

0

A

ω
sinωt2

∣∣∣∣t1
0

dt1

=
A

ω2
(1− cosωt) . (10.14)

Let ω be so large that A
ω2 ≪ 1, despite the fact that A ≫ 1. Then Eq. (10.14) says that having

integrated twice a large ripple in the data q̂(t), we ended up with a small ripple in the solution
û(t). Therefore, if we try to reconstruct these data by differentiating twice a solution with a
small but fast ripple, we should expect a large ripple in the reconstructed data.

We now present a quantitative analysis of such a reconstruction and ripple amplification.
We will do so mainly to reiterate the essential steps of a similar analysis in Section 2. It was
shown earlier (see Sec. 9.1 of Lecture 9) that a finite difference approximation to d2u

dx2 is

d2u

dx2
=

u(x+∆x)− 2u(x) + u(x−∆x)

∆x2
+O(∆x2) .

For analysis of Eq. (10.11), we replace x with t, ∆x with h, and also let O(h2) = Mh2, similarly
to what we did before Eq. (10.5)11. Then, rewriting the resulting equation from right to left,
we have:

u(t+ h)− 2u(t) + u(t− h)

h2
= q(t) +Mh2 , (10.15)

since q(t) = u′′(t). Now let us apply the finite-difference formula on the l.h.s of (10.15) to
û = u+ n, where u is smooth, as before, and n is a small noisy component. Then, similarly to
(10.6),

û(t+ h)− 2û(t) + û(t− h)

h2
= q(t) +Mh2 +

n(t+ h)− 2n(t) + n(t− h)

h2
. (10.16)

Repeating the argument made after Eq. (10.6), we look for the “worst” form n(t). Such a
worst form must yield the largest value of the numerator on the r.h.s. of (10.16). Inspection
reveals that this “worst” n(t) is the same as the one depicted near Eq. (10.8). Since for it,
n(t+ h) = ε , n(t) = −ε , n(t− h) = ε, Eq. (10.16) becomes:

û(t+ h)− 2û(t) + û(t− h)

h2
= q(t) +

(
Mh2 +

4ε

h2

)
. (10.17)

As before, we see that decreasing h to zero will eventually make the error grow due to the term(
4ε
h2

)
. Then, as in Section 2, we seek a value hopt that would minimize the total error given in

the term in parentheses in (10.17). A calculation similar to the one that led to (10.10) yields
(verify):

hopt =
4
√
4ε/M , (10.18a)

q̂opt(t) =

(
û(t+ h)− 2û(t) + û(t− h)

h2

)
opt

= q(t) +O(ε
1
2 ) . (10.18b)

11However, this “new” M is not related to the “old” M from (10.5).
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Thus, optimizing the step size h, we, as before, have been able to make the noise in the
numerically reconstructed û(t) small. Two notes are now in order.

Note 1 It may appear a little strange that in this problem, which is more unstable than the
inverse problem for single differentiation, we managed to reduce the ripple to about the same
size, O(ε1/2), as for the single differentiation case (see Eq. (10.10b)). However, as you will show
in a homework problem, the size of O(ε1/2) for the ripple in the numerically reconstructed u′(t)
is not the best possible. On the other hand, for the problem of reconstructing u′′(t), the ripple
size of O(ε1/2) is the best possible (details of the corresponding calculation are omitted). Thus,
the best possible error in reconstructing u′(t) is indeed smaller than that in reconstructing
u′′(t), as one may intuitively expect.

Note 2 Generalizing the above example to an equation of the form

dnu

dtn
= w(t) , (10.19)

where one wants to reconstruct the data w(t) from the given solution u(t), we conclude that
the greater n, the more unstable this inverse problem is. In other words, the more the direct
problem of obtaining u from w smoothens the data w, the more unstable the inverse problem
of reconstructing w from u is.

Side note One can show that by choosing an optimal step size hopt(= O(ε
1

n+2 )), the best

possible error in the restored data is O(ε
2

n+2 ), where ε is the magnitude of the noise in the
solution.

In the next Section we will consider a problem where an error in the reconstructed data is
even larger. We will first derive an equation for the corresponding physical model and then will
attempt to solve an inverse problem for it.

10.4 An “ultimately unstable” inverse problem

10.4.1 Derivation of the model

Suppose a geological prospector is searching for a vein of gold; see the posted online Sections
2.3 and 5.3 of the book “Inverse Problems” by C. Groetsch. A more entertaining presentation
of the same topic is by the movie “Bluff” with Anthony Quinn and Adriano Celentano (Italy,
1976).

The prospector knows that the vein is located
at depth D beneath the ground level, but
does not know how gold is distributed in the
vein and where exactly the main deposits of
gold are. He hopes to find the vein and deter-
mine gold distribution in it by measuring a
disturbance µ(x) of the vertical force of grav-
ity at the surface.

A short vein segment having length ∆s and located at x = s engenders a force

∆F (x, s) = G · Mmeter ·Msegment

r2
(10.20)
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on the prospector’s force meter. Here G is the gravitational constant, Mmeter is the meter’s own
mass, Msegment is the mass of the vein segment, and r is the distance between the prospector
and the segment. If we denote w(s) to be the (linear) density of gold in the vein, then

Msegment = w(s) ·∆s .

From the Pythagorean theorem and the above figure:

r2 = D2 + (s− x)2 .

For brevity, we denote
γ ≡ G ·Mmeter .

Now, the vertical component of this force is (see the figure):

∆µ(x, s) = ∆F (x, s) · cos θ = ∆F (x, s) · D√
D2 + (s− x)2

.

Finally, the total disturbance in the force ( c⃝ George Lucas) — the vertical one, that is —
equals:

µ(x) =
∑
all ∆s

∆µ(x, s) =

∫ smax

smin

γ · w(s)ds
D2 + (s− x)2

· D√
D2 + (s− x)2

=

∫ smax

smin

γDw(s)ds(√
D2 + (s− x)2

)3 , (10.21)

where smin and smax are the bounds of the interval where gold is expected to be found. The
prospector will collect the measurements µ(x) at a set of known locations x and will attempt
to reconstruct the gold density w(x) from those measurements.

10.4.2 Instability of the inverse problem for Equation (10.21)

We will now demonstrate that a straightforward attempt by the prospector at such a recon-
struction is doomed. A reasonable way to approach this reconstruction problem is to rewrite
the integral equation (10.21) as a matrix equation. To that end, we assume that the measure-
ments µ(x) are available at N locations xi, i = 1, . . . N , and discretize the integral in (10.21) as
a finite sum of N terms (see below as to why exactly N). We obtain:

µ(xi) =
N∑
j=1

wj ·
c(√

D2 + (xi − xj)2
)3 ; i, j = 1, . . . N , (10.22)

where wj = w(xj) and c = γD∆s. Equation (10.22) is a linear system of N equations for N
unknowns wj, and hence we expect that one should be able to solve it. For future reference,
we write it here in the standard general form:

Aw = µ , (10.23a)

where
Aij =

c(√
D2 + (xi − xj)2

)3 ,
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w =

 w1
...

wN

 , µ =

 µ1
...
µN

 .

We know that this linear system would not have a solution if A were singular, but there is
nothing in this model that would suggest that A is singular. Indeed, a singular matrix would
result if some of our measurements were linearly dependent on each other, but there is no reason
to suspect that this is the case in our problem.

So, the prospector writes a short code where he enters the above matrix A and a known
vector of measurements µ, and then solves (10.23a) as usual:

w = A−1µ . (10.23b)

He gets garbage — a very jagged profile of the gold density w(x) that defies common sense.
The prospector panics. He looks for an error in his code, but finds none. Then he thinks
the measurements he has collected were insufficient and goes and collects more of them. He
augments his matrix A and vector µ with those new entries and repeats the calculation (10.23b).
But the new results are even more jagged, and also have nothing in common with the previous
ones. What is going on?

To explain the qualitative reason behind this phenomenon, recall what we said in Note 2 at
the end of Section 3: The more the direct problem smoothens the data w(x), the more unstable
the inverse problem of reconstructing w(x) from µ(x) is. In the case of Eq. (10.2) with jagged

data r(t), the solution u(t) =

∫ t

0

r(t1)dt1 is smooth but has a jagged first derivative r(t). This

makes the inverse problem for Eq. (10.2) unstable. In the case of Eq. (10.19) with jagged data

w(t), the solution u(t) =

∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

w(tn)dtn and its first (n − 1) derivatives are

smooth, but the nth derivative (i.e. w(t)) is jagged. I.e., for the same jagged data r(t) = w(t),
the solution of (10.19) (with n > 1) is smoother than the solution of (10.2). This is what made
the inverse problem for (10.19) more unstable than the inverse problem for (10.2).

Now let us apply this logic to Eq. (10.21) and look at the derivatives of µ(x) when w(x)
is jagged. All of the derivatives of µ(x) are smooth, no matter how jagged w(x) is! Indeed,
consider the first derivative (for simplicity we set smin = 0 and smax = 1 in (10.21)):

dµ

dx
=

d

dx

∫ 1

0

γDw(s)(D2 + (x− s)2)−
3
2ds

=

∫ 1

0

γDw(s)
d

dx
(D2 + (x− s)2)−

3
2ds

=

∫ 1

0

γDw(s)
[
−3(x− s)(D2 + (x− s)2)−

5
2

]
ds . (10.24)

The function in the square brackets in the last line of (10.24) is continuous and bounded (i.e.,
does not have vertical asymptotes) for all x and s. Therefore, the integral in (10.24) exists
for all x, and therefore dµ

dx
is smooth, even if w(x) has jumps! (You will verify this in a

homework problem.) The same statement holds for d2µ
dx2 and all higher-order derivatives. Thus,

the integration in (10.21) has even stronger “smoothing power” than that in (10.19) with a
large but finite n. Therefore, the inverse problem for (10.21) should be even more unstable
than that for (10.19) (not to mention (10.2)). This is what the prospector discovered the hard
way.
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10.5 Instability of the inverse problem for Equation (10.21) from
the view point of matrix theory

Here we give an explanation of the instability of the inverse problem for the discretized equation
(10.21), i.e., Eq. (10.22). This will involve the familiar concepts of eigenvectors and eigenvalues
of a matrix.

Recall that a singular matrix in Linear Algebra is an analogue of a multiplicative zero for
scalars. For example, if A and B are two matrices and A is singular, then A · B is singular.
(The same statement holds for scalars a = 0 and b and their product a · b.) Thus, attempting
to solve a matrix equation Ax = b when A is singular is analogous to attempting to solve a
scalar equation 0 · x = b. Now, if one attempts to solve 10−6 · x = b, then x = 106 · b. As a next
logical step, consider two scalar equations:

10−6 · x = b and 10−6 · x = (b+∆b) , (10.25a)

where ∆b ≪ b. Obviously,

x = 106 · b and y = 106 · (b+∆b) ,

so that
(y − x) = 106 ·∆b . (10.25b)

Thus, even though the difference in the r.h.s of the two equations in (10.25) may be very small
(say, ∆b = 10−3), the corresponding solutions x and y will differ by a very large number.

Similarly to how a multiplicative zero is an analogue of a singular matrix, a very small
number is an analogue of an almost singular matrix. Using this analogy and Eqs. (10.25), one
can surmise that two matrix equations with an almost singular matrix A,

Ax = b and Ay = b+∆b , (10.26)

may have very different solutions x and y, even though the difference ∆b is small. This is indeed
the case, at least for a generic ∆b. A quantitative measure of how close a matrix is to being
singular is called the condition number of the matrix. The greater the condition number,
the closer to singular a matrix is. Matrices with very large condition numbers are called ill-
conditioned. The definition of the condition number is given in courses on numerical analysis;
it is also found in Section 5.1 of C. Groetsch’s book. There it is also derived (but you do not
have to follow that derivation) that, in the notations of Eq. (10.26),

||x− y||
||x||

≤ cond(A) · ||∆b||
||b||

. (10.27)

Here || . . . || denotes a norm (e.g., length) of vectors and cond(A) denotes the condition number
of A. Equation (10.27) says that the relative error in the r.h.s. vector b may be amplified by a
factor as large as cond(A). All major computing software have built-in algorithms for finding
the condition number of a matrix; e.g., Matlab’s command is simply cond(A).

Below we will derive an expression for the condition number of A in the special case where
A is symmetric (and real). In this case, as is proved in Linear Algebra, an N × N matrix A

is diagonalizable and has N orthogonal eigenvectors. Since we are considering a nonsingular
matrix A, none of its eigenvalues equals 0. Let these eigenvalues be arranged in the increasing
order of their absolute values:

0 < |λ1| ≤ |λ2| ≤ . . . ≤ |λN | ,
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and let v1, . . . vN be the corresponding eigenvectors. Consider Eq. (10.26) where b = vN and
∆b = ε · v1, with ε ≪ 1. Solving for x and y, one has:

x = A−1vN and y = A−1vN + εA−1v1 . (10.28)

Recall that if (λ, v) is an eigenpair of A, then (λ−1, v) is the corresponding eigenpair of A−1.
Then:

x =
1

λN

vN and y =
1

λN

vN +
ε

λ1

v1 ,

and hence

(y − x) = ε · 1

λ1

v1 .

Combining the last and first equations above, we have:

||x− y||
||x||

=
ε · 1

|λ1| ||v1||
1
λN

· ||vN ||
=

|λN |
|λ1|

·
||εv1||
||vN ||

=
|λN |
|λ1|

· ||∆b||
||b||

. (10.29)

Comparing the r.h.s.’s of (10.27) and (10.29), we can conclude that in the special case of a
symmetric (and hence diagonalizable) matrix A,

cond(A) =
|λN |
|λ1|

=
max |λ| of A
min |λ| of A

. (10.30)

For almost singular matrices, one expects that their minimum eigenvalues are close to zero:
|λ1| ≈ 0, and so cond(A) ≫ 1, as stated earlier. In a homework problem you will be asked to
illustrate the above derivation geometrically for a simple 2× 2 matrix.

To conclude this Lecture, let us look at the previous problems from the viewpoint of the
condition number of the matrices involved. Since such a matrix is already available for Eq.
(10.21), we comment on it first. The condition number of this matrix increases with N very
rapidly, as you will find out in a homework problem. Since that matrix is symmetric, you will
also be asked to verify that for it, Eq. (10.30) holds.

Now, to obtain a counterpart of matrix A for Eq. (10.30), we rewrite that equation as an
integral equation (integrating both parts of (10.2) and using the Fundamental Theorem of
Calculus):

u(t)− u(0) =

∫ t

0

r(t1)dt1 . (10.31)

Let the interval [0, tmax] be subdivided into N subintervals of length h = tmax

N
and the integral

in (10.31) for each t = tj = j · h, j = 1, . . . N , be computed using midpoint rectangles:

u1 − u0 = r1 · h
u2 − u0 = (r1 + r2) · h
u3 − u0 = (r1 + r2 + r3) · h (10.32)

etc. ,

where uj = u(tj) and rj = r(tj − h
2
).
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Then (10.32) can be written as a linear system:

1

h


1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0
...

. . .

1 1 1 1 · · · 1




r1
r2
r3
...
rN

 =


u1 − u0

...

...

...
uN − u0

 (10.33)

The matrix in (10.33) is not diagonalizable. (Indeed, all its eigenvalues equal 1, yet it is not
the identity matrix.) However, Matlab can still find its condition number. You will be asked
to find how it depends on N , in a homework problem.

Finally, we mention a relevant piece of nomenclature. Equations of the form (10.21), which
may be written as

µ(x) =

∫ b

a

K(x, s)w(s)ds , (10.34)

where µ(x) is known, a and b do not depend on x, K(x, s) is a continuous function called the
kernel, and w(x) is the unknown, are called Fredholm equations of the first kind. As we
have seen, the inverse problem for them is very unstable. Equations of the form (10.31) are
called Volterra equations; their main difference from (10.34) is that (at least) one limit of
integration depends on t. As we have seen, the inverse problem for them is only mildly unstable,
in the sense that the error in the reconstructed data r(t) can be minimized by a proper choice
of h. As a side note, we mention that there are also Fredholm equations of the second kind,
which have the form

µ(x) = w(x) +

∫ b

a

K(x, s)w(s)ds . (10.35)

The inverse problem for them can be shown (in a course on integral equations) to be stable.


