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11 Inverse Problems

Part II: Making the reconstructed solution smooth — the idea be-
hind the Tikhonov regularization

In the previous Lecture we saw that inverse problems for certain integral equations (see Section
5 of Lecture 10) are unstable, in the sense that the primordial data reconstructed from the
measurements can be very jagged and may have nothing in common with the true data. The
first example considered in Lecture 10 was the problem of differentiation (of a noisy function).
For it, we actually were able to ameliorate the instability. Our (partial) remedy consisted of
choosing the value for the discretization step h to be in a certain relation to the noise amplitude.
For the optimal choice hopt of the discretization step, the jaggedness of the reconstructed data
was small as long as the measurements’ noise was small.

In this Lecture we will seek an alternative method of smoothing the reconstructed data.
Our motivation here is that the method of Lecture 10 has (at least) two drawbacks. First,
if the measurements come from an experiment, the value of h is fixed by the experimental
setup (e.g., by how often the measurements are taken) and hence cannot really be optimized.
Even if it so happens that hopt is, say, close to 2hexperim, then a possibility would be to throw
away every other measurement record and base the reconstructed data on the remaining set.
Intuitively, however, this option is not appealing because the information thrown away may be
of some importance. Second, and more importantly, the method of Lecture 10 cannot be used
to ameliorate the instability of the “ultimately unstable” problem considered in Sections 4 and
5 of that Lecture. Therefore, an alternative method not having these two drawbacks, is needed.

We will introduce such a method using as a starting point the problem of differentiation of
a nonsmooth function. This new method belongs to a broad class of methods known as the
Tikhonov regularization. Then we will extend this technique to the “ultimately unstable”
problem of Lecture 10. In both cases, we will highlight the role of certain eigenvectors as the
“carriers of the instability”. Before we introduce the idea of Tikhonov regularization, we
need to review the elementary theory of constrained optimization using Lagrange multipliers.

11.1 Review of the constrained optimization problem; Lagrange
multipliers

Consider the following problem:
Find a local extremum of function f(x, y) under the constraint that x and y must satisfy

g(x, y) = c , (11.1)

where g(x, y) is some other known function and c is a given constant.
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The level curve defined by Eq. (11.1), i.e. the
curve where g(x, y) = c, is shown in the figure
on the left by a dashed line. Several level curves
f(x, y) = K for K1 < K2 < K3 < K4 < K5

are also shown in the figure by solid lines. The
solution to the problem in question is point A
where the level curves g(x, y) = c and f(x, y) =
K4 are tangent to each other.

Indeed, for K < K4, there exist solutions to the constraint equation (11.1) (e.g., points B and
C), but they do not maximize f(x, y). On the other hand, for K > K4, there are no solutions
to g(x, y) = c.

Now, at the common tangency point A, the normal vectors to both g(x, y) = c and f(x, y) =
K4 are parallel. From Calculus III you know that the normal vector to a curve is pointed along
the gradient

∇⃗f(x, y) ≡ ∂f

∂x
i⃗+

∂f

∂y
j⃗ ,

where i⃗ and j⃗ are the unit vectors along the x- and y-axes. Thus, the gradients ∇⃗f and ∇⃗g
at point A must be parallel, i.e. differ by a scalar factor:

∇⃗f = −ℓ∇⃗g . (11.2a)

Here ℓ is the aforementioned scalar, called Lagrange multiplier, and the minus appears just as
a matter of convention. Thus, we have three scalar equations:

∂f

∂x
+ ℓ

∂g

∂x
= 0 ,

∂f

∂y
+ ℓ

∂g

∂y
= 0 ,

(11.2b)

and the constraint equation (11.1), from which one can determine a finite number of solution
sets (x, y, ℓ). This method of finding a constrained optimum using Lagrange multipliers can be
generalized to the case of more variables and more constraints. For example, for the function
f(x1, . . . , xn) of n variables and for m ≤ n− 1 constraints

gk(x1, . . . , xn) = ck , k = 1, . . . ,m , (11.3)

the counterpart of Eq. (11.2a) is:

∇⃗f + ℓ1∇⃗g1 + . . .+ ℓm∇⃗gm = 0⃗ , (11.4)

where, similarly to the first equation on this page, the gradient vector is defined as:

∇⃗f ≡
⟨

∂f

∂x1

,
∂f

∂x2

, . . .
∂f

∂xn

⟩
.

Verify that the number of unknowns in Eqs. (11.3) and (11.4) equals the number of equations.



MATH 235, by T. Lakoba, University of Vermont 104

11.2 The idea of regularization for a problem of fitting a smooth
curve to nonsmooth data

Let ûi, i = 1, . . . , N , be experimental data scat-
tered about an unknown smooth curve u(t)
within a measurement error of ±ε. For sim-
plicity, we assume that the measured points are
evenly distributed along t : ti+1−ti = h. A task
that a researcher often faces is to approximate
the derivative of the unknown curve u(t).

We, however, will be concerned only with finding a smooth curve u(t) that is within the ex-
perimental error of the measurements ûi. Once such a curve is obtained, then numerically
differentiating it is a straightforward matter; see Eq. (10.5) of Lecture 10.

The condition that u(t) not deviate from the ûi’s by more than ε reads as:

max
1≤i≤N

|u(ti)− ûi| ≤ ε . (11.5)

However, we will require a slightly weaker condition:

1

N

N∑
i=1

(u(ti)− ûi)
2 ≤ ε2 , (11.6)

which is easier to analyze than (11.5).
In Linear Algebra, you may have studied a deceptively similar problem:

Find the best least-squares fit to a given set of points, such that

N∑
i=1

(u(ti)− ûi)
2 = min . (11.7)

Above, we said ‘deceptively similar’, because one may think that in our problem we want to
minimize the l.h.s. of (11.6). However, this is not the case! Let us now explain why problem
(11.7) is not related to what we want to do with inequality (11.6). Then we will explain which
problem we actually will solve and how it is related to the constrained minimization problem
considered in Section 1.

One obvious difference between the least-squares problem (11.7) from Linear Algebra and
our inequality (11.6) is that the r.h.s.’s of these relations look different. A more profound
difference is that in (11.6), one does not know the functional form of u(t), while in the least-
squares problem (11.7) such a form is assumed (usually, as some polynomial of t). Therefore,
we need some additional condition to determine the u(t) in (11.6). Above, we have said that
this u(t) should be smooth. This requirement of smoothness of u(t), put into a mathematical
form, will be the cornerstone of our constrained minimization problem.

Let us emphasize a very important point: the requirement that u(t) be smooth does not

in any way follow from the measurements. It is an arbitrary requirement that we want to im-
pose based either on some common sense or on our intuitive understanding of the solution’s
behavior. Therefore, the “truthfulness” of the solution that we will obtain depends on how well
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we can guess the smoothness criterion. This is a fundamental limitation of the regularization
method, but this is also the best one can do given the uncertainty that exists in finding a
smooth u(t) in this problem.

We now proceed with a mathematical formulation of the regularization technique. Let the
measure of smoothness of u(t) be represented by a condition

Q[u] = min , (11.8)

where Q[u] is some nonnegative functional of u(t). A functional of a function u(t) is a scalar
number that is not a function of t but that in some way (partially) accounts for the dependence
of u on t. E.g., any of the following:

max
0≤t≤tmax

|u(t)| ;
∫ tmax

0

u(t)dt ;

∫ tmax

0

(u′(t))2dt ; Au(0) +Bu(tmax/3)

is a functional of u(t). Similarly, when u = (u1, . . . , uN)
T is a finite-length vector, the corre-

sponding functionals are:

max
1≤i≤N

|ui| ;
N∑
i=1

ui ;
N−1∑
i=1

(
ui+1 − ui

h

)2

; Au1 +BuN/3 .

What functional Q[u] is it meaningful to take in our problem? Intuitively, a smooth function
probably does not have sharp turns or wiggles, i.e., sections with large curvature. Curvature is
proportional to the second derivative of a function. Therefore, as a plausible condition, we will
require that the mean square of u′′(t) be minimized:∫ tmax

0

(u′′(t))2dt = min . (11.9)

Again, let us emphasize that this condition does not follow from the measurements and was

arbitrarily postulated based solely on our idea of what we expect the solution u(t) to be.
Thus, the problem we consider is:

Find the minimum of

Q[u] =

∫ tmax

0

(u′′(t))2dt (11.10)

subject to the constraint (11.6).
This is not yet exactly the constrained minimization problem considered in Section 1 because
(11.6) is an inequality rather than an equation, like (11.1). However, it can be shown (see
“Problem I” on p. 514 in the posted article by M. Hanke and O. Scherzer) that unless u(t)
happens to be a straight line, then condition (11.6) must be satisfied with the “ = ” sign, not
with the “ ≤ ”. Then, (11.6) becomes:

N∑
i=1

(u(ti)− ûi)
2 = Nε2 . (11.11)

Now our problem has exactly the form of the constrained minimization problem considered
in Section 1: The quantity that we minimize, i.e. the counterpart of function f(x1, x2, . . . , xn),
is given by the l.h.s. of Eq. (11.9), while the constraint equation (the counterpart of (11.3)
with m = 1) is given by Eq. (11.11). The role of unknowns, which we want to solve for, is
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played by ui ≡ u(ti), i = 1, . . . , N . Therefore, the solution u(t) of our problem must satisfy
(11.11) and also a counterpart of Eq. (11.2) (or (11.4) with m = 1):

∂

∂ui

[
α

∫ tmax

0

(u′′(t))2dt+ h
N∑
i=1

(ui − ûi)
2

]
= 0, (11.12)

where we have denoted α = 1/ℓ. For the convenience of subsequent calculations, we in-
cluded the factor h in front of the second term to make it look like a discretized version

of

∫ tmax

0

(u(t)− û(t))2 dt. Before proceeding to explain how to solve the combined problem

(11.11) and (11.12), let us explain the reason behind the rescaling α = 1/ℓ.

The size of α determines which term in (11.12),∫ tmax

0

(u′′(t))2dt or h
N∑
i=1

(ui − ûi)
2,

we assign more significance to. Our primary goal is to have the curve u(t), and hence the points
ui ≡ u(ti) on it, to be representative of the measured data points ûi. This is expressed by
condition (11.11). On the contrary, the other condition, (11.9), was postulated by us somewhat
arbitrarily, i.e. based on our expectation about the smoothness of u(t) but not on the actual
measurements. Therefore, it makes sense to assign more significance to the second term in
(11.12) than to the first one. Mathematically, we assign more significance to (11.11) than to
(11.9) if we take α in (11.12) to be small. (If α = 0, then we would simply ignore our postulated
condition (11.9).) It is simply the matter of convention to assign more significance to a term
(the second term in (11.12) in this case) by multiplying the other term (the first one in (11.12))
by a small number, rather than multiplying the former term by a large number ℓ = 1/α.

The next issue that we need to address is how to solve the combined problem (11.11) and
(11.12). The difficulty here is in the necessity to solve Eq. (11.11), because it is nonlinear,
whereas Eq. (11.12) is, as we will see later, linear. A common way to resolve this issue is to
omit Eq. (11.11) and consider only Eq. (11.12) where one picks a value for α and verifies
aposteriori whether the resulting solution satisfies the original inequality (11.6). So, this is
how we will proceed: we will consider only Eq. (11.12) with a small α, with the idea that a
verification of inequality (11.6) can be done aposteriori. (As a side note, we mention that a
computational algorithm of solving both (11.11) and (11.12) was developed in the paper by C.
Reinsch posted on-line. However, understanding that algorithm requires nontrivial effort.)

We now need to rewrite the integral term in (11.12) in such a form that it would explicitly
depend on ui and hence we could take the derivative ∂/∂ui. We employ the finite-difference
approximation for u′′(t) (see Eq. (9.4) of Lecture 9 and Eq. (10.15) of Lecture 10), which is
fairly accurate when u(t) is smooth. Then, for any of the inner points:

u′′(ti) ≈
ui+1 − 2ui + ui−1

h2
, 2 ≤ i ≤ N − 1 . (11.13)

For the endpoints, we arbitrarily postulate that

u′′(t2) = u′′(tN−1) = 0 . (11.14)

(Other choices of conditions at the endpoints do not qualitatively change the final result as
long as N is sufficiently large.) Equations (11.14) and (11.13) yield two conditions on u1 and
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uN :

u′′(t2) = 0 ⇒ u1 = 2u2 − u3

u′′(tN−1) = 0 ⇒ uN = 2uN−1 − uN−2 . (11.15)

Therefore, the endpoints u1, uN should be considered as known once the remaining unknowns
u2, . . . , uN−1 will have been determined. Then Eqs. (11.13), (11.14) can be written in matrix
form for these unknowns:

u′′(t2)
u′′(t3)
u′′(t4)

...
u′′(tN−2)
u′′(tN−1)


≈ 1

h2



0 0 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 0 0





u2

u3

u4
...

uN−2

uN−1


, (11.16a)

or, equivalently,
u′′ ≈ −Hu , (11.16b)

where (−H) is the matrix appearing in (11.16a). The integral in (11.12) can then be written
as a finite sum: ∫ tmax

0

(u′′(t))2dt ≈ h
N−1∑
i=2

(u′′(ti))
2 = h (u′′)Tu′′

= h · (−Hu)T · (−Hu) = huT (HTH)u . (11.17)

Next, the finite sum term in (11.12) can be rewritten as:

N−1∑
i=2

(ui − ûi)
2 + (u1 − û1)

2 + (uN − ûN)
2 . (11.18)

In principle, one can carry on the calculations with expression (11.18) while using Eqs. (11.15)
for u1 and uN . However, as we noted already, the endpoints contribute little compared to the
sum of the inner (N − 2) terms, and hence for simplicity we omit the last two terms in (11.18).
Then

N∑
i=1

(ui − ûi)
2 ≈

N−1∑
i=2

(ui − ûi)
2 ≡ (u− û)T (u− û) . (11.19)

Substituting (11.17) and (11.19) into (11.12), we obtain:

∂

∂ui

[
αuT (HTH)u+ (u− û)T (u− û)

]
= 0 . (11.20)

To perform the ∂/∂ui operation, we will write this equation as a linear system. Since the first
term in (11.20) has the form

uTMu

where M = αHTH. For future use we note that, as shown in elementary Linear Algebra, such
a matrix is always symmetric, i.e. MT = M . We will now calculate

∂

∂ui

uTMu . (11.21a)
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Using the definition of matrix multiplication, we rewrite this further as

∂

∂ui

(
N−1∑
k=2

uk

N−1∑
m=2

Mkmum

)
. (11.21b)

In the double sum in (11.21b), we need only the terms that contain ui, because ∂uj/∂ui = 0
for j ̸= i. There are two such terms: with k = i and m = i. Then:

∂

∂ui

(
uTMu

)
= 1 ·

N−1∑
m=2

Mimum +
N−1∑
k=2

ukMki · 1

=
N−1∑
k=2

Mikuk +
N−1∑
k=2

ukMki

=
N−1∑
k=2

(Mik +Mki)uk = (M +MT )u . (11.22)

In particular, if M is symmetric, as it is in our case, then

∂

∂ui

(uTMu) = 2Mu . (11.23)

Using this result, one transforms Eq. (11.20) into:

(u− û) + α · (HTH)u = 0 , (11.24a)

or, equivalently,
(I + α · (HTH))u = û . (11.24b)

Recall that α is an empirically selected (small) parameter and H is defined in Eq. (11.16). As
we have discussed, the choice for neither α nor H is unique but depends on our understanding
of what the solution u should look like. In practice, experimentation may be needed to find
values of α and a form of H that yield a “reasonable” u.

Equation (11.24) is the main result of this section. It highlights the key idea of the
Tikhonov regularization, which is the following. Consider a matrix equation

Aw = µ , (11.25)

where, as before, µ is the known vector of measurements and the solution w needs to be
reconstructed from (11.25). (In the particular case of Eq. (11.24b), µ = û, w = u, and A = I.)
If this reconstruction problem produces a jagged solution w, consider also a different problem:

(A+ αB)wα = µ , (11.26)

where B is some matrix such that the solution wα of (11.26) is, in some sense, smooth. An
optimal (range of) value(s) of α is determined by two conditions. On one hand, wα is not too
different from the true solution of the original problem (11.25) (or, actually, from our guess of
what that “true” solution should be). On the other hand, wα must be smooth. In practice,
satisfying both of these conditions requires that “α be small, but not too small”.

In the next Section we will discuss how this rather vague statement can be related to the
eigenvectors of matrix A that “are responsible” for the jaggedness of the solution w.
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11.3 Eigenvectors as “carriers of the instability”

Here we will explain why the solution u of Eq. (11.24b) can be smoother than the original
measurements vector û. Before we begin, however, we will slightly modify matrix H, so as to
simplify the calculations and not to obscure the main idea by minor technical details. Namely,
instead of

H =
1

h2


0 0 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0

. . .

0 0 0 . . . −1 2 −1
0 0 0 . . . 0 0 0

 ,

as given by Eq. (11.16), we will consider

Hmod =
1

h2


3 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0

. . .

0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 3

 , (11.27)

which is different from H only by the “near-boundary” entries in the first and last rows. The
reasons for this modification are as follows.

(i) Unlike H, Hmod is symmetric, and hence for the matrix product appearing in (11.24),

HT
modHmod = H2

mod ;

(ii) It will be easy to identify an eigenvector of Hmod that will play a crucial role in our
analysis.

For a practically important case when the number of measurements N is large, it is also
intuitively clear that modifying the behavior of u just at the endpoints will not significantly
affect the “bulk” of u. Moreover, we have already made an assumption (see Eq. (11.14)) and an
approximation (see Eq. (11.19)) concerning the endpoints of u, so another such approximation
will not qualitatively affect our results.

Thus, proceeding with Hmod instead of H, we have a modified Eq. (11.24b):

(I + αH2
mod)u = û . (11.28)

Next, any (N − 2)-vector is an eigvenvector of the (N − 2)× (N − 2) identity matrix I, so in
this particular case we will expand the r.h.s. of (11.28) into a linear combination of the (N −2)
eigenvectors of the symmetric matrix Hmod:

û =
N−2∑
j=1

bjvj , where Hmodvj = λjvj . (11.29)

(However, in the general case of Eq. (11.26), the expansion must be over the eigenvectors
of A, not B.) We then solve (11.28) for u:

u = (I + αH2
mod)

−1û

=
N−2∑
j=1

bj(I + αH2
mod)

−1vj =
N−2∑
j=1

bj

1 + αλ2
j

vj , (11.30)
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where we have used the fact that the eigenvectors of any function f(Hmod) are also vj, with the
corresponding eigenvalues being f(λj).

Let us now recall what we want to do: We want to obtain a vector u representing a smooth
curve, given that the measured vector û contains some experimental noise. In Sections 1 and
3 of Lecture 10, we saw that the “worst” profile of noise that causes the largest error in the
numerically calculated derivative is the ripple of the form:

Note that this is the fastest ripple that it is experimentally possible to measure with a given
discretization step h. Can one represent this worst-case ripple as a linear combination of the
eigenvectors vj, so as to analyze its transformation given by Eq. (11.30)? The answer turns
out to be remarkably simple: this ripple is the eigenvector vN−2 with the largest eigenvalue

λN−2. We will now show that this is the case and then explain why having the term αH2
mod in

Eq. (11.26) smoothens the solution u.
For simplicity, let us assume that N is even. (For an odd N the calculations are similar and

the conclusion is the same.) Then the aforementioned ripple is:

(
fastest
ripple

)
= ε



1
−1
1

−1
...
1

−1


. (11.31)

It is then a straightforward matter to verify (do it) that

Hmod ·
(

fastest
ripple

)
=

4

h2
·
(

fastest
ripple

)
, (11.32)

which confirms our assertion about the fastest ripple being an eigenvenctor of Hmod. We have
not yet shown that it is the eigenvector vN−2 with the largest λ = λN−2. This follows from the
fact (which in this course you have to accept on faith) that for symmetric matrices related to
the operation of second derivative, the eigenvectors corresponding to larger eigenvalues have
a greater number of zero crossings; note that the ripple in question has the largest possible
number of such crossings. Then it follows from (11.32) that

λN−2 =
4

h2
; (11.33)

compare this with a similar term in Eq. (10.17) of Lecture 10. Now, substituting (11.33) into
the last term in the sum in Eq. (11.30), we find that the corresponding expansion coefficient is:

ε

1 + α

(
4

h2

)2 . (11.34)
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When α = 0, this coefficient equals ε, i.e. this ripple in u is the same as in û (which is not
surprising given that for α = 0, u = û). However, when

α ≪ 1 , (11.35a)

but

α ·
(

4

h2

)2

≫ 1 , (11.35b)

the denominator in (11.34) is large, and hence the overall coefficient of the ripple term is
greatly reduced. This is the mechanism that suppresses the experimental noise of û and
makes the solution u of (11.26) smooth. In a homework problem you will verify that a similar
suppression also takes place for the eigenvector with the second-largest eigenvalue. Note that
the strong inequalities in (11.35a) and (11.35b) are compatible with one another because for
a small discretization step h, the number (4/h2) ≫ 1. Also, given Eq. (11.33), conditions
(11.35a,b) can be written as

1

max(|λ|2)
≪ α ≪ 1 , (11.35c)

which is a quantitative form of the statement from the end of Section 2 that “α must be small,
but not too small”.

Let us now summarize the main findings of this Section. First, we identified the ripple
profile in the measurements û that causes the largest error in the numerical approximation
to the derivative of û. Second, we related that particular ripple with the eigenvectors of the
“smoothing matrix” H2

mod. (As we have noted, in the general case, the eigvenvectors must be
those of the other matrix, A in Eq. (11.26).) One can say that we looked for a “carrier of
the instability” in the differentiation problem, similarly to how a doctor is looking for a carrier
of the disease. Third, we showed the mechanism by which this “instability carrier” can be
strongly suppressed in the solution of Eq. (11.26). Fourth and last, we determined the range,
Eq. (11.35c), for the smoothing parameter α. In the next Section, we will follow similar steps
to develop a regularization technique for the “ultimately unstable” problem of Lecture 10.

11.4 The Tikhonov regularization for Fredholm integral equations
of the first kind

In Section 4 of Lecture 10 we showed that the matrix equation (11.25), i.e.

Aw = µ , (11.25)repeated

obtained by the discretization of the integral equation∫ 1

0

γD · w(s)ds(√
D2 + (x− s)2

)3 = µ(x) , (11.36)

had an extremely jagged solution w even when µ was smooth. We determined that a reason for
such an unstable behavior was an extremely large condition number of the matrix A in (11.25).
Because of this (see Eq. (10.27) in Lecture 10), a tiny error (ripple) in the measured vector µ
results in a humongous error in the solution w.

We then showed that for symmetric matrices, which A in this problem is,

cond(A) =
max(|λ|)
min(|λ|)

. (11.37)



MATH 235, by T. Lakoba, University of Vermont 112

This number can be large either because max(|λ|) is large or because min(|λ|) is small. Accord-
ingly, either the eigenvector with the largest eigenvalue or that with the smallest eigenvalue will
be the “instability carrier” and will need to be kept at bay in order to stabilize the problem
i.e., to make the solution w “smooth”. We have taken the word ‘smooth’ in quotes because it
will turn out to mean a different thing than the ‘smooth’ in Section 2. We will elaborate on
this later in this Section, and you will explore it further in a homework problem.

Thus, we first need to look at the size of the eigenvalues of A. Those eigenvalues which are
either extremely small or extremely large are the most likely “trouble makers”. Once we have
these “suspects”, we then verify our suspicion by looking at the shapes of the corresponding
eigenvectors. Indeed, you know from a Problem in Homework 10 that the humongous error
in solving the “ultimately unstable” problem (11.36) has a very jagged shape. Therefore, we
expect that the “trouble making” eigenvectors will have a jagged shape, too.

With Matlab one can easily verify that for 5 ≤ N ≤ 16, an eigenvalue λj of the matrix A in
question has the order of magnitude O(10−(N−j)), where N is the dimension of vectors µ and
w and the eigvenvalues are arranged as before:

0 < λ1 < λ2 < . . . < λN .

(For N > 16, the smallest eigvenvalues are at or below the Matlab’s accuracy of 10−16.) In a
homework problem, you will verify that the shape of the eigenvectors corresponding to a few
smallest eigenvalues looks like a very fast ripple. Thus, it is these eigenvectors, corresponding
to the smallest eigvenvalues, that need to be controlled in this problem12.

To see why the most rapidly varying eigenvectors have the smallest eigenvalues in this
problem, recall that in the original non-discretized form, the eigenvectors satisfy the integral
equation ∫ 1

0

γD

(
√
D2 + (x− s)2)3

· vj(s)ds = λjvj(x) , λj ≪ 1 .

Also recall that the integral of a fast ripple is a small number (see Section 4 of Lecture 9
and Problem 1c in HW 9). In a homework problem, you will verify that the shape of v1 is
qualitatively similar to that of the worst-case ripple shown after Eq. (11.30).

We will now follow the lines of the analysis in Sections 2 and 3. However, as it will turn
out, our goal here will be more modest: Rather than suppressing the eigenvectors with λj ≪ 1,
we will merely need not to amplify them “too much”. The meaning for this vague criterion
will be given later. So, in place of Eq. (11.25), we consider Eq. (11.26) where now we do not
specify the form of matrix B but, only to simplify the calculations and not to obscure the key
idea with technical details, we ask that A and B have a common set of eigenvectors with

Avj = λjvj and Bvj = βjvj . (11.38)

For a practical implementation of regularization, such an assumption is not needed. Now,
similarly to Eqs. (11.29) and (11.30), we expand µ over the set of the N eigenvectors of A and
solve Eq. (11.26) for wα:

wα = (A+ αB)−1µ =
N∑
j=1

mj

λj + αβj

vj ; (11.39)

12Was this also the case in Sec. 11.3? You will explore this further in a homework problem.
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here mj are the expansion coefficients of µ. Note that when µ is smooth, these expansion
coefficients corresponding to fast-oscillating eigenvectors (like v1) are very small, i.e.

mj ≪ 1 for the first few j (j >∼ 1) . (11.40)

Indeed, if they were not small, one would have seen a fast ripple in a smooth vector µ, which
would have been a contradiction of terms.

When in Eq. (11.39) α = 0, the first few terms with λj = O(10−(N−j)) ≪ 1 are very large
unless mj ≪ λj. Thus, the observed enormous amplification of a small ripple was due
to the small denominators in Eq. (11.39). Now, let us take α such that

αβj ≫ mj for the first few j (j >∼ 1) (11.41a)

but at the same time,
αβj ≪ λj for the last few j (j <∼ N) . (11.41b)

Combining the last two inequalities, we obtain a counterpart of condition (11.35c) for the
Tikhonov regularization of Fredholm integral equations of the first kind:

m1 ≪ αβ1 and αβN ≪ λN . (11.41c)

Note that a small ripple in µ is still likely to be amplified in the reconstructed vector w, because
αβj may be less than 1. However, thanks to (11.41a), it will not be amplified as much so as
to overshadow the smooth solution. This is the key point of the Tikhonov regularization for
Fredholm integral equations of the first kind, like Eq. (11.36).

To conclude this Lecture, we comment on a couple of possible choices for matrix B. The
simplest choice is, surprisingly, B = I, the identity matrix. In this case, Eq. (11.39) becomes:

wα = (A+ αI)−1µ =
N∑
j=1

mj

λj + α
vj . (11.42)

(Note that B = I would not work for the problem considered in Sections 2 and 3. Why?) For
this simplest choice, we also can give an explanation of the regularization technique in terms
of the condition number of matrix (A+ αI). First, we have:

cond(A+ αI) =
λmax + α

λmin + α
<

λmax + α

α
≪ λmax

λmin

,

provided that α ≫ λmin. Under this condition,

cond(A+ αI) ≪ cond(A) . (11.43)

Recall that in Section 5 of Lecture 10, we showed (see (10.27)) that the relative error of the
solution x of Mx = b is proportional to cond(M). Therefore, the vector wα of (11.26)
(with B = I), obtained by inverting the matrix (A+αI), is much less sensitive to small, but in
practice unavoidable, errors in µ than the vector w of (11.25), obtained by inverting the matrix
A. Also, as long as α ≪ λmax, then matrix (A+αI) is not “too far” from the original matrix A.
Then the expansion coefficients mj/(λj + α) of vector wα corresponding to the eigenvectors
with the larger λj are not “too different” from the respective expansion coefficients mj/λj of
the “original” vector w. Thus, to summarize this discussion of the case B = I, we can state
that a condition

λmin ≪ α ≪ λmax (11.44)



MATH 235, by T. Lakoba, University of Vermont 114

may be considered as a weaker counterpart of condition (11.41c) when B = I. The part
of (11.44) that is weaker than the corresponding part of (11.41c) is the left-hand inequality.
Indeed, the left-hand strong inequality in (11.41c) guarantees that the amplitude of the fast
ripple in wα will be small (why?). In contrast, the left-hand strong inequality in (11.44)
only guarantees that the fast ripple in wα will be much smaller than that in w, although not
necessarily small (again, why?).

The regularization (i.e. the smoothing of the ripple in the solution w) can be made more
efficient if the “smoothing matrix” B amplifies the first few eigenvectors, like v1, v2, . . ., more
than the remaining ones. This will make

cond(A+ αB) < cond(A+ αI) (11.45)

and will further reduce the instability of the original problem (11.25). For example, if in (11.38)

β1 > 1 > βN , (11.46)

then

cond(A+ αB) =
λN + αβN

λ1 + αβ1

<
λN + α

λ1 + α
= cond(A+ αI) ,

which is precisely the inequality (11.45). You will verify this in a homework problem by taking
B = Hmod from Eq. (11.27). Even though this B does not have the same eigenvectors as the
matrix A obtained by the discretization of (11.36), the results of the above analysis will still
hold qualitatively.


