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12 Non-diagonalizable matrices: What can matter

beyond eigenvalues and eigenvectors

12.1 Preliminaries

In the previous two Lectures and also in Lecture 5, we highlighted the important roles played
by the eigenvalues and eigenvectors of a matrix in various applications. In this Lecture we
will have a brief encounter with matrices for which eigenvalues and eigenvectors do not carry
all the relevant information about the underlying problem. These are non-diagonalizable
matrices, for which the number of linearly independent eigenvectors is less than the dimension
of the matrix. In such a case, the eigenvectors alone cannot form a basis in the corresponding
vector space and hence cannot fully describe the behavior of the solution. One requires so-
called generalized eigenvectors to complete the set of the eigenvectors to a basis. In certain
situations, it is the behavior of those generalized eigenvectors rather than that of “regular”
eigenvectors that determines the behavior of the solution.

Let us now discuss how common (or uncommon) non-diagonalizable matrices are. More
precisely, we do not mean to discuss here specific applications where such matrices occur.13

Rather, we will consider the following issue. First, let us note that a matrix

N =

(
1 1
0 1

)
is not diagonalizable. (Indeed, both its eigenvalues equal 1, yet it is not the identity matrix.)
But matrices

Nϵ,1 =

(
1 1
ϵ 1

)
and Nϵ,2 =

(
1 1
0 1 + ϵ

)
,

which are just some slight perturbations of N , are diagonalizable. Then it may seem that
studying properties of non-diagonalizable matrices is not worth one’s while because by just
slightly perturbing those matrices, one would obtain diagonalizable matrices. However, many
properties of diagonalizable matrices obtained as slight perturbations of non-diagonalizable
matrices are still close to the properties of the primordial non-diagonalizable matrices.
You will explore this in a homework problem. Thus, understanding peculiar properties of non-
diagonalizable matrices should help one to understand the behavior of matrices (diagonalizable
or not) that are, in some sense, close to non-diagonalizable ones.

As a piece of nomenclature, let us note that non-diagonalizable matrices give an ultimate
example of so-called non-normal matrices. The definition of a normal (and real-valued)
matrix, M, is that it commutes with its transpose:

M is normal ⇔ MMT = MTM.

Clearly, any real symmetric matrix is normal. Any normal matrix is diagonalizable. Moreover,
eigenvalues and eigenvectors of a normal matrix M provide complete information for the
large-n behavior of a product Mnx.

On the other hand, not all non-normal matrices are non-diagonalizable, but, vice versa,
all non-diagonalizable matrices are non-normal. Also, any matrix that is in some sense close

13One example, concerning matrix (12.16), is given below. Many more examples and references can be
found, e.g., in the book “Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators”
by Lloyd N. Trefethen and Mark Embree (Princeton University Press, 2005) or in its accompanying website
http://web.comlab.ox.ac.uk/pseudospectra/.
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to a non-diagonalizable matrix is also non-normal. For example, both matrices Nϵ,1 and Nϵ,2

shown above are non-normal. In this lecture we will use both names, ‘non-normal’ and ‘non-
diagonalizable’. Many examples and applications of non-normal matrices are found in a defini-
tive book by Trefethen and Embree cited in the footnote on the previous page. In this short
lecture, we will only show that eigenvalues of a non-normal matrix N may bear no relation to
the large-n behavior of N nx.

12.2 2× 2 case

Consider a matrix

A =

(
λ a
0 λ

)
, a ̸= 0 , (12.1)

whose doubly-repeated eigenvalue is λ and whose only eigenvector can be easily computed to
be

v1 =

(
1
0

)
.

Since there is no second linearly independent eigenvector of this matrix, it is not diagonalizable,
and hence is non-normal. Suppose we still want to use a basis in R2 that contains eigenvector
v1. Then an intuitively appealing second member of the basis is

u =

(
0
1

)
,

even though it is not an eigenvector of A.
Let us compute Au:

Au =

(
a
λ

)
= a

(
1
0

)
+ λ

(
0
1

)
, (12.2a)

or, equivalently,
Au = av1 + λu . (12.2b)

Note that the multiplication of u by A leads not only to the term λu, which would be typical
of a true eigenvector, but also to an extra term const · v1. A vector u satisfying Eq. (12.2b)
is called a generalized eigenvector of A.

Next, to establish a formula for Anu, first compute A2u and A3u:

A2u = A(Au) = A(av1 + λu)

= aλv1 + λ(av1 + λu)

= 2aλv1 + λ2u .

(12.3a)

A3u = A(A2u) = 2aλ · Av1 + λ2 · Au
= 2aλ2v1 + λ2(av1 + λu)

= 3aλ2v1 + λ3u .

(12.3b)

From these calculations, the general pattern transpires:

Anu = naλn−1v1 + λnu . (12.4)

Above, we have proved it for n ≥ 1. In a homework problem you will use a similar method to
prove Eq. (12.4) for n < 0.
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From Eq. (12.4) we can make the following observation. As we noted earlier, the eigenvalues
for the matrix A given by Eq. (12.1) do not fully characterize the long-time (i.e., the large-
n, where n is defined in (12.4)) behavior of a system described by A, contrary to what was
the case for the matrices in Lecture 5. Indeed, suppose λ = 1. For any of the matrices
considered in Lecture 5, this would mean that as n → ∞ and for the generic initial vector v,
Anv → 1n · v1 = v1. In particular, for the matrices of Lecture 5, Anv would remain bounded
(i.e., would not grow) for all n. In contrast, for the matrix A given by Eq. (12.1), Anv for a
generic v will have a component that grows with n: see the first term on the r.h.s. of (12.4).
This growth, however, is only linear in n rather than exponential, as in λn.

12.3 3× 3 and M ×M cases

First, consider a matrix

A =

 λ a 0
0 λ a
0 0 λ

 , a ̸= 0 . (12.5)

Again, it has only one eigenvector,

v1 =

 1
0
0

 ,

corresponding to the triply-repeated eigenvalue λ. As in Section 1, let us augment this vector
to a basis in a straightforward way, taking the other basis vectors to be

u1 =

 0
1
0

 and u2 =

 0
0
1

 , (12.6)

and consider Au1 and Au2:

Au1 =

 a
λ
0

 = av1 + λu1 , (12.7a)

Au2 =

 0
a
λ

 = au1 + λu2 . (12.7b)

Vectors u1 and u2 satisfying Eqs. (12.7), which are the counterparts of Eq. (12.2b), are called
the first and second generalized eigenvectors of A, respectively.

Next, to establish the patterns for Anu1,2, first perform explicit calculations for n = 2 and
3:

A2u1 = A(av1 + λu1) = aλv1 + λ(av1 + λu)

= 2aλv1 + λ2u1 ;
(12.8a)

A2u2 = A(au1 + λu2) = a(av1 + λu1) + λ(au1 + λu2)

= a2v1 + 2aλu1 + λ2u2 .
(12.8b)

A3u1 = A(2aλv1 + λ2u1) |similarly to (12.3b) = 3aλ2v1 + λ3u1 ; (12.9a)
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A3u2 = A(a2v1 + 2aλu1 + λ2u2)

= a2λv1 + 2aλ(av1 + λu1) + λ2(au1 + λu2)

= 3a2λv1 + 3aλ2u1 + λ3u2 .

(12.9b)

The pattern for Anu1 is the same as in Section 1. In particular, the coefficient of v1 is n aλn−1;
see (12.4). However, in the expression for Anu2, it is still unclear what is happening with the
coefficient of v1. To find out, we extend our calculations to two more powers of A, i.e. A4u2

and A5u2:

A4u2 = 3a2λ · Av1 + 3aλ2 · Au1 + λ3 · Au2

= 3a2λ2v1 + 3aλ2(av1 + λu1) + λ3(au1 + λu2)

= 6a2λ2v1 + 4aλ3u1 + λ4u2 ;

(12.10a)

A5u2 = 6a2λ2 · Av1 + 4aλ3 · Au1 + λ4 · Au2

= 6a2λ3v1︸ ︷︷ ︸+4aλ3(av1︸ ︷︷ ︸+λu1) + λ4(au1 + λu2) .
(12.10b)

Instead of completing the summation in (12.10b), let us focus on the two terms with under-
braces, since it is their coefficient whose form we want to guess. Let cn · a2λn−2 be this
coefficient of v1 in the expression for Anu2. Then from (12.10b) we can conclude that

cn+1 = cn + n , (12.11a)

where the ‘+n’ comes from the fact that the coefficient of v1 in Anu1 is n ·aλn−1. Note that the
pattern (12.11a) is consistent with (12.10a) and (12.9b). In addition, from (12.7b) and (12.8b)
we have that

c1 = 0 . (12.11b)

From both of Eqs. (12.11), one has:

cn+1 = cn + n = (cn−1 + (n− 1)) + n = . . .

= c1 + 1 + 2 + . . .+ n =
n(n+ 1)

2
. (12.12)

Finally, from (12.9b), (12.10), and (12.12) we conclude that

Anu2 =
(n− 1)n

2
a2λn−2v1 + naλn−1u1 + λnu2 . (12.13)

Compare this with the formula (12.4). (For this comparison, it may be helpful to write, on one
side of a page, Eqs. (12.7a) and (12.4), and on the other, Eqs. (12.7b) and (12.13).)

An important point to note about formula (12.13) is that Anu2 has a term whose behavior
for large n is:

n(n− 1)

2
a2λn−2v1 = O(n2) · a2λn−2 · v1 . (12.14)

Now, as in the last paragraph of Section 1, suppose λ = 1. Then for the generic initial vector
v, Anv will grow as O(n2). This, again, should be contrasted with the behavior of Anv if A
were a normal (e.g., symmetric) matrix with λ = 1.
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Generalizing the above calculations for the 2 × 2 and 3 × 3 non-diagonalizable matrices
(12.1) and (12.5), consider an M ×M non-diagonalizable matrix

A =



λ a 0 0 . . . 0 0
0 λ a 0 . . . 0 0
0 0 λ a . . . 0 0
...

...
0 0 0 0 . . . λ a
0 0 0 0 . . . 0 λ


, a ̸= 0 . (12.15)

An example of such a matrix is

A =



1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
0 0 1 −1 . . . 0 0
...

...
0 0 0 0 . . . 1 −1
0 0 0 0 . . . 0 1


, (12.16)

which occurs when one writes the familiar formula

u′(tj) ≈
u(tj+1)− u(tj)

h
(12.17)

in matrix form:
u′(t1)
u′(t2)

...
u′(tM−1)
u′(tM)

 ≈ −1

h


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1




u1

u2
...

uM−1

uM

 . (12.18)

(In (12.18), we have arbitrarily set u′(tM) = − 1
h
uM in order to have the matrix of the same

form as in (12.16). While it is clear that such a choice does not make much sense, it is also
intuitively clear that it only affects the last entry of the vector on the l.h.s. and hence does not
affect the behavior of the remaining “bulk” of the vector of the derivatives.)

Similarly to the calculations for the 2× 2 and 3× 3 cases, one can show that if

uM−1 =


0
0
...
0
1

 , (12.19)

then:

for n ≥ M − 1 : AnuM−1 = O

(
nM−1

(M − 1)!

)
aM−1 · λn−(M−1)v1 +

{
other
terms

}
. (12.20)

Therefore, if λ = 1 (as, for example, for the matrix in Eq. (12.16)), then the behavior of Anv

for the generic initial vector v will be dominated by the O(nM−1)-term in (12.20), which for
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large M is a very fast-growing function of n. Thus, even though the eigenvalue (λ = 1) predicts
that Anv is to remain bounded as n → ∞, the actual behavior of Anv is drastically different.

Moreover , suppose that λ < 1. If matrix A were normal (e.g., symmetric), then Anv ∼
λnv → 0 as n → ∞. Theoretically, this is also the case for the non-diagonalizable matrix A in
(12.15), because the most troublesome term in (12.20) is O(nM−1 · λn−(M−1)), and this can be
shown, by a repeated application of L’Hôpital’s Rule, to tend to zero:

lim
n→∞

(np · λn−p) = 0 for |λ| < 1 and for any fixed p. (12.21)

However, let us look at this from a practical perspective where we would have to compute such
a term on a computer. For a specific example, let us take λ = 1/2 and M = 100. Then the
graph of

f(n) =
n99

99!
·
(
1

2

)n−99

, n ≥ 100 (12.22)

looks like this:

That is, for n ∼ 100, this is a HUGE number
of magnitude greater than ∼ 1040!!! Hence, for
any practical purpose, the behavior of

O(nM−1) · λn−(M−1) , even for |λ| < 1
(12.23)

will be detected by the computer as a very fast
growth, and even as a blow up. This is in stark
contrast to the

(
1
2

)n
-like behavior that would

take place for a normal matrix A with λ = 1/2.

Let us summarize the main point of this Section. The large-n behavior of a non-normal
matrix A of a large dimension can easily be very different from what could have been predicted
based only on the eigenvalue(s) of A.

12.4 The notion of the spectrum and pseudo-spectrum of a matrix

The spectrum of a matrix is simply the set of all its eigenvalues. For a normal matrix, its
spectrum fully characterizes the large-n behavior of Anv for the generic initial vector v. On the
other hand, we showed in the previous Section that for a non-normal matrix A, this is not so:
its spectrum may bear no relation to the large-n behavior of Anv. In this Section, we will show
that the spectrum of a large non-normal matrix A is also very unstable. That is, the spectra of
A and (A + εB), where ε ≪ 1 and B is some generic matrix, may differ by O(1) (rather than
by O(ε)).

To begin, let us note that the spectrum of a normal M ×M matrix, which has M linearly
independent eigenvectors, is stable. Instead of giving a general proof of this fact, we will
illustrate it with a simple example. Namely, the spectrum of (A+ εB) where

A = diag(λ1, λ2, . . . , λM)

is a diagonal (and hence normal) matrix and B is a matrix with a single entry anywhere off
the main diagonal, is the same as the spectrum of A (i.e., it is the set {λ1, λ2, . . . , λM}). Now,
if the only entry of B is on the main diagonal, then the corresponding eigenvalue changes from
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λj to λj + εbjj, i.e. by O(ε) ≪ 1, while the other eigenvalues remain unchanged. In general,
one can show that if A is symmetric (and hence diagonalizable), then the spectra of A and
A + εB, where B is now any matrix (of order one), differ only by an amount O(ε). Such a
stable behavior is what one would intuitively expect of a “well-behaved” matrix.

Now consider the non-diagonalizable matrix A given by Eq. (12.16) and perturb it by
placing an entry ε in the bottom-left corner:

A+ εB =



1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
0 0 1 −1 . . . 0 0
...

...
0 0 0 0 . . . 1 −1
ε 0 0 0 . . . 0 1


. (12.24)

The spectrum (i.e., the set of eigenvalues) of (A+ εB) is found by computing

det(A+ εB − λI) = (1− λ) · det



(1− λ) −1 0 0 . . . 0 0
0 (1− λ) −1 0 . . . 0 0
0 0 (1− λ) −1 . . . 0 0
...

...
0 0 0 0 . . . (1− λ) −1
0 0 0 0 . . . 0 (1− λ)



+ ε · (−1)M+1 · det


−1 0 0 0 . . . 0 0

(1− λ) −1 0 0 . . . 0 0
0 (1− λ) −1 0 . . . 0 0
...

...
0 0 0 0 . . . (1− λ) −1


= (1− λ) · (1− λ)M−1 + ε(−1)M+1 · (−1)M−1

= (1− λ)M + ε . (12.25)

By setting det(A+ εB − λI) = 0, we obtain:

(1− λ)M + ε = 0 ⇒ 1− λ = (−ε)1/M ⇒ λ = 1− (−1)1/M · M
√
ε . (12.26)

In a Complex Analysis course it is shown that there
are M complex-valued M -th roots of (−1) (similarly
to how ±i are the two square roots of −1). These
roots are all located on the unit circle in the com-
plex plane (see the figure on the left). Thus, there
are now M different eigenvalues of the perturbed
matrix (A + εB), even though A had a single M -
times repeated eigenvalue λ = 1. In such cases one
says that the perturbation has split the degenerate
eigenvalue, or “removed the degeneracy”.

A more important observation concerns the magnitude of the difference between the spectra
of (A+ εB) and A. This difference is given by the last term in (12.26), i.e.:

| spectrum(A+ εB)− spectrum(A) | = O( M
√
ε) . (12.27)
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Let M = 100 and ε = 10−16, which is Matlab’s round-off error, a really tiny number. But

100
√
10−16 = 10−0.16 ≃ 0.69 = O(1) , (12.28)

i.e. a number of order one! Thus, even a tiny numerical error can drastically change the
spectrum of a large non-diagonalizable (or, more generally, strongly non-normal) matrix.

Moreover, for M ≫ 1,

M
√
ε ≈ 1 for 10−M ≪ ε ≪ 10M , (12.29)

i.e. for all values of ε that may be encountered
in practice. Therefore, for all “practical” values
of ε, Eq. (12.26) is essentially independent of ε:

λ ≈ 1− (−1)1/M . (12.26′)

This is referred to as the pseudo-spectrum of the matrix A of Eq. (12.16). The theory of
pseudospectra of (non-normal) matrices is covered in advanced graduate courses on Numerical
Linear Algebra.

Let us summarize the main points of this Lecture:

1) The spectrum and the set of eigenvectors of a normal (e.g., symmetric) or a close-to-
normal matrix A completely determines the evolution Anv for any initial vector v.

2) The set of eigenvectors of a non-diagonalizable matrix A does not form a basis in the
corresponding vector space. Consequently, the spectrum of a non-diagonalizable matrix
does not determine the behavior of Anv. Moreover, for a large non-diagonalizable matrix,
such a behavior may be completely opposite of what the spectrum alone would predict
(see Section 2). Similar statements hold for any “strongly” non-normal matrix, i.e. a
matrix that may be diagonalizable but is, in some sense, close to some non-diagonalizable
matrix.

3) While the spectrum of a normal matrix is stable with respect to small perturbations of its
entries, the spectrum of a large non-normal matrix can be very unstable. Consequently,
the concept that is of practical importance for large strongly non-normal matrices is not
their spectra but pseudo-spectra (see Section 3).


