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2 Kepler’s Laws

2.1 Some history

2.1.1 End of 16th century

Tycho Brahe (pronounced [taıkou bra:hi:]), a wealthy Danish nobleman, had a passion for
observation of stars. He was the director of the Prague Observatory. Since he was very rich,
he could afford to construct gigantic observational instruments, with which he collected a great
number of new data with precision unknown before him. (Note: a telescope was invented in
1610, nine years after Brahe’s death.)

2.1.2 Beginning of 17th century

Johannes Kepler, originally from Germany, served as an assistant to Tycho Brahe at the Prague
Observatory. He succeeded Brahe as the director and inherited a vast collection of observational
data.

Kepler’s initial ambitious goal was to describe precisely the shape of the orbit of Mars. First,
he computed its period of revolution (about the Sun): TMars = 687(Earth)days ' 1.88 Earth
years. Then, knowing the distance from the Earth to the Sun and using other astronomical
data, Kepler, after many unsuccessful attempts, determined that the Mars orbit is an ellipse
and the Sun is one of its foci. Moreover, he found that Mars’ motion was not uniform: the
farther it is from the Sun, the slower it moves. These discoveries were heretical to Kepler
because they indicated that the Universe was not perfectly symmetric, something Kepler could
not believe for a long time. Indeed, why is the Sun in one foci and not in the other? Yet, the
data were too compelling for Kepler not to accept his new model of the elliptical motion. He
then extended his model to other planets. By 1609, he formulated his first 2 laws:

(i) Each planet moves on an ellipse with the Sun at one focus.

(ii)

For each planet, the line from the Sun to the
planet sweeps out equal areas in equal times.

It took Kepler 10 more years to formulate his 3rd law:

(iii) The square of the period of revolution of a planet is proportional to the cube of the length
of the major axis of its orbit:

T 2

a3
= const (same for all planets).
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How could Kepler find the exponents 2 and 3? He used recently invented logarithms! Namely,
suppose that two given lists of data, x and y are related by

y = k · xn .

How can we find k and n? Answer: Take the logarithm of the above equation to obtain

log y = log k + n log x .

This equation defines a linear relationship (a straight line) between log y and log x; its slope is
n and the intercept is log k.

At home you will be asked to verify Kepler’s Third law given the data for the planets from
Mercury to Pluto.

2.1.3 End of 17th century

In 1679, Robert Hooke wrote a letter to Isaac Newton in which he, among other things, wrote
about his two new hypotheses:

� the gravitational force of attraction between two bodies falls off as 1/r2, where r is the
distance between them;

� bodies in such a field move along ellipse-looking orbits. (Hooke’s scientific ethics did not
allow him to say “ellipses” because he did not have any rigorous proof that they were not
some other kind of ovals. In fact, some astronomers at that time believed that those orbits
could be different, i.e., non-elliptical, curves. For example, Giovanni Cassini believed that
they were special ovals, which were later named after him; you can read about Cassini
ovals online.)

Science historians differ in their opinion whether this letter might have set Newton on a
path of deriving the inverse-square law for the gravitational force from the three laws of Kepler.
However, Newton himself never acknowledged any significance of Hooke’s letter in his (i.e.,
Newton’s) research on gravity. His argument to their common friend Edmund Halley about it
was that all Hooke had done was to get an intuitive idea, while it was Newton who rigorously
proved it. Relations between Hooke and Newton first became tense in 1672, when Hooke, a
famous scientist at that time, criticized the optical theory of then a much less known Newton.
The 1679 correspondence between the two men has led to their second falling-out. Finally, the
third and last argument about priority of scientific discoveries, that re-fueled their acrimony
towards each other, occurred in late 1680s after Newton published his seminal work “Principia
Mathematica”, in which he derived the Universal Gravitation law and Kepler’s laws. Newton’s
hatred of Hooke was so strong that, when he became the President of the Royal Society already
after Hooke had died, he ordered to destroy not only all works and apparatuses of Hooke1, but
even all Hooke’s portraits. You may find further details about the entangled relationship of
these two great scientists in their biographies, e.g., online.

1Hooke used to be the Curator of the Royal Society, where his responsibilities included regular demonstrations
of new experiments at the Society’s meetings
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2.2 Newton’s law of Universal Gravitation

Although Newton knew Calculus (which he invented2 around 1670), he did not use it in his
seminal book “Principia Mathematica”. Instead, he used elementary geometrical methods. An
approach similar to Newton’s is described in an article by Hall & Higson, posted online. Here
we will use the modern approach based on Calculus, but will also try to reconstruct the main
steps that Newton had to follow.

In this section, we describe the two steps that Newton had to accomplish to derive his
Universal Law of Gravitation (assuming that he knew his Second law, m~a = ~F ) from Kepler’s
laws. Namely, we will use Kepler’s laws to show that:

1. the gravitational force is central (see below);

2. its magnitude follows the 1/r2 dependence.

2.2.1 Showing that the gravitational force is central

A force is called central its vectors at any point in space are directed towards, or away from,
the same point, called the center. In the case of the gravitational force between a planet and
the Sun, the Sun is such a center (see the figure below).

We will prove the statement in the title of this subsection by showing that ~̈r ∝ ~r and
then invoking the Second Law of Newton, ~F = m~a ≡ m~̈r. In the process, we will also need to
invoke an assumption3 that the plane where the planetary orbit lies remains constant in time
(i.e., does not precess).

Before we begin, let us make one more remark about the derivation forthcoming in this
section. It uses polar coordinates, which you learned in Calculus II, and their relation to Carte-
sian coordinates. This derivation is somewhat technical and may even appear as conceptually
obscure. There exists a more conceptually straightforward derivation, based not on polar co-
ordinates but on certain properties of the cross-product. In fact, this other derivation in the
reverse order is presented later in Section 2.4. The reason why the less straightforward, polar-
Cartesian, derivation is given here is to give you the opportunity to review the important topic
of polar coordinates.

The Second Kepler’s law says that the planet
sweeps out the same area ∆A during an in-
terval ∆t anywhere along its orbit. This area
can be computed using polar coordinates r
and θ to be:

∆A ' 1

2
r2∆θ ,

since r ' const when ∆θ is small.

Let us notice a subtle issue: The reason why one could use polar coordinates (which provide
an alternative description to the Cartesian coordinates x and y in two dimensions) is the
aforementioned assumption that the plane in which the planet moves remains constant in time.

2This invention of Newton led to his long-term feud with another great mind of the XVII century — Gottfried
Leibniz — who invented Calculus independently and around the same time.

3Whether or not it was stated by Kepler as an observational fact is unknown to the author of these notes.
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If that plane had precessed (i.e. had moved in three dimensions), then a third coordinate would
have been needed in addition to the two in-plane polar coordinates.

Continuing with our derivation and dividing the last expression by ∆t yields:

∆A

∆t
' 1

2
r2

∆θ

∆t
, or

dA

dt
=

1

2
r2
dθ

dt
.

Let us introduce a notation that will be used extensively in this course:

dq

dt
= q̇ , for any quantity q .

Thus, the Second Kepler’s law can be written as:

Ȧ =
1

2
r2θ̇ = const ≡ 1

2
c . (2.1)

Now, as we will explain in a moment,

r2θ̇ = xẏ − ẋy . (2.2)

Indeed,

x = r cos θ , y = r sin θ ; ẋ = ṙ cos θ − θ̇r sin θ , ẏ = ṙ sin θ + θ̇r cos θ . (2.3)

Substituting these expressions into the r.h.s. of (2.2), we obtain its l.h.s. (verify). Since this
l.h.s. = const (see (2.1)), then

d

dt
(xẏ − ẋy) = 0 ⇒ xÿ − ẍy = 0 (verify). (2.4)

Next, (2.4) can be used to show that ~r × ~̈r = ~0. Indeed, if ~r = 〈x, y, 0〉, ~̈r = 〈ẍ, ÿ, 0〉, then
~r × ~̈r =~i · 0 +~j · 0 + ~k(xÿ − ẍy) = ~0 (verify), which means ~r ‖ ~̈r, or equivalently,

~̈r = f(r, θ)~r (2.5a)

for some scalar function f(r, θ). Finally,

m~a = ~F ⇒ m~̈r = ~F ⇒ ~F = mf(r, θ)~r , (2.5b)

i.e. the force is collinear with ~r and hence is central.

2.2.2 Showing that f(r, θ) = const/r2

The planets’ orbits are, in fact, nearly circular (and this was known to Kepler and Newton).
Let us assume for now that the orbits are exactly circular. Then, using the polar equation of
a circle, we have:

~r = 〈r cos θ, r sin θ〉

r = const , θ =
2πt

T
,

where T is the period of the planet’s revo-
lution about the Sun. By differentiating the
first line above and using the second line, one
finds (verify):

~̈r = −
(

2π

T

)2

~r .
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Comparing this with Eq. (2.5a), we have:

f(r, θ) = −4π2

T 2
.

But by Kepler’s Third law (applied to circular orbits), T 2 = const · r3. Hence f(r, θ) ∼ 1/r3

and therefore
~F = −const

r3
~r , or ‖~F‖ ∼ 1

r2
. (2.6)

Side note: Kepler also thought of the inverse-square law for the gravitation, but rejected
the idea. His reasoning was approximately the following.

Kepler thought of the gravitational field emanated
by a body as being similar to light. The intensity
of light away from its source falls off as 1/r2:

source strength

surface area
=

const

4πr2
.

So, it then would be natural that the intensity of
the emanated gravitational field also falls off as
1/r2.

However, if this model were correct, then it would contradict to what happens during
the solar eclipse. In this event, the Moon blocks the Sun’s light (and, as Kepler thought,
gravitation) from reaching the Earth, and hence during solar eclipses, the motion of the Earth
should experience large perturbations. Since this was never observed, Kepler rejected the
inverse-square law for gravitation.

The reason this theory (and its rejection by Kepler) became known to us is that Kepler in
his publications did not “try to cover his traces” (unlike most scientists). He wrote about his
conjectures, failures, successes, errors, insights, etc. with great frankness. The downside of this
style is that when many competing ideas are presented in a paper, most readers are lost. So
it took Newton’s genius to separate the wheat from the chaff and discern the importance of
Kepler’s three laws.

2.3 Auxiliary formulae from vector Calculus

We will now proceed in the reverse direction: We will use Newton’s Law of Universal Gravitation
to derive the three Laws of Kepler. For that, we need to remind or establish four auxiliary
facts.

Fact 1 For any three vectors ~a,~b,~c:(
~a×~b

)
× ~c = (~a · ~c)~b−

(
~b · ~c

)
~a . (2.7)

This formula can be established by direct calculation. However, below we will illustrate a more
mathematically literate method. Its idea is to expand arbitrary vectors in the basis of unit
coordinate vectors and then verify that the desired identity holds for those basis vectors. While
the verification of the identity for one triple of basis vectors is easier to do than for arbitrary
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vectors, the total amount of work needed to follow the basis-vector approach may be actually
larger than the amount of work involved in direct calculation (see below). The point of the
basis-vector approach is then not in making one’s life easier, but in elucidating the fact that
the formula for the arbitrary vectors holds because it holds for the basis vectors, which can be
viewed as building blocks from which an arbitrary vector is made.

Let

~a =
3∑

l=1

al~el , ~b =
3∑

m=1

bm ~em , ~c =
3∑

n=1

cn ~en , {~e1, ~e2, ~e3} = {~i,~j,~k} ,

where al are the usual Cartesian coordinates of ~a, etc. Then the l.h.s of (2.7) can be rewritten
as:

3∑
n=1

3∑
m=1

3∑
l=1

albmcn · (~el × ~em)× ~en .

Therefore, since al, bm, cn can be arbitrary, it suffices to verify that (2.7) holds for the unit
coordinate vectors {~i,~j,~k} in different combinations. Now, out of 27 such combinations, 9 with
l = m are immediately seen to be zeros. Another 6, where all of l,m, n are different, are also
zero, due to the property ~i×~j = ~k and its permutations. Thus, “only” 12 combinations, with
l 6= m and n = l or m are to be considered. But those are verified easily, e.g.:

l.h.s. = (~i×~j)×~i = ~k ×~i = ~j;

r.h.s. = (~i ·~i)~j − (~j ·~i)~i = 1~j − 0~i = l.h.s.

Fact 2

Recall that the triple product is related to
the volume of a parallelepiped whose sides
are ~a,~b,~c:

V = |~a · (~b× ~c)| .

Also,
~a · (~b× ~c) = (~a×~b) · ~c . (2.8)

Fact 3 Suppose ~r(t), and hence ~̇r(t), are known. We can explicitly separate the length and
direction of this vector:

~r ≡ r ·
(
~r

r

)
,

where r is the length and (~r/r) is the unit vector along ~r. Then, how can we relate ṙ and
(~r/r)· to ~r and~̇r? First, let us find ṙ:

r2 = (~r ·~r) ⇒ (r2)· = (~̇r ·~r) + (~r · ~̇r) ⇒ 2rṙ = 2(~̇r ·~r) ⇒ ṙ =
(~̇r · ~r)
r

.

(2.9)
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Note that r is related to ~r by the first formula in (2.9), and then ṙ is defined in terms of ~r and
~̇r by the last formula.

Next, using that last formula and the Product Rule

~̇r =

(
r

(
~r

r

))·
= ṙ

(
~r

r

)
+ r

(
~r

r

)·
,

one finds (verify): (
~r

r

)·
=

(~r · ~r) ~̇r − (~̇r · ~r)~r
r3

.

Finally, using Eq. (2.7), we obtain a formula that we will use in the next section:(
~r

r

)·
=

(~r × ~̇r)× ~r
r3

. (2.10)

Fact 4 Conic sections in polar coordinates.

Definition A conic section is a planar curve
whose points P satisfy the following property:

|OP | = e|PQ|

where the notations are as shown in the figure
and e is a fixed number called eccentricity. (Note
that for a given conic section, the locations of
the focus and the directrix are not arbitrary but
rather must be carefully selected.)

On p. 71 of the book “Inverse Problems” by C.W. Groetsch (MAA 1999), it is shown that the
polar equation of a conic is

r =
eD

1 + e cos θ
, (2.11)

where D = |OS| is the (given) distance between the focus and the directrix.
In a homework problem you will show that Eq. (2.11) reduces to more familiar Cartesian

forms of three different conic sections depending on the value of e.

With this background information, we are ready to derive the three Kepler’s laws from
Newton’s Law of Universal Gravitation (Eq. (2.6)) and the Second law of motion, m~a = ~F .

2.4 Derivation of Kepler’s laws from Newton’s laws

We begin by restating Newton’s Law of Universal Gravitation, (2.6), and the Second law of
motion as one differential equation:

~̈r = −N
r3
~r (2.12)

where N is a proportionality constant. From this, we will derive the first two Kepler’s laws. In
fact, it is convenient to derive Kepler’s Second law before the First, and so below we will state
them in this order and also will slightly modify the statement of the Second law.
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� Kepler’s Second law, slightly modified
A planet’s trajectory around the Sun is a planar curve (i.e., lies in one plane), and the
radius-vector from the Sun to the planet sweeps out equal areas in equal time intervals.

The aforementioned modification is contained in the first clause (about the planar curve)
of the previous sentence. It is actually borrowed from the First law, where one does not
specify the shape of that planar curve. Then the First law specifies what that shape is:

� Kepler’s First law
The trajectory of each planet is an ellipse with the Sun at one of its foci.

Derivation of Kepler’s Second law

Since we want to prove a statement about the area of a sector swept by the radius-vector
of a planet, we begin by establishing a formula for that area.

It (the area) is shown in the figure on the
left and is seen to be approximately equal
to the area of the triangle with one side ~r
and the base ~̇r . From vector Calculus, you
should recall that this area equals one half
of |~r × ~̇r∆t|. Thus, the area swept by the
radius-vector per time ∆t is proportional to
|~r× ~̇r|, and hence to demonstrate the second
clause in the modified Second Kepler’s law
stated above, we need to show that

|~r × ~̇r| = const. (2.13)

Let us now use the first clause of that law to show that we need the vector ~r × ~̇r, not just
its length, to stay constant.

Indeed, if the trajectory lies in a plane, one
can define a normal vector to that plane, and
the direction of this normal vector stays con-
stant at all times. This normal vector, by
definition, is perpendicular to any vector in
the plane of motion and hence has the di-
rection of ~r × ~̇r, by a property of the cross
product. Hence the direction of ~r × ~̇r must
stay constant. Along with (2.13) this implies
that we want to show that

~r × ~̇r = ~const ≡ ~c . (2.14)

This is shown as follows. Take the cross-product of Eq. (2.12) with ~r and use a property of
the cross product to see that

~r × ~̈r = ~0 . (2.15)

Next, using the Product Rule for (~r × ~̇r)· and substituting in one of the terms (2.15), one
obtains the second equation below (verify):

(~r × ~̇r)· = ~r × ~̈r + (~̇r × ~̇r) ⇒ (~r × ~̇r)· = ~0 . (2.16)
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By integrating the last equation, one obtains (2.14).
Let us note in passing that

~c = ~r × ~̇r =

~i ~j ~k
x y 0
ẋ ẏ 0

= ~k(xẏ − ẋy) .

Therefore, |~c| = |xẏ − ẋy|, which has been shown to be a constant by a different method: see
(2.1) and (2.2).

Derivation of Kepler’s First law

Our goal is now to show that a solution of the differential equation (2.12) is an ellipse. If
our differential equation had the form ~̇r = ~f(t), one could integrate it once to get the solution:

~r(t) =

∫ t

t0

~f(t′)dt′ + ~r0 .

Similarly, to solve ~̈r = ~f(t), one would integrate twice. However, in Eq. (2.12), the r.h.s. itself
depends on the unknown ~r(t). Moreover, the solution we are looking for does not have the form
~r = ~r(t) but, instead, has the form r = r(θ): see (2.11). So we have to devise a trick to find
that solution. This trick has two steps.

Step 1: Integrate (2.12) once to get an equation for ~̇r

In Section 2.3 we showed that (see (2.10)) for any law of motion,(
~r

r

)·
=
~c× ~r
r3

, (2.17a)

where ~c is defined in (2.14). The r.h.s. of Eq. (2.17a) resembles the r.h.s. of the Newton’s
equation (2.12) if we multiply the latter by ~c:

~c× ~̈r = −N
r3

(~c× ~r) . (2.17b)

Let us multiply both sides of (2.17a) by −N and compare the result with (2.17b). This
comparison yields:

−N
(
~r

r

)·
= (~c× ~̇r)· ;

to obtain the r.h.s. of this equation, we have used the fact that ~c = ~const, whence ~c×~̈r = (~c×~̇r)·.
Integrating this once and using the identity ~c× ~̇r = −~̇r × ~c, we get

~̇r × ~c = N

(
~e+

~r

r

)
, (2.18)

where ~e is the integration constant.
Let us now show that ~e must be perpendicular to ~c. Recall that in order to show that any

two vectors, ~a and ~b, are perpendicular, one needs to show that ~a ·~b = 0. Then, we want to
show that ~e ·~c = 0. Let us dot-multiply (2.18) by ~c; then ~e ·~c will be one of the two terms on
the r.h.s.. The other term on the r.h.s., that proportional to ~r · ~c, is zero since ~r ⊥ ~c by (2.14)
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and the property that ~a×~b is perpendicular to both ~a and ~b. By the same property, the term
on the l.h.s. also vanishes: (~̇r × ~c) · ~c = 0. Therefore,

~e · ~c = 0, i.e., indeed, ~e ⊥ ~c .

Then, according to (2.14) and the paragraph before it, ~e lies in the plane of motion.

Step 2: Eliminate ~̇r from (2.18)

We still need to perform the task of eliminating ~̇r from (2.18). To do so, we begin by
taking the dot product of (2.18) with ~r and obtain:

(~r × ~̇r) · ~c = N(~r · ~e+ r) ,

where on the l.h.s. we have used (2.8). Using the definition of ~c from (2.14), we rewrite the
last equation as

c2 = N(~r · ~e+ r) . (2.19)

Also, since ~e lies in the plane of motion, we can write:

~r · ~e ≡ r · e · cos θ ,

where θ is shown in the figure at the end of Sec. 2.3. Finally, from the last equation and (2.19),
we get (verify):

r =

(
c2

Ne

)
e

1 + e cos θ
, (2.20)

which is the Equation (2.11) of a conic section.

Derivation of Kepler’s Third law

You will do it in a homework problem following the hints provided there.

As a note about notations, recall that Kepler’s Third law is:

T 2 : a3 = const. (2.21)

Then, if T is measured in (Earth) years and a is measured in Astronomical units (1 A.U. =
half of the major axis of the Earth orbit, or approximately the average distance from Sun to
Earth), the Third law takes on a simple form:

T 2 : a3 = 1

(why?). For example, the Halley’s comet (last seen in 1986, eccentricity 0.97) has a semi-major
axis a = 18.1 A.U. When will it be seen again?


