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4 Will a car fly off the rollercoaster?

In this lecture, we will use the motion of an object (a car) sliding down a rollercoaster to
illustrate three concepts. First, we will show a simple application of the equations of motion
along a curve to a real-world problem. Second, we will show how the Chain Rule is used when
a variable in a differential equation is replaced with a related variable. Third and last, we will
see that when a differential equation is too complicated to be solved analytically, it can always
be solved numerically.

Consider the motion of a car sliding down a rollercoaster whose shape is given by y = f(x).
Our goal is to derive the equations of the motion and, eventually, be able to answer the following
question: If there is a bump somewhere on the track, will the car go flying off into the air or will
it stay on the rollercoaster? In this Lecture, we will neglect friction of any sort; in a homework
problem you will be asked to show how it can be included.

The motion of the car is governed by Newton’s Second Law:

m~a = m~g + ~R, (4.1)

where ~R is the normal reaction force. The objective of this Lecture is to find ~a and ~R.

Let us choose the coordinate system that at
any given moment coincides with the tangent
and normal vectors, ~T and ~N , at the location
of the car. (In the figure above, ~T and ~N are
shown at a different location than the car so
as not to congest the figure.)

As its name suggests, the normal reaction
force ~R is normal to the curve and hence lies
on the line containing ~N ; thus, ~R ‖ ~N .

In Calculus III you learned that the acceleration can be expanded along ~T and ~N as follows:

~a = aT ~T + aN ~N, (4.2)

aT =
d2s

dt2
, aN = K(s)

(
ds

dt

)2

.

Here s is the arclength from, say, the starting point of the motion to the current location of the
car, and K(s) is the curvature at that location. Recall the meaning of (4.2): it says that the
total acceleration is a vector sum of the linear acceleration, d2s/dt2, pointing along the direction
of motion, and the centripetal acceleration, K(s)(ds/dt)2, pointing towards the center of the
curvature. Indeed,

K(s)

(
ds

dt

)2

=
(ds/dt)2

1/K(s)
=

(velocity)2

radius of curvature
,

which is the formula for the centripetal acceleration of a uniform circular motion, as studied in
an elementary Physics course. We will require a formula for K(s) derived in Calculus III:

K =

∥∥∥∥d2~rds2
∥∥∥∥ =

√(
d2x

ds2

)2

+

(
d2y

ds2

)2

. (4.3)
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Let us now project Eq. (4.1) onto the axes ~T and ~N . This is done by taking the dot product
of (4.1) with ~T and ~N . The operation of taking dot product will be denoted by • in this
Lecture. We will use identity ~T • ~T = ‖~T‖2 = 1 for the unit vector ~T , and similarly for ~N .

Projecting on ~T , we have:

(aT ~T + aN ~N) • ~T = ~g • ~T +
1

m
~R • ~T .

Using the orthogonality of ~T to ~N and hence to ~R (which implies ~T • ~N = ~T • ~R = 0), we find:

aT = ~g • ~T . (4.4a)

Projecting on ~N , we similarly obtain:

aN = ~g • ~N +
1

m
~R • ~N. (4.4b)

We will now use the two Eqs. (4.4) to derive equations of motion for the car. Actually, Eq.
(4.4a) already has the form of such an equation:

d2s

dt2
= some function of s,

where we have used the expression for aT found after (4.2) and the fact that ~T is uniquely
characterized by the location of the car along the track, i.e., by s. However, using s as the
variable characterizing the car’s location is not convenient. Indeed, if we know s, we still have
to find the x- and y-coordinates of the car, and this is not an easy task. From Calculus II, one
knows that the formula for the arclength is:

s(x) =

∫ x

x0

√
1 +

(
dy(x̃)

dx̃

)2

dx̃ (4.5)

(here x̃ is the dummy integration variable). Therefore, to solve for x given a value of s, one
would need to: (i) do the integration in (4.5), and then (ii) solve the (typically nonlinear)
algebraic equation s(x) = s for x. Both of these steps can rarely be accomplished analytically.

On the other hand, using x to characterize the car’s location is convenient. Indeed, if we
know the car’s x-coordinate, we can also immediately find its y-coordinate as y = y(x), where
the latter function describes the shape of the rollercoaster. Thus, we will derive equations of
the car’s motion in terms of its x-coordinate, where x = x(t).

To that end, we need to switch from the variable s in (4.4a, b) to x. We will start with
(4.4a) and will consider its left- and right-hand sides separately.

L.h.s. of (4.4a):

d2s

dt2
=

d

dt

(
ds

dt

)
Chain Rule

=
d

dt

(
ds

dx
· dx
dt

)
.

Next, by the Fundamental Theorem of Calculus,

ds

dx

(4.5)
=

√
1 +

(
dy

dx

)2

≡ Q(x). (4.6)



MATH 235, by T. Lakoba, University of Vermont 36

Continuing with the equation for d2s/dt2, we have:

d2s

dt2
=

d

dt

(
Q · dx

dt

)
=

dQ

dt
· dx
dt

+Q
d2x

dt2

Chain Rule
=

(
dQ

dx
· dx
dt

)
dx

dt
+Q

d2x

dt2
= Q′

(
dx

dt

)2

+Q
d2x

dt2
. (4.7)

Here and below, we use the notations

Q′ ≡ dQ

dx
, y′ ≡ dy

dx
.

R.h.s. of (4.4a):

~g = 〈0,−g〉

~T
Calculus III

=
d~r

ds
≡ d 〈x, y〉

ds
=

〈
dx

ds
,
dy

ds

〉
,

⇒

~g • ~T = −gdy
ds

Chain Rule
= −g dy

dx
· dx
ds

= −g · y′

ds/dx

(4.6)
= −g · y

′

Q
.

Here we have used the fact that if s(x) and x(s) are the inverse functions of each other, then

ds

dx
=

1

dx/ds
. (4.8)

The reason for this is illustrated in the figure
on the left, where one can see that:

ds

dx
≈ ∆s

∆x
=

1

∆x/∆s
≈ 1

dx/ds
.

Note that no analogues of (4.8) hold for
higher derivatives, i.e.

d2s

dx2
6= 1

d2x/ds2
, etc., (4.9)

as we will explicitly demonstrate later.

We now put all the pieces above together to transform (4.4a) to the form:

Q
d2x

dt2
+Q′

(
dx

dt

)2

= −g · y
′

Q

verify⇒
d2x

dt2
= −

(
g · y

′

Q2
+
Q′

Q
·
(
dx

dt

)2
)
. (4.10a)

We compute Q′ using its definition (4.6):

Q′ =
d

dx

√
1 + (y′)2 =

y′y′′

Q
, (4.11)
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and substitute this into (4.10a) to obtain:

d2x

dt2
= − y′

Q2

(
g + y′′

(
dx

dt

)2
)
. (4.10b)

We now turn to transforming (4.4b) similarly to how we transformed (4.4a) into (4.10a) or
(4.10b).

L.h.s. of (4.4b)

As we have found above, (
ds

dt

)
=
ds

dx
· dx
dt

= Q
dx

dt
.

Now we need to transform the expression for K(s), Eq. (4.3), into a function of x. First,

d2x

ds2
=

d

ds

(
dx

ds

)
(4.8), (4.6)

=
d

ds

(
1

Q(x)

)
= − 1

Q2

dQ

ds
= − 1

Q2

dQ

dx
· dx
ds

= −Q
′

Q3
.

(If we now recall that d2s/dx2 = Q′ (see (4.6)), we note that we have explicitly verified (4.9).)
Next,

d2y

ds2
=

d

ds

(
dy

ds

)
=

d

ds

(
dy

dx
· dx
ds

)
=

d

ds

(
y′

Q

)
=

d

dx

(
y′

Q

)
· dx
ds

=
y′′Q−Q′y′

Q3
.

To simplify the above expressions, we substitute the formula for Q′, which is given by Eq.
(4.11), into the above expressions for d2x/ds2, and find (verify):

d2x

ds2
= −y

′y′′

Q4
,

d2y

ds2
=
y′′

Q4
, (4.12)

where in deriving the second formula we have used the definition of Q. Substituting (4.12) into
(4.3), we find:

K =

√(
y′′

Q4

)2

+

(
−y

′y′′

Q4

)2

=
|y′′|
Q4

√
1 + (y′)2 =

|y′′|
Q3

, (4.13)

where we have used the fact:
√
a2 = |a| for any real a. Thus, the l.h.s. of (4.4b) becomes:

K ·
(
ds

dt

)2

=
|y′′|
Q

(
dx

dt

)2

. (4.14)

R.h.s. of (4.4b)

To compute ~g • ~N , one needs an expression for ~N . In Calculus III, it is shown that

~N =
d2~r/ds2

K
.

Then

~g • ~N = 〈0,−g〉 •
〈
d2x

ds2
,
dy2

ds2

〉
/K

(4.12), (4.13)
= −g · y

′′/Q4

|y′′|/Q3
= −g · sgn(y′′)

Q
, (4.15)
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where for any nonzero number α,

sgn(α) =

{
+1, α > 0
−1, α < 0.

In addition, we define
sgn(0) = +1.

(We could have also made the opposite choice, sgn(0) = −1; it would not affect the final result
as long as we consistently stay with one definition.) The reason we need to define sgn(0) is to
be able to handle the case of a flat inclined plane, where y′′ = 0.

The other term on the r.h.s. of (4.4b) is ~R • ~N . Since ~R and ~N lie on the same line (why?)
and ~N is a unit vector, then ~R • ~N equals +|R| or −|R|. To decide which sign we need to take,
observe the following. As long as the car stays on the top side of the track and the track has no
loops, the vertical component of ~R is positive. As a shorthand, we will say that “~R is pointing
upwards”.

Next, as shown in Calculus III, ~N is always
pointing towards the instantaneous center of
curvature of the track (see the figure on the

left). Thus, ~N is pointing upward when

y′′ > 0 and ~N is pointing downward when
y′′ < 0. When y′′ = 0, we need to define ~N
as pointing upward in order to be consistent
with our own definition of sgn(0).

Combining these observations of ~R and ~N , we have:

~R • ~N =

{
|R|, y′′ ≥ 0
−|R|, y′′ < 0

= |R| sgn(y′′). (4.16)

Let us stress that (4.16) holds under the two aforementioned assumptions: (i) the car is on the
top side of the track, and (ii) the track has no loops. In a homework problem, you will consider
how this analysis needs to be modified when the reverse of assumption (i) holds, namely, when
the car is on the bottom side of the track. As far as lifting assumption (ii), this requires a
somewhat more careful treatment, which we will not pursue.

Substituting (4.14), (4.15), (4.16) into (4.4b), we rewrite the latter equation as (verify):

|R| = m

(
g

Q
+
y′′

Q

(
dx

dt

)2
)
. (4.17)

We have used the identity (sgn(α))2 = 1.
To conclude our analysis, we will present Eqs. (4.10b) and (4.17) together, comment on

their meaning, and then answer the question posed in the title of this Lecture. Thus:

d2x

dt2
= − y′

Q2

(
g + y′′

(
dx

dt

)2
)
, (4.10b)
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|R| = m

Q

(
g + y′′

(
dx

dt

)2
)
. (4.17)

Equation (4.10b) is a differential equation for x(t). Along with the initial conditions x(0) and
dx/dt|t=0 it determines the horizontal motion of the car, i.e. x(t). The vertical motion is
determined by the shape of the rollercoaster, y(x), as long as the car stays on the track. The
car will fly off the track if and when the normal reaction force becomes zero:

R = 0. (4.18)

Indeed, this equation says that the car and the track no longer act on one another, which means
that the car is free to leave the track.

Therefore, as we monitor the r.h.s. of (4.17) using the value of (dx/dt)2 obtained from
(4.9b) and find that at some moment, it vanishes, then this is when and where the car flies off.
Obviously (from (4.17)), this can only occur when y′′ < 0, i.e. on a concave-down section (a
bump) of the track.

Once the car has flown off, its motion is described by two simple equations, usually presented
in Calculus I and III and in an elementary Physics course:

x(t) = xl + (vl)x(t− tl) (4.18a)

y(t) = yl + (vl)y(t− tl)−
g(t− tl)2

2
, (4.18b)

where tl is the time the car leaves the track, (xl, yl) is the location on the track where it does
so, and

(vl)x =
dx

dt

∣∣∣∣
t=tl

, (4.19a)

(vl)y =
dy

dt

∣∣∣∣
t=tl

=

(
dy

dx

)
· dx
dt

∣∣∣∣
t=tl

≡ y′ · (vl)x (4.19b)

are the x- and y-components of the velocity at this moment.
Let us note that Eq. (4.10b) for a general form of the track (i.e., for a general y(x) ) cannot

be solved analytically. Nevertheless, it can be easily solved numerically, e.g., in Matlab.
In the homework, you will explore three modifications of the problem considered above:

(i) when the shape of the track is defined by parametric equations rather than as y(x);
(ii) when the car moves on the bottom side of the track; and
(iii) when the friction between the car and the surface of the track is included in the model.


