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5 Markov Chain Models

In this lecture we will pursue two goals. To introduce the first of them, we need a brief preamble.
Suppose a system at any moment can occupy a finite number of states. (E.g., the weather at

a given city on a summer day may be sunny, cloudy, or rainy.) Suppose the system moves from
one state to another with some probabilities. If these transition probabilities depend only
on the current state of the system (and not on which previous states the system has visited),
then the evolution of the system from one state to the next is called a Markov process, or a
Markov chain .

Our first goal will be to practice writing balance equations for Markov Chain models. The
idea of these balance equations is, roughly speaking, this:

the inflow into a given state of the system
must equal

the outflow from this state.

What flows in and out will be specified for each given model. Using the balance equations,
we will determine an equilibrium distribution of states of the system. (E.g., in the weather
example above, we would determine how many sunny, cloudy, and rainy days the given city
has in an average summer).

Our second goal will be to review the role of eigenvectors in the description of physical
systems. Namely, we will review how eigenvectors are related to the limiting distribution of
states reached by the system at large times.

Before we begin with an introductory example, let us first list some basic facts from Linear
Algebra that we will require. Unless otherwise stated, below x is an M -dimensional vector:

x =

 x1
...
xM


and A is an M ×M matrix. Also, I is the M ×M identity (unity) matrix.

Fact 1 If A is written as a collection of its columns:

A = [A1, A2, . . . AM ],

then
Ax = x1A1 + x2A2 + . . .+ xMAM , (5.1)

where x1, . . . , xM are defined above. Equation (5.1) will be used extensively in what follows.
Fact 2a Matrix A is singular if and only if there is x 6= 0 such that Ax = 0. If A is not

singular, it is called nonsingular.
Fact 2b Linear system

Ax = b

has a unique solution x for any b if and only if A is nonsingular.
Fact 3 If (A− λI) is singular, then the scalar λ is called an eigenvalue of A. Then (see

Fact 2a) there is a vector v 6= 0 such that (A− λI)v = 0, or

Av = λv.
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This v is called the eigenvector of A corresponding to the eigenvalue λ .

Example 1 By reviewing its donation record, the alumni office of a college finds that 80%
of its alumni who contribute to the annual fund one year will also contribute the next year, and
30% of those who do not contribute one year will contribute the next. How will the donation
record evolve over the years? In particular, what will it be in 12 years for a newly graduating
class in which no alum donated immediately after the graduation? (Assume the class has 1000
graduates).

Solution: Let us denote the number of alumni who donated in the k-th year by D(k) and
the number of those who did not donate in that year, by N (k). Then:

D(k+1)︸ ︷︷ ︸
number of alumni

donating in year k + 1

= 0.8 ·D(k)︸ ︷︷ ︸
80% of those who
donated in year k

+ 0.3 ·N (k)︸ ︷︷ ︸
30% of those who did
not donate in year k

Similarly,
N (k+1) = 0.2 ·D(k) + 0.7 ·N (k).

We can write these two equations in matrix form:(
D
N

)(k+1)

= P ·
(
D
N

)(k)

where

P =

(
0.8 0.3
0.2 0.7

)
.

Note that since the total number of alumni is assumed to be the same, we can divide both sides
of the above equation by D(0) +N (0) = D(k) +N (k) = 1000. If we denote

d(k) =
D(k)

D(0) +N (0)
, n(k) =

N (k)

D(0) +N (0)

to be the relative numbers of donating and non-donating alumni, we rewrite the above equation
as (

d
n

)(k+1)

= P

(
d
n

)(k)

. (5.2)

Let us call x(k) =

(
d
n

)(k)

the state vector of the Markov process described by Eq. (5.2). If

we further denote

x(k) ≡

(
x
(k)
1

x
(k)
2

)
,

then obviously,
2∑

i=1

x
(k)
i = 1 for all k. (5.3)

(This expresses the conservation of the number of alumni.) Let us also refer to x(0) as the
initial state vector and to P as the transition matrix of the Markov process. Note that
the entries of the transition matrix satisfy the condition

2∑
i=1

pij = 1 for j = 1, 2, (5.4)
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i.e. the column sums of P equal one. Indeed:

p11(= 0.8) is the probability that the system will “move” from state 1 to state 1 (donating),

p21(= 0.2) is the probability that the system will move from state 1 to state 2 (non-donating).

Since there are no other possibilities (i.e., no other states), then p11 + p21 must equal 1. In
words, this means that an alumnus who donated in year k, will either donate or not donate
in the next year. Similarly, one can conclude that p12 + p22 = 1. (To practice, say what this
equation means in words.)

Returning to the solution of our example and using the notation x(k) for

(
d
n

)(k)

, we

rewrite Eq. (5.2) as:
x(k+1) = Px(k). (5.5)

This allows one to determine x(k) recursively. One can also write a formula relating x(k) directly
to x(0) :

x(k+1) = P · P · x(k−1) =

= P · P · P · x(k−2) = . . .

= P k+1 · x(0).

Thus:
x(k) = P kx(0). (5.6)

Using either (5.5) or (5.6) , we can find x(k) starting with x(0) =

(
0
1

)
, which is given as the

initial state vector in this example:

k 1 2 3 4 5 6 7 8 9 10 11 12

x
(k)
1 0.3 0.45 0.525 0.563 0.581 0.591 0.595 0.598 0.599 0.599 0.600 0.600

x
(k)
2 0.7 0.55 0.475 0.437 0.419 0.409 0.405 0.402 0.401 0.401 0.400 0.400

Thus, after a few years, the state vector converges to a fixed vector. In this limit, about
60% of alumni will contribute, and 40% will not contribute, to the annual fund.

This limiting behavior can be understood from the eigenvalues and eigenvectors of matrix
P , as explained below. First, let us find these eigenvalues and eigenvectors. We find the
eigenvalues using the characteristic equation for matrix P :

det(P − λI) = 0 ⇒
∣∣∣∣ 0.8− λ 0.3

0.2 0.7− λ

∣∣∣∣ = 0

⇒ λ2 − 1.5λ+ 0.5 = 0

⇒ (λ− 1)(λ− 0.5) = 0

⇒ λ1 = 1, λ2 = 0.5.

Now let us find the eigenvectors. For λ = λ1 :

Pv = 1 · v ⇒
(

0.8− 1 0.3
0.2 0.7− 1

)(
a
b

)
=

(
0
0

)
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⇒
(
a
b

)
=

(
3/2
1

)
s,

where s is an arbitrary constant (recall from Linear Algebra that an eigenvector is defined up to
an arbitrary nonzero factor). In the application we are considering, the components of the state
vectors satisfy condition (5.3). Therefore, it is convenient to select s so that the components of
v1 satisfy the same condition. Thus we take

v1 =

(
0.6
0.4

)
. (5.7a)

For λ = λ2:

Pv = 0.5v ⇒
(

0.8− 0.5 0.3
0.2 0.7− 0.5

)(
a
b

)
=

(
0
0

)
⇒

(
a
b

)
=

(
1
−1

)
s.

Since here we cannot satisfy condition (5.3), we simply take s = 1. Thus,

v2 =

(
1
−1

)
. (5.7b)

Next, since v1 and v2 are linearly independent, they form a basis in R2, and hence any initial
state vector can be represented as their linear combination:

x(0) = c1v1 + c2v2, (5.8)

for some constants c1, c2. Then:

x(1) = Px(0) = Pc1v1 + Pc2v2

= c1Pv1 + c2Pv2

= c1λ1v1 + c2λ2v2,

x(2) = Px(1) = Pc1λ1v1 + Pc2λ2v2

= c1λ
2
1v1 + c2λ

2
2v2,

. . .

x(k) = P kx(0) = c1λ
k
1v1 + c2λ

k
2v2. (5.9)

Now, since lim
k→∞

λk1 = lim
k→∞

1k = 1 and lim
k→∞

λk2 = lim
k→∞

0.5k = 0 , we finally obtain:

lim
k→∞

x(k) = c1v1.

Since both x(k) and v1 satisfy condition (5.3) ( x(k) — by its meaning and v1 — by design),
then c1 = 1 . Thus

lim
k→∞

x(k) = v1 =

(
0.6
0.4

)
, (5.10)

which agrees with the result shown in the table after Eq. (5.6).



MATH 235, by T. Lakoba, University of Vermont 44

We have completely solved the problem. However, we can still obtain additional information
from it. To this end, let us compute lim

k→∞
x(k) using (5.6) rather than (5.5) (as we did above).

Since, as we showed, x(k) tends to a limit, then by (5.6), so does P k. Let

lim
k→∞

P k ≡ Q ≡ [q1, q2]. (5.11)

Then from (5.6) and (5.10),
Qx(0) = v1 (5.12)

for any x(0) 6= v2 (in the latter case, c1 = 0; we will return to it later).
To obtain an explicit form of the 2 × 2 matrix Q, let us act with it on some two linearly

independent vectors. As a first such vector, let us take x(0) =

(
1
0

)
. Then from (5.11) and

(5.1),
q1 + 0 = v1. (5.13a)

Now, let us take x(0) =

(
0
1

)
and similarly obtain:

0 + q2 = v1. (5.13b)

These equations imply that
Q = [v1, v1]. (5.14)

This can be verified by computing Q directly from (5.11), by looking at higher and higher
powers k of P .

We can proceed to obtain even more information. Let now x(0) = v2 (ignoring for the
moment the fact that v2 does not satisfy condition (5.3)). Then in (5.9), c1 = 0, c2 = 1. From
the equation stated before Eq. (5.10), we obtain:

Qv2 = 0.

Let v2 =

(
v12
v22

)
. Then

[v1, v1]

(
v12
v22

)
= 0,

and using (5.1),
v1 · v12 + v1 · v22 = 0 ⇒ v12 = −v22.

Of course, we know this from the explicit calculation, Eq. (5.7b). However, the same method
can be applied to other problems where we do not even need to know P explicitly. Thus, let
us write this result as:

2∑
i=1

vi2 = 0. (5.15)

Let us now consider another example to reinforce the techniques used and the conclusions
obtained.

Example 2 A car rental agency has three rental locations, which we label as locations 1, 2,
and 3. A customer may rent a car from any of the three locations and return it to any of
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them. The manager finds that customers return the cars to various locations according to the
following probabilities:

If rented from 1, then return to 1, 2, 3 with probabilities 80%, 10%, 10%.
If rented from 2, then return to 1, 2, 3 with probabilities 30%, 20%, 50%.
If rented from 3, then return to 1, 2, 3 with probabilities 20%, 60%, 20%.

Suppose that initially, the company’s total car fleet of 1000 cars is at location 2. How will the
number of cars at all three locations evolve over time? (Assume that the record is taken every
week.)

Solution: Let x
(k)
1 , x

(k)
2 , x

(k)
3 be the numbers of cars at the three locations at the k-th

recording instance. Then at the (k + 1)-st recording instance:

x
(k+1)
1︸ ︷︷ ︸

number of cars at
location 1 at the

(k + 1)-th instance

= 0.8x
(k)
1︸ ︷︷ ︸

number of cars taken
from 1 and

returned to 1

+ 0.3x
(k)
2︸ ︷︷ ︸

number of cars taken
from 2 and

returned to 1

+ 0.2x
(k)
3︸ ︷︷ ︸

number of cars taken
from 3 and

returned to 1

Similarly,
x
(k+1)
2 = 0.1x

(k)
1 + 0.2x

(k)
2 + 0.6x

(k)
3 ,

x
(k+1)
3 = 0.1x

(k)
1 + 0.5x

(k)
2 + 0.2x

(k)
3 .

In matrix form:
x(k+1) = Px(k),

where

P =

 0.8 0.3 0.2
0.1 0.2 0.6
0.1 0.5 0.2

 .

As before,
3∑

i=1

pij = 1 for j = 1, 2, 3.

We now list x(k), assuming x(0) =

 0
1
0

. Here, as previously in Example 1, we normalize the

numbers of cars at each location to the total number of cars, so that a condition analogous to
(5.3) holds.

k 1 2 3 4 5 6 7 8 9 10 11 12

x
(k)
1 0.3 0.40 0.477 0.511 0.533 0.544 0.550 0.553 0.555 0.556 0.557 0.557

x
(k)
2 0.2 0.37 0.252 0.261 0.240 0.238 0.233 0.232 0.231 0.230 0.230 0.230

x
(k)
3 0.5 0.23 0.271 0.228 0.227 0.219 0.217 0.215 0.214 0.214 0.213 0.213

Thus, again, as in Example 1, the state vector converged to a fixed vector after a few weeks.
On average, there will be 557, 230, and 213 cars at locations 1, 2, 3.

Let us re-obtain this result via the eigenvector–eigenvalue analysis. It is possible to follow
the method used to obtain Eqs. (5.7) in Example 1. However, a much easier approach is to use
Matlab. The command is
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>> [V,D]= eig(P)

(type help eig for the explanation). Its result is:

λ1 = 1

v1 '

 0.557
0.230
0.213


λ2 = 0.547

v2 '

 0.816
−0.431
−0.385


λ3 = −0.347

v3 '

 0.078
−0.743

0.665

 .

Note that v1 satisfies a condition analogous to (5.3) (by design) and v2, v3 satisfy a condition

analogous to (5.15), with
∑2

i=1 being replaced by
∑3

i=1. The counterparts of (5.8) and (5.9)
are:

x(0) = c1v1 + c2v2 + c3v3,

x(k) = c1λ
k
1v1 + c2λ

k
2v2 + c3λ

k
3v3.

Since λ1 = 1 and |λ2|, |λ3| < 1, then

lim
k→∞

x(k) = c1v1.

As before, since v1 satisfies a counterpart of (5.3), then c1 = 1 (for any x(0) that also satisfies
a counterpart of (5.3)), so that

lim
k→∞

x(k) = v1 =

 0.557
0.230
0.213

 ,

which agrees with the result found in the table on the previous page.
Next, in analogy with (5.11), let

lim
k→∞

P k = Q ≡ [q1, q2, q3]

and then obtain the explicit form of q1, q2, q3. Similarly to (5.12), one has:

Qx(0) = v1

for any x(0) for which c1 6= 0 (i.e. when x(0) does not coincide with either v2 or v3 or their linear

combination). Take x(0) =

 1
0
0

. Then similarly to (5.13a),

q1 + 0 + 0 = v1.

Taking x(0) =

 0
1
0

 and x(0) =

 0
0
1

 yields, respectively,

0 + q2 + 0 = v1 and 0 + 0 + q3 = v1.

Therefore, q1 = q2 = q3 = v1, whence

Q = [v1, v1, v1].
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Finally, take x(0) = v2; then (since c1 = 0)

Qv2 = 0.

Denoting v2 =

 v12
v22
v32

 and using the above expression for Q, we find:

v1 · v12 + v1 · v22 + v1 · v32 = 0,

whence
v12 + v22 + v32 = 0,

or
3∑

i=1

vi2 = 0.

This is similar to (5.15). By the same token,

3∑
i=1

vi3 = 0.

From the calculations we have done so far, we can draw the following conclusions.

1. Transition matrices (i.e. matrices with
M∑
i=1

pij = 1, j = 1, ...M ; see Eq. (5.4)) have a

unique eigenvector v1 with λ1 = 1 and such that vi1 ≥ 0.

2. The other eigenvalues, λ2, λ3... of the transition matrices are all less than 1 in magnitude.

Moreover, their eigenvectors satisfy:
M∑
i=1

vij = 0, j = 2, ...M ; see Eq. (5.15).

Question: Do these observations hold for all transition matrices?

Answer: No.

For example, P =

(
0 1
1 0

)
is a transition matrix. But λ1 = 1, λ2 = −1 (which is not

less than 1 in magnitude) and v1 =

(
1/2
1/2

)
, v2 =

(
1
−1

)
. Since

lim
k→∞
|λk2| 6= 0,

then lim
k→∞

x(k) no longer exist, and neither does lim
k→∞

P k (indeed, P 2 = I, P 3 = P, P 4 = I, etc).

However, the conclusions stated above do hold for a restricted class of so called regular tran-
sition matrices.

Definition A transition matrix is called regular 7 if some integer power of it has all positive

7or, sometimes, stochastic
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entries.

For regular transition matrices, the following theorem is valid.

Theorem If P is a regular transition matrix, then as k →∞:

1.
P k → [v1, v1, . . . v1],

where v1 is the eigenvector of P corresponding to the eigenvalue λ1 = 1.

2. This eigenvector is unique and all of its entries are positive; then they can be normalized
so as to have

M∑
i=1

vi1 = 1. (5.16a)

3. The other eigenvalues of P are less than one in magnitude and their eigenvectors satisfy

M∑
i=1

vij = 0, j = 2, ...M. (5.16b)

4. (This conclusion follows from item 2 and the first half of item 3.) As k →∞,

P kx(0) → v1

for any state vector x(0) (recall that a state vector must satisfy (5.16a)).

The most difficult statements to prove is that there is only one eigenvalue λ1 = 1 and that
the corresponding eigenvector has all positive entries. These statements are usually proved in
advanced courses on Linear Algebra. While they may seem to be of purely academic interest, it
is not the case. In fact, these statements have important applications in the theory of ranking
algorithms and, in particular, in the theory of PageRank algorithm, used by Google in its early
years. They also find applications in the theory of wireless signal transmission and reception,
where multiple transmitters and receivers are considered (as it is common in practice).

The fact that there is an eigenvalue λ1 = 1 (not necessarily unique) is easier to prove; this
is left as a homework problem.

As yet another piece of notation, we note that v1, defined in item 4 of the Theorem, is called
the steady state vector of a regular (see the Definition above) Markov chain. This new name
makes sense for a number of reasons. First, as the definition in item 4 above — which is just
Eq. (5.6) in the limit k → ∞ — says, v1 is approached as a steady, i.e. non-changing, state
of the system in the limit of many iterations. Second, this fact can also be viewed from the
perspective of Eq. (5.5) rather than from that of Eq. (5.6). Indeed, if in (5.5) we let k → ∞
and note that ∞+ 1 =∞, we obtain the equation satisfied by the steady state vector:

P x(∞) = x(∞).

This is the same equation as satisfied by the eigenvector of P with eigenvalue λ = 1:

P v1 = 1 · v1.
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We will now consider a different application where the steady state vector of a Markov chain
appears.

Example 3 This example introduces, in a very simple setting, an application of Linear
Algebra to interrelations between prices and outputs in an economic system. The ideas behind
the theory developed below belong to Wassily Leontief, a Russian economist who emigrated,
soon after earning his M.A. degree from the Leningrad State University in 1924, to Germany
and then to the United States. A series of works where a comprehensive theory of an economic
system was developed by Leontief, appeared in the 1930–1940’s (when he was in the US) and
won him the Nobel Prize in economics in 1973.

The closed, or input-output, model considered in this example is closely related (as far as
its mathematics is concerned) to the models considered in Examples 1 and 2.

Three homeowners — a carpenter, an electrician, and a plumber — mutually agree to make
repairs in their three homes. They agree to work a total of ten days each according to the
following schedule:

The carpenter spends 2 days in his own home, 4 days in the electrician’s home, and 4 days
in the plumber’s home.

The electrician spends 1 day in the carpenter’s home, 5 days in his own home, and 4 days
in the plumber’s home.

The plumber spends 6 days in the carpenter’s home, 1 day in the electrician’s home, and 3
days in his own home.

For tax purposes, they must report and pay each other a reasonable daily wage, even for
the work each does on his own home. They agree to adjust their daily wages so that each
homeowner will come out even (i.e., the total amount paid out by each is the same as the total
amount each receives).

What daily wages should they charge?

Solution: Let p1, p2, p3 be the daily wages of the carpenter, electrician, and plumber. To
satisfy the equilibrium condition that each homeowner comes out even, we require that for
each of them,

total expenditures = total income. (∗)

To write out equations corresponding to condition (∗), let us first present the data given in the
problem in the form of a table:

Days worked by
Days worked in the house of C E P

C 2 1 6
E 4 5 1
P 4 4 3

For the carpenter, (∗) yields:

2p1︸︷︷︸
C pays C

+ p2︸︷︷︸
C pays E

+ 6p3︸︷︷︸
C pays P

= 10p1.︸ ︷︷ ︸
C receives

(What is the significance of the number ‘10’ here?) Similarly, for the electrician and the
plumber:

4p1 + 5p2 + p3 = 10p2,
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4p1 + 4p2 + 3p3 = 10p3.

Note that the l.h.s. of these equations are just the rows of the table above.
Dividing these equations by ten (i.e., by the total number of days), we write them in matrix

form as:
Ep = p, (5.17)

where p =

 p1
p2
p3

 is the price vector, charged by each person for the unit of his time (or, the

unit of output). In (5.17), E = (eij) is the exchange , or the input-output , matrix, whose
entries eij repeat the entries of the table above divided by 10. In general, eij is the fraction of
the total output of person j used by person i.

You may recognize Eq. (5.17) as being the eigenvalue equation with λ = 1. Then, the
theorem stated before this Example guarantees that there is a unique solution of (5.17) with all
positive entries (i.e., no one performs his work free of charge) as long as the exchange matrix
is regular according to the Definition stated before Eqs. (5.16). That is:

1) All entries of E or of some of its powers, Em, are positive; and

2)
M∑
i=1

eij = 1, j = 1, ...M (in our example, M = 3).

Let us note that condition 1) means that there is an exchange relationship, either direct or
indirect (i.e., via others) between any two persons in the model.

In our example, matrix E meets both conditions (verify!), and hence a unique price vector
exists. It can be found either by hand or by Matlab (as a decimal) or by Mathematica (exactly).
The result is:

p =

 31
32
36

 · s,
where s is an arbitrary number. Taking s to be, say, 12, we obtain reasonable daily wages for
the year 2018.

In this example we have seen that the eigenvalue equation playing the key role in the theory
of Markov Chain models, also occurs in a very different context of a closed economic model. As
we have mentioned earlier, the same equation also occurs in the theory of Google’s PageRank
algorithm.

Our last example will be related to Example 3, but not to Examples 1, 2, and the project
paper. We will present it just to give a glimpse at a more practically relevant theory than the
one found in Example 3. We will also use this example to practice setting up balance equations.

In the closed economic model considered above, the outputs of all producers are distributed
among them, and these outputs are fixed. (E.g., the numbers of days each person in Example
3 worked, was fixed.) The goal was to determine the prices for these outputs so that the
equilibrium condition (∗) of Example 3 be satisfied.

In the open model, which we will consider below, the producers attempt to satisfy not only
each other’s demand but also an outside demand for their outputs. The goal is now to determine
levels of the outputs that the producers need to maintain in order to satisfy an outside demand.
What is considered known in this model is how much the unit of one producer’s output depends
on the outputs of the others. We will quantify this below.
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Example 4 Let us suppose that the carpenter, electrician, and plumber founded a firm
that provides services to their town. The three people then determined that to produce $1
worth of their individual outputs, they require the following amounts of the outputs of the
other two people:

$1 of C requires: $0.10 of C, $0.35 of E, $0.05 of P ;
$1 of E requires: $0.06 of C, $0.09 of E, $0 of P ;
$1 of P requires: $0.04 of C, $0.11 of E, $0.07 of P .

Suppose the carpenter received an order from the town hall for $1000. How much output (mea-
sured in $$) must each of the three persons in the firm produce to fulfill this order?

Solution: Let x1, x2, x3 be the outputs, measured in dollars, of the carpenter, electrician,
and plumber.
For the carpenter, we have the following balance equation:

x1︸︷︷︸
dollar output

of C

= 0.10 · x1︸ ︷︷ ︸
part of C’s
output needed
to support
his own
functioning

+ 0.06x2︸ ︷︷ ︸
part of C’s
output needed
to support
E’s
functioning

+ 0.04x3︸ ︷︷ ︸
part of C’s
output needed
to support
P ’s
functioning

+ 1000︸︷︷︸
the outside
demand for
C’s output

Similarly, for the electrician and plumber:

x2 = 0.35x1 + 0.09x2 + 0.11x3 + 0,

x3 = 0.05x1 + 0 · x2 + 0.07x3 + 0.

In matrix form:

x− Cx =

 1000
0
0

 , (5.18)

where x =

 x1
x2
x3

 is the output vector and

C =

 0.10 0.06 0.04
0.35 0.09 0.11
0.05 0 0.07


is called the consumption matrix . A consumption matrix is called productive if a solution
of (5.18) with all positive entries exists. It can be shown that a consumption matrix is produc-
tive if either all its column sums or all its row sums are less than 1. This is clearly the case in
this example. An easy calculation (e.g., with Matlab) yields:

x1 ≈ $1144, x2 ≈ $447, x3 ≈ $62.


