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6 Simple pendulum. Part I: The Basics

In this lecture we will pursue two main goals. First, using the simple (a.k.a. mathematical)
pendulum as an example, we will introduce a model that is of fundamental importance to
applied mathematics and physics and arises in a great number of very different applications.
This model is called the harmonic oscillator model. We will also show, at the end of the lecture
and in a homework problem, how the same mathematical model arises in different physical
applications.

Second, we will introduce a mathematical description for a real-valued solution of this model
based on complex numbers. As the harmonic oscillator model arises everywhere in applied
mathematics, so does the aforementioned complex representation of real-valued solutions.

In this lecture, and in the homework, we will also see more applications of the Taylor
expansion and linearization.

6.1 Derivation of the equation of the model

Consider mass m, located at point M , and
suspended from point O on a rod OM . Our
first step will be to derive equations of the
motion for this simple system.

It is possible to derive these equations us-
ing the x- and y-coordinates of m. How-
ever, both these equations and the calcula-
tions leading to them will be ugly. This oc-
curs because the natural degrees of freedom
of point M are not x and y but rather the
angle θ between OM and the vertical line.

To derive equations of motion for this angle, one needs to use the Second Newton’s Law for
rotational motion, which states:

I
d2~θ

dt2
=
∑
i

~ri × ~Fi . (6.1)

On the l.h.s. of this equation, I is the moment of inertia of the object (see below) and ~θ is the
vector whose magnitude equals the angle of rotation and whose direction is along the rotation
axis. More specifically, the direction of ~θ follows the right-hand rule. For example, in the
picture above, ~θ is pointing into the page.8 On the r.h.s. of (6.1), ~Fi is a force and ~ri is the
radius-vector pointing from the axis of rotation to the point where ~Fi is applied, the summation
is over all forces acting on the object, and ‘×’ denotes the cross product. In our case, (6.1)
reduces to:

mr2
d2~θ

dt2
= ~r × ~mg + ~r × ~T ,

where the forces ~mg and ~T are marked in the figure above and ~r = ~OM . Since ~r and ~T are
parallel, then ~r × ~T = ~0. Now, it is easy to verify (do it!) that in the case depicted in this

8Explanation: Imagine a right-threaded screw that is being rotated from the dashed line (where θ = 0)
towards the position of the pendulum shown in the picture. This screw will go into the page.
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figure, ~r × ~mg points out of the page, while ~θ points into the page (as we have noted earlier).
Thus, ~θ and ~r × ~mg are aligned along the same axis (the axis of rotation), but are oppositely
directed. Therefore, we can rewrite (6.1) in the scalar form as:

mr2
d2θ

dt2
= −r ·mg · sin θ .

Denoting r ≡ l, the length of the pendlum, we finally write this as:

d2θ

dt2
= −g

l
sin θ . (6.2)

6.2 Nondimensionalization

The standard step, as you have seen earlier in Lecture 3, is to nondimensionalize the equation
of motion. To see what change of variables we need for this, we rewrite (6.2) as

1

(g/l)

d2θ

dt2
= − sin θ .

This suggests that we take

τ =

√
g

l
t .

Verify that the τ so defined is nondimensional. Next, as we did in Lectures 2 – 4, we use the
Chain Rule to obtain:

d

dt
=
dτ

dt

d

dτ
=

√
g

l

d

dτ
,

d2

dt2
=

√
g

l

d

dτ

(√
g

l

d

dτ

)
=
g

l

d2

dτ 2
,

where at the last step we have used the fact that (g/l) = const. Substituting this into (6.2)
yields

d2θ

dτ 2
= − sin θ

or, using the overdot notation for d
dτ

, as in Lecture 3:

θ̈ = − sin θ . (6.3)

This is the nondimensional equation of a pendulum.

6.3 Linearization of (6.3) and the harmonic oscillator model

Another standard step followed by scientists who are to analyze a nonlinear equation of motion
(like (6.3)) is to first focus on the vicinity of the equilibrium position(s) of the system. The
simple pendulum has two equilibrium positions, where θ̈ = 0: θE = 0 and θE = π. Therefore,
to study the motion of the pendulum, we linearize Eq. (6.3) near these equilibria. For most of
this lecture, we will consider the vicinity of the stable equilibrium, θE = 0, and will only briefly
consider the vicinity of the unstable equilibrium, θE = π, at the end of the lecture.

So, when θ � 1, one has the Taylor (more exactly, Maclaurin) expansion:

sin θ = θ − θ3

3!
+ . . . .
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(Note that everywhere in this section, θ is in radians, not in degrees.) Keeping only the first
term of the expansion, i.e. sin θ ≈ θ (recall that limθ→0(sin θ/θ) = 1 ), one obtains from (6.3):

θ̈ = −θ , or θ̈ + θ = 0 . (6.4)

Equation (6.4) is called the harmonic oscillator model and arises in a great many applications.

6.4 Real form of the solution of (6.4); Linear superposition principle

As you know (and can easily verify), both θ = cos τ and θ = sin τ solve (6.4). In fact,

θ = c1 cos τ + c2 sin τ , (6.5)

where c1, c2 are arbitrary constants, solves (6.4). Indeed, substituting (6.5) into (6.4), one
obtains:

(c1 cos τ)·· + (c2 sin τ)·· = −(c1 cos τ)− (c2 sin τ),

or

c1(cos τ)·· + c2(sin τ)·· = −c1 cos τ − c2 sin τ,

where we moved c1, c2 outside of (d2/dτ 2) because they are constant. Now, since each of sin τ
and cos τ satisfies (6.4), then the first term on the l.h.s. cancels with the first term on the r.h.s.,
and similarly, the second terms also cancel out. This proves that (6.5) is the solution of (6.4).

The fact that a linear combination of two (or more) solutions of an equation is also a
solution of the same equation, is called the linear superposition principle. It holds only for
linear equations and does not hold for nonlinear ones. For example, if u1(τ) and u2(τ) are two
solutions of (6.3), then

c1u1(τ) + c2u2(τ),

is not, in general (i.e. possibly except for some isolated, special values of c1, c2), a solution of
(6.3), simply because

sin(c1u1 + c2u2) 6= c1 sinu1 + c2 sinu2 .

Now, returning to the linear model (6.4) and its solution (6.5), we note that c1, c2 are
determined from the initial conditions. If θ(τ = 0) = θ0 and θ̇(τ = 0) = Ω0, then (verify):

c1 = θ0, c2 = Ω0 . (6.6)

We will finish this section by presenting an alternative form of (6.5). Transform (6.5) as
follows:

c1 cos τ + c2 sin τ =
√
c21 + c22

 c1√
c21 + c22︸ ︷︷ ︸
cosϕ

cos τ +
c2√
c21 + c22︸ ︷︷ ︸
sinϕ

sin τ


=

√
c21 + c22 (cos τ · cosϕ+ sin τ · sinϕ)

=
√
c21 + c22 · cos(τ − ϕ) .

Note that the definition of cosϕ and sinϕ made in the first line above makes sense because(
c1√
c21 + c22

)2

+

(
c2√
c21 + c22

)2

= 1 .
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Now, since

sinϕ

cosϕ
=

c2√
c21+c

2
2

c1√
c21+c

2
2

=
c2
c1

see (6.6)
=

θ0
Ω0

,

then we can write the solution (6.5), (6.6) equivalently as

θ = A cos(τ − ϕ)

A =
√
θ20 + Ω2

0 , ϕ = arctan

(
θ0
Ω0

)
.

(6.7)

Thus, (6.7) and (6.5), (6.6) are two equivalent forms of the solution of (6.4) satisfying the same
initial conditions. The constant ϕ can be interpreted as a “time shift” (specifically, a delay),
because cos(τ − ϕ) is a replica of cos τ shifted by ϕ units to the right.

6.5 Complex form of the solution; Euler formula

Above we have used the known properties of sin τ and cos τ ,

(sin τ)·· = − sin τ, (cos τ)·· = − cos τ ,

to claim that these functions, and hence also their linear combination (6.5), solve (6.4). Below
we will derive these facts from more basic principles.

As you know from the course on elementary differential equations, a solution of a differential
equation with constant coefficients is sought in the form

u = eλτ (6.8)

for some λ = const. Substituting (6.8) into (6.4) and then cancelling by eλτ 6= 0, we find

λ2 + 1 = 0 ,

whence
λ = ±

√
−1 ≡ ±i .

Therefore, e±iτ are solutions of (6.4), and hence there must exist a connection between e±iτ

and sin τ , cos τ . This connection is established by using the Taylor expansion for eiτ . Before
we establish it, however, we need some basic properties of the number i.

Since (i)2 = −1, we have:

(i)3 = (i)2 · i = −i ,
(i)4 = i3 · i = −i · i = −i2 = −(−1) = 1 ,

(i)5 = i4 · i = 1 · i = i ,

(i)6 = i5 · i = i · i = −1 , etc .

Now, the Maclaurin series for eiτ is:

eiτ = 1 + (iτ) +
(iτ)2

2!
+

(iτ)3

3!
+

(iτ)4

4!
+

(iτ)5

5!
+ . . .

= 1 + iτ − τ 2

2!
− iτ 3

3!
+
τ 4

4!
+
iτ 5

5!
+ . . .

=

(
1− τ 2

2!
+
τ 4

4!
+ . . .

)
+ i

(
τ − τ 3

3!
+
τ 5

5!
+ . . .

)
= cos τ + i sin τ ,
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where we have used the Maclaurin series for cos τ and sin τ . This result is known as the

Euler formula: eiτ = cos τ + i sin τ . (6.9a)

At home you will prove that
e−iτ = cos τ − i sin τ . (6.9b)

Since we have found earlier that eiτ and e−iτ are solutions of (6.4), then, by the linear super-
position principle, so is their linear combination

θ = d1e
iτ + d2e

−iτ (where d1, d2 are some complex-valued constants)

= d1(cos τ + i sin τ) + d2(cos τ − i sin τ)

= (d1 + d2) cos τ + (id1 − id2) sin τ ,

which is of the form (6.5). Thus, (6.5) has now been rigorously derived.
As we noted earlier, in (6.5), the constants c1, c2 are arbitrary real numbers (which need

to be chosen to satisfy the initial conditions, but if no conditions are specified, then there is
no restriction on c1, c2). On the contrary, in the expression above, the constants d1 and d2
must satisfy a certain condition to ensure that the solution θ is real-valued. To establish this
condition, we need a few more facts about complex numbers.

6.6 Some basic facts about complex numbers

Let
z = a+ i · b

be a complex number. One calls the real numbers a and b its real and imaginary parts, respec-
tively:

Re(z) = a, Im(z) = b .

A complex number can be represented
as a point in the plain, as shown on the
left. The complex conjugate of z =
a+ ib is z = a− ib, i.e.

Re(z) = Re(z), Im(z) = −Im(z) .

(An alternative, and frequently used,
notation for the complex conjugate of
z is z∗, but we will use the notation z.)

There are several simple corollaries of the definitions of z and z. Namely,

z = a+ ib and z = a− ib

imply (verify all of the facts listed below):

a ≡ Re(z) =
(z + z)

2
; b ≡ Im(z) =

(z − z)

2i
; (6.10a)
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z is real ⇔ z = z ; (6.10b)

z = z . (6.10c)

Another simple fact is that
i = −i (6.10d)

and also,
1

i
= −i . (6.10e)

At home you will also prove that if z and w are any two complex numbers, then

z · w = z · w . (6.11)

Now, as points in the plane have both cartesian and polar representations, so do complex
numbers. Above we have used the Cartesian representation.

In the polar representation, one character-
izes z by its distance from the origin:

|z| =
√
a2 + b2

and the angle φ such that

tanφ =
b

a
.

Quantities |z| and φ are called the modulus
and the argument of z.

The formula for the polar representation of z is obtained as follows:

z = a+ ib =
√
a2 + b2

(
a√

a2 + b2
+ i · b√

a2 + b2

)
= |z| · (cosφ+ i sinφ) = |z|eiφ .

Thus,
z = a+ ib = |z|eiφ , (6.12a)

|z| =
√
a2 + b2 , φ = arctan

(
b

a

)
.

(Which other formula, derived earlier in this lecture, does (6.12a) (and its derivation) remind
you of?)

As follows from the figure above, if z = |z|eiφ, then

z = |z|e−iφ (6.12b)

(in particular, this implies |z| = |z|). At home you will also demonstrate that

e
iπ
2 = i , e−

iπ
2 = −i , (6.13)

which of course, is consistent with (6.10d,e).
With this background, we return to the ussue of finding a relation between constants d1, d2,

introduced at the end of Sec. 6.5. We will also derive a complex form of the solution that is a
counterpart of the real form (6.7).
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6.7 An alternative complex form of the solution

Let us begin by rewriting the last equation of Sec. 6.5 as follows:

θ = d1e
iτ + d2e

−iτ = d1e
iτ + d2eiτ , (6.14a)

where we have used (6.12a) and (6.12b) with |z| = 1. Now, θ(τ) is real-valued, so that θ = θ
(see (6.10b)). Taking the complex conjugate of Eq. (6.14a) yields

θ = d1eiτ + d2eiτ

(6.11)
= d1 · eiτ + d2 · eiτ

(6.12a,b),(6.10c)
= d1 · e−iτ + d2 · eiτ . (6.14b)

Comparing (6.14a) with (6.14b) and noticing that θ must equal θ for all τ , we conclude that:

d1 = d2, d2 = d1 .

Substituting this into (6.14a) and using (6.11), (6.12), we find (verify):

θ = d1 · eiτ + d1 · eiτ ≡ d1 · eiτ + c.c.︸︷︷︸
complex conjugate

(6.14c)

Equation (6.14c) can be represented in yet another form. Recall that z + z = 2Re(z) (see Eq.
(6.10a)). Then (6.14c) becomes:

θ = 2Re(d1e
iτ ) . (6.14d)

Let us represent d1 in polar form (6.12a):

d1 = |d1|eiφ ≡
1

2
Aeiφ.

(This defines the constants A and φ, and the “1
2
” is used to cancel with the “2” in (6.14d).)

Then (6.14d) becomes:

θ = Re(Aei(τ+φ)) = A · Re(ei(τ+φ))
(6.9a)
= A · cos(τ + φ), (6.14e)

which, of course, is equivalent to (6.7) (with φ in (6.14e) being equal to (−ϕ) in (6.7)).
Finally, we rewrite (6.14d) in a form that explicitly accounts for the initial conditions. Let

d1 =
1

2
(a+ ib)

(again, the “1
2
” is here to cancel out the “2” in (6.14d)). Then

(a+ ib)eiτ = (a+ ib)(cos τ + i sin τ)

= a cos τ + i · a · sin τ + i · b · cos τ + i2 · b · sin τ
= (a cos τ − b sin τ) + i(a sin τ + b cos τ) .

Substituting this into (6.14d) and using θ(τ = 0) = θ0 yields a = θ0. Taking the τ -derivative
and setting θ̇(τ = 0) = Ω0 yields b = −Ω0. Then (6.14d) becomes:

θ = Re((θ0 − iΩ0)e
iτ ) . (6.14f)

We will now demonstrate that the complex representations obtained are quite convenient
for obtaining solutions of the harmonic oscillator model with friction and with an external force.
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6.8 Harmonic oscillator with friction

In many cases, the friction can be assumed to be proportional to the velocity. (E.g., in a real
pendulum, this will describe the viscous friction in the greased bearings.) The corresponding
nondimensional model has the form

θ̈ + 2γ θ̇ + θ = 0 , (6.15)

where 2γ is the nondimensional friction coefficient and the “2” is put there for the convenience
“down the road”. Substituting formula (6.8) into (6.15), we obtain:

λ2 + 2γλ+ 1 = 0,

whose solutions are
λ1,2 = −γ ±

√
γ2 − 1 . (6.16a)

One needs to distinguish two regimes, depending on the magnitude of the friction.

γ ≥ 1 Then both λ1,2 are real and negative. In this case, the solution

θ = c1e
(−γ−
√
γ2−1 )τ + c2e

(−γ+
√
γ2−1 )τ (6.17a)

exhibits no oscillations. We will not consider this case further in the lecture, but you will be
asked to explore one aspect of it in the homework.

γ < 1 In this case, we can rewrite (6.16a) as:

λ1,2 = −γ ± i
√

1− γ2 ≡ −γ ± iω . (6.16b)

Note that λ2 = λ1 in this case, which implies (verify) eλ2τ = eλ1τ . Then in complete analogy
with the derivation of (6.14d) and (6.14e), one has

θ = 2 Re(d1 · eλ1τ ) = 2 Re(d1 · e(−γ+iω)τ )

≡ A · e−γτ Re ei(ωτ+φ) = A · e−γτ cos(ωτ + φ) . (6.17b)

Thus, the amplitude of a harmonic oscillator with friction decays exponentially, as e−γτ .

6.9 Forced oscillations; resonance

We will consider only the situation where the external force acting on the oscillator is a periodic
function. The corresponding equation is

θ̈ + 2γθ̇ + θ = F cos(fτ + ψ), (6.18)

where F , f , and ψ are the amplitude, frequency, and phase of the force. Without loss of
generality we can set ψ = 0. Indeed, if ψ 6= 0, then we can make it vanish by shifting the
“time”: cos(fτ + ψ) = cos(f(τ + ψ

f
)) ≡ cos(f · τnew).

As you know from the course on differential equations, the general solution of the inhomo-
geneous Eq. (6.18) is:

θgeneral = θhomogeneous + θparticular. (6.19)

We have found the form of θhomogeneous in Sec. 6.8 (see Eqs. (6.17)). Therefore now we will
focus on finding a particular (i.e., some) solution of (6.18). We seek it in the form

θparticular =
1

2
(Peifτ + c.c.) = Re

(
P eifτ

)
(6.20)
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(see (6.14c) and (6.10a)), where the amplitude P may be complex. Substituting (6.20) into
(6.18) (with ψ = 0), we find (verify):

1

2
(P · (−f 2)eifτ + c.c.) + 2γ · 1

2
(P · if · eift + c.c.) +

1

2
(Peift + c.c.) =

1

2
(Feift + c.c.),

where in writing the r.h.s., we have used the formula

cosx =
1

2
(eix + c.c.) ,

which you will prove in the homework. Now, the previous equation (involving P ) must hold
for all τ , and therefore it suffices to collect all the terms multiplying eift:

P (−f 2 + 2γ · if + 1) = F.

(Verify that the coefficients multiplying e−ift will yield the same equation.) Thus from the
above:

P =
F

(1− f 2) + 2iγf
. (6.21)

This derivation demonstrates the convenience of using the complex form of the solution to a
linear differential equation.

We now investigate two particular cases of the solution given by Eqs. (6.19)–(6.21).

γ � 1 (very large damping)

Let also f 6= 0 (a nonconstant force). Then from (6.21),

P ≈ F

2iγf
=

F

2γf
e−

iπ
2 ,

where we have used Eqs. (6.10e) and (6.13). For large times, when the homogeneous solution
decays (see Sec. 6.8), only the particular solution remains, which is (see (6.20)):

θ ≈ θparticular ≈ Re

(
F

2γf
eifτ−

iπ
2

)
=

F

2γf
cos
(
fτ − π

2

)
=

F

2γf
cos

(
f
(
τ − π

2f

))
.

This means that in this case, the pendulum follows the external force with the phase delay of
π/(2f).

γ = 0, f = 1 (resonance)

In this case with no friction, the frequency of the external force exactly equals the natural
frequency of the pendulum. Note that this case cannot be treated using (6.21) directly (why?).
Also note that in the absence of friction (γ = 0), the homogeneous solution in (6.19) does not
decay and hence may be as important as the particular solution. We will show below that it
actually is important. The way to obtain the solution in this case is to consider either of the
two limits:

(a) f = 1, γ → 0 ;
(b) f → 1, γ = 0 .

Here we will consider limit (a), and at home you will reobtain the same result using limit (b).
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Thus, we let f = 1 and γ → 0. Then from (6.21), P = F/(2iγf). Combining this result
with (6.20) and (6.19) and taking θhomogeneous as the first line of (6.17b) with d1 = 1

2
(a+ ib), we

obtain:

θ = Re

(
(a+ ib)e−γτ+iωτ +

F

2γ
· 1

i
eiτ
)
.

As before, a and b are found from the initial conditions. Namely, at τ = 0:

θ(τ = 0) = θ0 ⇒ θ0 = Re

(
(a+ ib) +

F

2γ
· 1

i

)
= a (6.22a)

θ̇(τ = 0) = Ω0 ⇒ Ω0 = Re

(
(a+ ib) · (−γ + iω) +

F

2γ
· 1

i
· i
)

= (−aγ − bω) +
F

2γ
.

(6.22b)
Solving (6.22a) and (6.22b) for a and b yields:

a = θ0, b =
F

2γω
− Ω0

ω
− θ0γ

ω
. (6.22c)

Now, as γ → 0, ω =
√

1− γ2 → 1, and the most significant term in (6.22c) is seen to be
F/(2γω) = O(1/γ). (Recall the O-notation from Lecture 3.) Substituting (6.22c) into the
expression before (6.22a) and neglecting O(γ) terms in comparison to the retained O(1/γ) and
O(1) terms, we find:

θ = Re

(
(θ0 − iΩ0)e

iτ +
F

2γ

[
ie−γτ+iωτ

ω
+
eiτ

i

])
. (6.23)

In the first term on the r.h.s. of (6.23), which is O(1), we also replaced ω = 1 and γ = 0.
Let us consider the second term on the r.h.s. of (6.23) in detail. First, we observe that this

is an indeterminate form 0/0, for when γ → 0, the denominator clearly goes to zero, and the
numerator does the same:

ieiτ +
1

i
eiτ = 0

(see (6.10e)). Second, we observe that ω can be set to 1. Indeed,

ω =
√

1− γ2 = 1− 1

2
γ2 +O(γ4) = 1 +O(γ2),

whereas the indeterminate form we have is O(γ)/O(γ), and hence O(γ2)-terms can (and should)
be omitted in the limit of γ → 0. With this in mind, and also using (6.10e) and the Maclaurin
expansion for e−γτ , we rewrite the second term on the r.h.s. of (6.23) as:

F

2γ
ieiτ (e−γτ − 1) =

F

2γ
ieiτ ( 6 1− γτ +O(γ2)− 6 1)

= −F
2
i τ eiτ +O(γ).

Thus, in the limit of γ → 0, (6.23) takes on the form:

θ = Re

(
(θ0 − iΩ0)e

iτ − iF
2
τeiτ

)
= (θ0 cos τ + Ω0 sin τ) +

F

2
τ sin τ (6.24)

(verify). The last term describes oscillations with an amplitude that grows linearly in time.
This linear growth of the oscillations when the frequency of the external force coincides with
the natural frequency of the system, is called resonance.
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6.10 Inverted pendulum

Let us return to Eq.(6.3), with no friction or external force. So far we have analyzed its solution
near the equilibrium θE = 0. This is a stable equilibrium, because any solution that begins
near it, keeps oscillating in its vicinity and does not “go away”. We now consider the solution
near the other equilibrium, θE = π. We will show that this other equilibrium is unstable, so
that almost any solution that starts near it, will eventually “go away”.

We let θ = π+ θ(1), where θ(1) is a small deviation from the equilibrium. Then (6.3) yields:

(π + θ(1))·· = − sin(π + θ(1)),

or
¨θ(1) = sin θ(1). (6.25)

We now use the assumption that θ(1) is small and use the Maclaurin expansion for sin θ(1) (see
Sec. 6.3). Keeping, as we did before, only the main-order term in that expansion, we reduce
(6.25) to

¨θ(1) = θ(1). (6.26)

Following the approach of Sec. 6.5, we find that

θ(1) = c1e
τ + c2e

−τ . (6.27)

Thus, unless c1 = 0, which can happen for only one initial condition out of a continuum, the
deviation θ(1) will grow as eτ . That is, the pendulum in the inverted position is unstable, as we
know.

The take-home message of this subsection, which (the message) will be substantially refer-
enced in Lecture 7, is as follows.

� Equation (6.4), or, more generally,

θ̈ = (negative constant) · θ,

describes a stable oscillator. This oscillator will behave according to its name: it will
oscillate with a constant amplitude near the equilibrium point θE = 0.

� On the contrary, Eq. (6.26), or, more generally,

θ̈ = (positive constant) · θ,

describes an unstable pendulum. We did not use the name “oscillator”, because the
corresponding physical object will not oscillate but, instead, will exponentially diverge
from the equilibrium point θE = 0.
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6.11 Harmonic oscillator model for a block in a well

Finally, we will show that (6.4) also occurs
(among many other situations) for a block
placed near the bottom of a well. Mathemat-
ically, this is the same problem as considered
in Lecture 4, so Eq. (4.10b) from that Lec-
ture applies. We note that near the bottom
of the well, its shape is approximated as:

y = y0+(x−x0)y′0+
(x− x0)2

2
y′′0 +. . . (6.28)

= y0 +
y′′0
2
· (x− x0)2 + . . . ,

since y′0 = 0 at the bottom. Substituting (6.28) onto Eq. (4.10b) of Lecture 4 we obtain:

d2x

dt2
= −(x− x0)y′′0

Q2

(
g + y′′0

(
dx

dt

)2
)
, (6.29)

where (see Lecture 4)

Q2 = 1 + y′ 2 = 1 + (y′′0 · (x− x0))2 = 1 +O((x− x0)2) .

If we keep only terms of the order O(x− x0) (assuming that the deviation from the bottom is
small), we should assume that Q = 1. By the same argument, we ignore the term (dx

dt
)2 in

(6.29). Then (6.29) reduces to:

d2(x− x0)
dt2

= −(g · y′′0) · (x− x0). (6.30)

Nondimensionalizing the time, as in Sec. 6.2, we confirm that (6.30) has the same form as
(6.4).


