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8 Pendulum. Part III: Higher-order corrections and per-

turbation theory

In this lecture we will pursue two main goals. First, we will use the Taylor expansion to derive
models beyond linear (e.g., harmonic oscillator) ones. Second, we will treat the nonlinear terms
as small perturbations and attempt to apply the regular perturbation theory analogous to that
used in Lecture 3. However, we will discover that such a perturbation theory is inadequate in
this case. We will investigate a reason for that and propose a direction in which an alternative
perturbation theory should be developed. However, a proper development of such a theory is
a subject of a graduate course and will not be considered here.

8.1 First-order correction to the harmonic oscillator model for a
pendulum, and an attempt at using a regular perturbation the-
ory for it

Recall the equation of a simple pendulum (Eq. (6.2) in Lecture 6):

θ̈ = −ω2
0 sin θ , (8.1)

where the overdot denotes the time derivative and ω2
0 = g/l. As before, consider the angle θ to

be small:
θ = 0 + ϕ, ϕ ≪ 1

and substitute this into (8.1), but unlike what we did in Lectures 6 and 7, retain one more term
beyond the linear one in the Maclaurin expansion of sin θ:

ϕ̈ = −ω2
0ϕ+

ω2
0

6
ϕ3 . (8.2)

Since ϕ ≪ 1, we consider the last term in (8.2) as a small perturbation. As in Lecture 3, we
expect that such a perturbation will cause only a small correction to the soltion ϕ(0) of the
linear (harmonic oscillator) model,

¨ϕ(0) = −ω2
0ϕ

(0) . (8.3)

The general solution of (8.3) is (see (6.14e) of Lecture 6):

ϕ(0) = A cos(ω0t+ constant phase) .

We can set the phase to zero (as explained at the beginning of Sec. 6.9, this corresponds to
a mere shift of the initial time). Moreover, since ϕ, and hence ϕ(0), is small, then so is the
amplitude A. Thus,

ϕ(0) = A cos(ω0t) =
A

2
(eiω0t + e−iω0t), A ≪ 1. (8.4)

Let us look for the solution of (8.2) in the form:

ϕ = ϕ(0) + ϕ(1), |ϕ(1)| ≪ |ϕ(0)| . (8.5)

We now need to determine how small ϕ(1) is compared to ϕ(0). To this end, substitute (8.5)
into (8.2):

¨ϕ(0) + ¨ϕ(1) = −ω2
0ϕ

(0) − ω2
0ϕ

(1) +
ω2
0

6
(ϕ(0) + ϕ(1))3 .
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The underlined (i.e., main-order) terms cancel by virtue of (8.3), and the rest of the above
equation is:

¨ϕ(1) = −ω2
0ϕ

(1) +
ω2
0

6
[ϕ(0) 3 + 3ϕ(0) 2ϕ(1) + . . .] .

Recall that ϕ(0) = O(A). Then, matching the orders of magnitude of the term on the l.h.s. and
the first two terms on the r.h.s., we conclude that ϕ(1) = O(A3). These three terms are then
all of order O(A3). Then the last term on the r.h.s. is O(A2 · A3) ≪ O(A3) and hence can be
dropped. Thus, ϕ(1) satisfies:

¨ϕ(1) = −ω2
0ϕ

(1) +
ω2
0

6
· A3 cos3(ω0t). (8.6)

This is an equation of a harmonic oscillator with an external force. To apply to it the results of
Lecture 6, we need to represent cos3(ω0t) as some linear combination of cosines (and/or sines)
of some frequencies. This can be done by looking up an appropriate identity for cos3 x. We,
however, will derive such an identity starting with the complex representation of cosx:

cos3 x =

(
1

2

(
eix + e−ix

)
)3

=
1

8
((eix)3 + 3(eix)2e−ix + 3eix · (e−ix)2 + (e−ix)3)

=
1

8
(e3ix + e−3ix + 3[eix + e−ix])

=
1

4

(
1

2
(e3ix + e−3ix) +

3

2
(eix + e−ix)

)

=
1

4
(cos 3x+ 3 cos x) . (8.7)

Thus, (8.6) can be rewritten as

¨ϕ(1) = −ω2
0ϕ

(1) +
ω2
0

24
· A3(cos(3ω0t) + 3 cos(ω0t)) ≡ −ω2

0ϕ
(1) + F1(t) + F2(t) . (8.8)

That is,

F1(t) =
ω2
0

24
A3 cos(3ω0t), F2(t) =

ω2
0

8
A3 cos(ω0t).

Note that the frequencies of F1(t) and F2(t) are 3ω0 and ω0, respectively, while the natural
frequency of the harmonic oscillator (8.3) is ω0.

The general solution of the linear inhomogeneous equation (8.8) can be found using an
extended principle of linear superposition (valid only for linear equations). It states:

ϕ(1) =
homogeneous

solution
+

particular
solution
caused by

F1(t)

+

particular
solution
caused by

F2(t)

. (8.9)

We know the homogeneous solution of (8.8):

ϕ
(1)
hom = c1 cosω0t+ c2 sinω0t, c1, c2 = O(A3) . (8.10a)
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The particular solution caused by F1(t) is found from Eq. (6.21) of Lecture 6:

ϕ
(1)
1 =

ω2

0

24
A3

ω2
0 − (3ω0)2

cos(3ω0t) . (8.10b)

Equation (6.21) was written for ω0 = 1 but can be straightforwardly generalized to the case
ω0 6= 1. So, verify that (8.10b) reduces to (6.21) (for an appropriate F0) when ω0 = 1.

Finally, the particular solution caused by F2(t) is found from Eq. (6.24) of Lecture 6, which
is similarly generalized to account for ω0 6= 1:

ϕ
(1)
2 =

ω2

0

8
A3

2
· 1

ω2
0

(ω0t) · sin(ω0t) . (8.10c)

Note that force F2(t) has a frequency ω0, which equals the natural frequency of the unperturbed
oscillator; see Eq. (8.3). So, as explained in Sec. 6.9 of Lecture 6, such a force causes resonance,
i.e. a linear, unbounded growth of the amplitude of the oscillations in time. This is the main

conclusions that one should draw from solution (8.10c).
Substituting expressions (8.10) into (8.9), we have:

ϕ(1) = c1 · cosω0t+ c2 · sinω0t
= O(A3) ≪ O(A)

for all t

− A3

192
cos(3ω0t)

= O(A3) ≪ O(A)
for all t

+
A3

16
(ω0t) sin(ω0t) .

= O(A3 · (ω0t)) ≪ O(A)
ONLY

for (ω0t) ≪ 1
A2

(8.11)

For (ω0t) ≥ 1
A2 (≫ 1), i.e. for sufficiently large times, the last term in (8.11) becomes O(A3 ·

1
A2 ) = O(A) or greater. That is, the presumably small correction ϕ(1) becomes of the order
of, or greater than, the principal term ϕ(0), and hence the main assumption, |ϕ(1)| ≪ |ϕ(0)|, of
expansion (8.5) becomes violated. And then both (8.5) and hence (8.11) are no longer valid.

To summarize, we have solved Eqs. (8.2) and (8.3), which differ only by a small term ϕ3.
We have expected that their solutions would also differ by a small amount. While this is
indeed so for times t of order one, it is not so for sufficiently large times. Specifically, the two
solutions differ significantly for t = O(1/A2) ≫ 1. This may sound counterintuitive: how can
a perturbation that is small at all times cause large changes to a stable system?

Let us point out a simple analogy that answers this question. Consider some abstract
quantity x that satisfies an equation

ẋ = 0 . (8.12)

This is a stable system with the solution x = const. Now consider a slightly perturbed version
of (8.12):

ẋ = ǫ, ǫ ≪ 1. (8.13)

Its (exact) solution is
x = const + ǫ t ≡ x(0) + x(1) . (8.14)

Obviously, x(1) ≪ x(0) only as long as ǫt ≪ const (= O(1)). For t ≥ (1/ǫ) ≫ 1, the correction
caused by the perturbation becomes larger than the principal solution. Since solution (8.14) is
exact, this is a true phenomenon rather than a result of an approximation. What happens in
this case is that the effect of the small pertrbation (the r.h.s. of (8.13)) accumulates and causes
large changes to the solution over a long time.
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8.2 The reason behind the failure of a regular perturbation theory
for (8.2), and its physical implications

We have seen that the way in which a small perturbation causes a large change is by accumu-
lating over long time. But we still would like to understand in what sense the solution of (8.2)
is substantially different from the solution of (8.3). Namely, what does it mean, physically, that
the last term in (8.11) grows in time? If this is actually so, it would be very counterintuitive,
because there is no external force acting on the apparently stable system (8.2) that could cause
its solution to grow.

To uncover the reason, let us look back at Eq. (8.8). It has two perturbation terms. The
term that causes the growth of ϕ(1) is proportional to cos(ω0t), i.e. to ϕ(0). The same term
would occur also if we consider an equation

ϕ̈ = −ω2
0ϕ+ ǫω2

0ϕ, ǫ ≪ 1, (8.15)

and seek its solution in the form (8.5), where ϕ(1) = O(ǫ). Thus, instead of considering Eq. (8.8),
we will now consider the simpler Eq. (8.15). Then, we will compare the solutions of (8.8) and
Eq. (8.15) and from the simpler solution of (8.15) will identify the recipe of how to “fix” the
problematic, growing solution (8.10c) of Eq. (8.8).

Substituting (8.5) in (8.15) one has:

¨ϕ(0) + ¨ϕ(1) = −ω2
0ϕ

(0) − ω2
0ϕ

(1) + ǫω2
0ϕ

(0) + ǫω2
0ϕ

(1) .

The underlined terms cancel in view of (8.3), and the last term on the r.h.s. should be ommitted
as being O(ǫ2). The remaining O(ǫ)-terms are:

¨ϕ(1) = −ω2
0ϕ

(1) + ǫω2
0ϕ

(0)

= −ω2
0ϕ

(1) + ǫω2
0 · A cos(ω0t) . (8.16)

This is the equation of a harmonic oscillator acted upon by a resonant force, considered in
Sec. 6.9 of Lecture 6. Its solution is written down similarly to (8.10c):

ϕ(1) =
homogeneous

solution
+

ǫω2
0A

2
· (ω0t) sin(ω0t)

ω2
0

. (8.17)

Thus, the resonant growth of the correction to the main-order solution occurs also for model
(8.15). But this model can be solved exactly once we notice that it can be written as

ϕ̈ = −ω2
0(1− ǫ)ϕ ⇔

ϕ̈ = −(ω0

√
1− ǫ)2ϕ . (8.18)

The exact solution of (8.18), and hence of (8.15), is also an oscillation with frequency

ω = ω0

√
1− ǫ = ω0

(

1− ǫ

2
+O(ǫ2)

)

: (8.19)

ϕ = A cos(ωt) = A cos
(

ω0t−
ǫω0

2
t+O(ǫ2)

)

= A cosω0t+ A
ǫω0

2
t · sin(ω0t) +O(ǫ2) . (8.20)

In the last line, we have used the first two terms of the Taylor expansion for cos(x + ∆x)
(verify). Note that the O(ǫ) term in (8.20) is precisely the last term in (8.17), as it should
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be. Of course, for large times when ǫω0t ≥ 1, the Taylor series used in expanding the cosine
in (8.20) is not valid. Note that Eq. (8.17) is not valid under the same condition ǫω0t ≥ 1,
because then ϕ(1) 6≪ ϕ(0).

The above comparison of the exact solution, given by the first line of (8.20), and the ap-
proximate solution found from (8.17) (and confirmed by the second line of (8.20)) suggests how
the problem of the growing term in ϕ(1) can be fixed:

One needs to include this term into the main-order solution with a slightly

different frequency!

Mathematically, this can be done by reading Eq. (8.20) backwards (i.e. starting from the
second line). That is:

A cosω0t+ A
ǫω0

2
t · sin(ω0t) =

A cos
(

ω0t−
ǫω0

2
t
)

+O(ǫ2) ≡

A cos
(

ω0

(
1− ǫ

2

)
t
)

+O(ǫ2). (8.20-backwards)

Returning now to our original problem, the perturbation expansion (8.5) for Eq. (8.2), we
obtain (see (8.11)):

ϕ(0) + ϕ(1) = A cos(ω0t)
︸ ︷︷ ︸

ϕ(0)

+ (c1 cosω0t+ c2 sinω0t)
︸ ︷︷ ︸

not essential; will only slightly change
the amplitude and phase of ϕ(0)

− A3

192
cos(3ω0t)

︸ ︷︷ ︸

nongrowing
term

+
A3

16
(ω0t) sin(ω0t)

︸ ︷︷ ︸

combine this with ϕ(0)

as in (8.20-backwards)

= A

[

cos(ω0t)−
(

−A2

16
(ω0t)

)

sin(ω0t)

]

+ (nongrowing terms)

= A cos

(

ω0t−
A2

16
ω0t

)

+O
(
A · (A2)2

)
+ (nongrowing terms)

= A cos

(

ω0

[

1− A2

16

]

t

)

+O(A5) + (nongrowing terms) . (8.21)

Omitting the term (c1 cosω0t+c2 sinω0t), as pointed out above, we present the solution of (8.2)
that is valid for all times:

ϕ = A cos

(

ω0

[

1− A2

16

]

t

)

− A3

192
cos(3ω0t) +O(A5) . (8.22)

The main result of this and the previous sections can now be summarized as follows.

If the correction ϕ(1) produced by the regular perturbation theory for a harmonic

oscillator contains linearly growing terms, then such terms can be included into

the main-order solution with a slightly modified frequency. The remaining terms in
the correction ϕ(1) are small for all times, and hence valid.

In connection with the above, let us mention two pieces of notation:
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• Such a perturbation theory is called singular. Here we had just a glimpse at one of its
important ideas. The details are studied in a graduate course on the perturbation theory.

• The linear growth, like the one exhibited by the last terms in (8.11), (8.17), and (8.20),
is referred to as secular growth. The perturbation terms that cause secular growth are,
correspondingly, called secular terms (these are the last terms in (8.8) and (8.16)).

Let us also list the effects that the small cubic correction in the equation of motion has on
the harmonic oscillations, as evidenced by (8.22):

1. The oscillation frequency changes (see the discussion about Eq. (8.23) below);

2. Small “ripple” whose frequency is three times as high as the original frequency, is pro-
duced. Such a ripple is often referred to as the third harmoinic.

To conclude this section, we stress that (8.22) predicts that the frequency of oscillations of
a pendulum will decrease if their amplitude will increase:

ω = ω0

[

1− A2

16

]

. (8.23)

This makes sense since we know that the pe-
riod of the oscillations in case (a) shown on
the left is greater than the period in case
(b). (Indeed, the amplitude of the oscilla-
tions tends to π, the period tends to infin-
ity — it will take an ideal pendulum for-
ever to leave its equilibrium state θ = π.)
Recall, however, that the period (and fre-
quency) of very small oscillations is almost
independent of their amplitude and equals
2π/ω0 = 2π/

√

g/l .

Further intuitive exploration of the dependence of the frequency of nonlinear oscillations on
their amplitude will be carried out in a homework problem.

8.3 Effect of a quadratic perturbation on the harmonic oscillator

We have found that the cubic terms would modify the frequency of the oscillations of a pen-
dulum, as well as cause small corrections at a new frequency, 3ω0. What will happen if the
perturbation terms are quadratic in ϕ rather than cubic?

We will first answer this question mathematically, without relating it to a specific physical
model. Then, in the next section, we will consider a model where the first correction to the
harmonic oscillator model is a quadratic term.

Consider
ϕ̈ = −ω2

0ϕ+ ǫω2
0ϕ

2, ǫ ≪ 1 (8.24)

and, as before, seek a solution in the form (8.5) with ϕ(1) = O(ǫ) and ϕ(0) = cos(ω0t). Substi-
tuting this into (8.24), we obtain:

¨ϕ(0) + ¨ϕ(1) = −ω2
0ϕ

(0) − ω2
0ϕ

(1) + ǫω2
0(ϕ

(0) + ϕ(1))2 .
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As before, the underlined terms cancel. Omitting O(ǫ2)-terms in the resulting equation yields:

¨ϕ(1) = −ω2
0ϕ

(1) + ǫω2
0

(
ϕ(0)

)2
. (8.25)

We now expand the last term in (8.25) similarly to how we expanded the last term of (8.6) in
calculation (8.7):

cos2 x =

(
1

2
(eix + e−ix)

)2

=
1

4
(e2ix + 2eix · e−ix + e−2ix)

=
1

2

(
1

2
(e2ix + e−2ix) + 1

)

=
1

2
(cos(2x) + 1)

=
1

2

(
cos(2x) + cos(0x)

)
. (8.26)

The reason why we rewrote “1” as “cos(0x)” will become clear shortly.
Next, we use (8.26) and (8.4) in the last term of (8.25) to obtain:

¨ϕ(1) = −ω2
0ϕ

(1) +
ǫω2

0

2
( cos(2ω0t) + cos(0t) ) . (8.27)

This equation is a counterpart of (8.8). It shows that the external force that arose from term
(
ϕ(0)

)2
has two frequencies: 2ω0 and 0. Then, using Eq. (6.21) of Lecture 6, we find the

general solution of (8.27):

ϕ(1) =
homogeneous

solution
+

ǫω2
0/2

ω2
0 − (2ω0)2

cos(2ω0t) +
ǫω2

0/2

ω2
0 − 02

· 1. (8.28)

It is a counterpart of Eq. (8.10b).
Combining the results of these calculations and omitting the homogeneous solution in (8.28)

as nonessential (because it is proportional to ϕ(0) and hence could be included into the latter),
we have:

ϕ = cos(ω0t)−
ǫ

6
cos(2ω0t) +

ǫ

2
+O(ǫ2) . (8.29)

Both O(ǫ)-terms in (8.29), representing corrections to the main-order solution, remain small
for all times. Thus, quadratic corrections to the harmonic oscillator model do not modify the
oscillation freqency and cause only small, non-secular10 effects.

Similarly to what we did upon studying the effect of a cubic correction, let us now list the
effects that a small quadratic term in the equation of motion has on the harmonic oscillations,
as per (8.29):

1. The average value of the oscillation becomes nonzero; see the term (ǫ/2). This means
that the equilibrium value of the solution is slightly shifted.

2. Small “ripple” whose frequency is two times as high as the original frequency, is produced.
Such a ripple is often referred to as the second harmoinic.

10The term ‘secular’ was defined before Eq. (8.23).
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8.4 Specific model with quadratic corrections

Recall the model of a pendulum on a rotating platform studied in Lecture 7; the corresponding
equation of motion is (7.15). Consider its nonvertical (i.e., with θE 6= 0 or π) equilibrium
satisfying

R2 cos θE − 1 = 0 . (8.30)

Near this equilibrium,
θ = θE + ϕ, ϕ ≪ 1.

We need to substitute this into Eq. (7.15) of Lecture 7 and retain all terms of the orders O(ϕ)
and O(ϕ2). As auxiliary expansions, we need:

sin θ = sin(θE + ϕ) = sin θE +
cos θE
1!

ϕ+
− sin θE

2!
ϕ2 + . . .

cos θ = cos(θE + ϕ) = cos θE +
− sin θE

1!
ϕ+

− cos θE
2!

ϕ2 + . . .

(8.31)

We substitute expansions (8.31) into Eq. (7.15) of Lecture 7 and, using shorthand notations

s ≡ sin θE, c ≡ cos θE ,

obtain (verify):

ϕ̈ = ω2
0

(

s+ c ϕ− s

2
ϕ2

)(

R2
[

c− s ϕ− c

2
ϕ2

]

− 1
)

= ω2
0

(

s+ c ϕ− s

2
ϕ2

)

·R2 ·
(

−s ϕ− c

2
ϕ2

)

= ω2
0R

2
(

−s2ϕ− s · c
2

ϕ2 − c · s · ϕ2 +O(ϕ3)
)

.

Finally, omitting the higher-order terms, we have:

ϕ̈ = −(ω2
0R

2 sin2 θE) · ϕ− 3

2
(ω2

0R
2 sin θE cos θE)ϕ

2 . (8.32)

Thus the first-order corrections to the harmonic oscillator model obtained by the linearization
near this nonvertical equilibrium, are quadratic. One can verify that for the other two, vertical,
equilibria of this model (i.e., θE = 0 and θE = π), the first-order corrections are cubic.


