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9 Continuous limits of difference balance equations

The purpose of this lecture is twofold. First, we will revisit the topic of setting up balance
equations, which we considered in Lecture 5. This time our focus will be on how that approach
can be used to derive continuous models starting from models with a finite number of “ele-
ments”. Moreover, some of the results derived here (that are independent of the continuous
approximation) will be used in the next Lecture, where we will consider the inverse problem of
identifying a parameter of a model from the model’s behavior (i.e., from the solution). Thus,
preparing a background for Lecture 10 is the second purpose of this Lecture.

9.1 Newton’s law of cooling and the Heat equation

The temperature of a body that is not in thermal equilibrium with its surroundings changes
in time: it decreases if the body is hotter than the environment and increases otherwise. Let
u denote the temperature of the body in question and uE denote the temperature of the
environment. The “cooling law” whose idea was first formulated by Newton in 1701 states that

du

dt
= α (uE − u) , (9.1a)

where α is a heat transfer coefficient (which depends on the dimensions of the body). This is a
linear inhomogeneous differential equation for u(t), and hence can be solved given α, uE, and
the initial condition

u (t = 0) = u0 . (9.1b)

Note that when uE = const (i.e., the ambient temperature does not vary with time), Eq. (9.1a)
is also a separable differential equation. In this case its solution is, as you will derive in the
homework:

u(t) = uE + (u0 − uE) e−
∫ t
0 α(t′)dt′ . (9.2)

This solution predicts that the difference between the temperature of the body and the envi-
ronment decays with time, so that lim

t→∞
u(t) = uE.

Two comments are in order about solution (9.2). First, in the last term we explicitly
indicated that the heat transfer coefficient, α, can depend on time. This assumption is not
important in this section and, in fact, in all sections of this Lecture except the last one. You
may proceed until Section 9.4 assuming that α and its counterpart r in Section 9.2 are constant.
It is only in Section 9.4 that we will explore the effect of time-varying α(t) or r(t).

The second comment is about the cosmetic appearance of the last term on the r.h.s. of
Eq. (9.2). You may notice that it is inconvenient to have a somewhat complicated-looking
expression in the exponent of the e. To address this, the scientific community has introduced
notation ‘exp’ (for the ‘exponential’):

ef(t) ≡ exp[f(t)] .

With this cosmetic change, Eq. (9.2) can be rewritten as:

u(t) = uE + (u0 − uE) exp

[
−
∫ t

0

α(t′)dt′
]
. (9.2 ′)

The Newton’s law of cooling is local in the sense that it ignores the fact that the temperature
may (and in many cases does) depend on where in the body it is measured. (For example, the
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temperature inside a human body is usually different than the skin temperature.) The theory
that governs the distribution of temperature in an extended body was developed by Joseph
Fourier at the beginning of the 19th century. A standard derivation, based on Fourier’s ideas,
of the equation for temperature distribution is found in Sec. 4.5 of the book by C. Groetsch.
Here we will give a slightly different derivation based on the Newton’s cooling law.

Consider a one-dimensional rod where the
temperature is distributed along x. Consider
three consecutive elements of length ∆x in
this rod, as shown on the left.

For the middle element we have:

d u(x)

dt
= α(u(x−∆x)− u(x))︸ ︷︷ ︸

from Newton’s law
at the left face

+ α(u(x+ ∆x)− u(x))︸ ︷︷ ︸
from Newton’s law

at the right face

.

Equivalently,
du(x)

dt
= α(u(x+ ∆x)− 2u(x) + u(x−∆x)) . (9.3)

In (9.3) and the previous equation, we imply that the u’s also depend on t.
Now let us tend ∆x→ 0. Recall that α depends on the dimensions of the body (the element

in this case). Intuitively, we should expect that as ∆x → 0, α → ∞, because a very small
body will acquire the temperature of its surroundings almost instantaneously. But how exactly
does α depend on ∆x: like α = O( 1

∆x
), or in some other way? We will answer this question

by considering the limit of the r.h.s. of (9.3) as ∆x → 0 and requiring that it be finite and
nonzero.

Taylor expansions of u(x+ ∆x) and u(x−∆x) are:

u(x+ ∆x) = u(x) + u′(x)∆x+ u′′(x)
∆x2

2
+ u′′′(x)

∆x3

6
+O(∆x4) ,

u(x−∆x) = u(x)− u′(x)∆x+ u′′(x)
∆x2

2
− u′′′(x)

∆x3

6
+O(∆x4) .

Adding these two expressions and subtracting 2u(x), to match the r.h.s. of (9.3), we find:

u(x+ ∆x)− 2u(x) + u(x−∆x) = 2u(x) + 2u′′(x)
∆x2

2
+O(∆x4) − 2u(x)

= u′′(x) ·∆x2 +O(∆x4) , (9.4)

where the underlined terms cancel out. Substituting (9.4) into (9.3), we have:

∂u(x, t)

∂t
= (α ·∆x2)

u′′(x, t)∆x2 +O(∆x4)

∆x2
,
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where we have accounted for the fact that u depends on both x and t and hence used the
notation of a partial derivative ∂/∂t. Now, taking the limit ∆x→ 0 and requiring that

lim
∆x→0

α ·∆x2 = a , (9.5)

we find:
∂u

∂t
= a

∂2u

∂x2
. (9.6)

This is the Heat equation, one of the classic equations of mathematical physics. It governs
not only the evolution of temperature in a rod, but many other seemingly different physical
processes.

Thus, to summarize this Section: We have derived a continuous model, Eq. (9.6), starting
from the balance equation, Eq. (9.3), for a discrete model.

9.2 Mixing problems

Suppose that a tank contains solution of
some substance whose concentration at mo-
ment t is c(t). For simplicity, we will refer
to this substance as ‘salt’ (without quotes).
Suppose that solution with concentration cin

enters at a rate rin, and the well-mixed solu-
tion exits at a rate rout. Our first task in this
Section will be to determine the concentra-
tion c(t) as a function of time.

We begin by writing a balance equation for V (t), the volume of water in the tank:

dV

dt
=

(
Rate of flow of

water in

)
−
(

Rate of flow of
water out

)
= rin − rout . (9.7)

Our next step is find an equation for the rate of change of the concentration of salt. The
concentration is defined as

c(t) =
q(t)

V (t)
, (9.8)

where q(t) is the total amount of salt in the tank of volume V . Now, the key observation is
that to determine the evolution of the concentration, one must write the balance equation not
for the concentration itself but for the amount of salt. For the latter we have, similarly to (9.7):

dq

dt
=

(
Rate of flow

of salt in

)
−
(

Rate of flow
of salt out

)
=

(
Rate of flow
of water in

)
·
(

Amount of salt per vol.
of incoming water

)
−
(

Rate of flow
of salt out

)(
Amount of salt per vol.

of outgoing water

)
= rin · cin − rout · cout (9.9)
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Since in the well-mixed approximation, cout = c(t) = q(t)/V (t), then (9.9) yields:

dq

dt
= rin · cin − rout ·

q(t)

V (t)
. (9.10)

This is a linear inhomogeneous equation, which can be solved, e.g., by the method of variation
of parameters. However, we will only consider the special case when

rin = rout ≡ r(t) , (9.11)

and hence from (9.7), one has V (t) = const. In this case Eq. (9.10) is also a separable differential
equation (verify). Dividing both sides of (9.10) by V = const, we have:

dc

dt
=
r(t)

V
(cin − c) . (9.12a)

This equation has the same form as the Newton’s cooling law, Eq. (9.1a). Therefore, its
solution is, by analogy with Eq. (9.2):

c(t) = cin + (c0 − cin) exp

[
− 1

V

∫ t

0

r(t′)dt′
]
, (9.13)

where the notation ‘exp’ was introduced after Eq. (9.2), and

c (t = 0) = c0 . (9.12b)

Similarly to Eq. (9.2), Eq. (9.13) describes the concentration approaching the equilibrium
value cin as t→∞.

Now let us consider a situation where tanks are connected in sequence, and there is a
unidirectional flow (say, from left to right):

Then in the well-mixing approximation, as
before, the concentration of salt in the j-th
tank satisfies:

dcj
dt

=
r

V
(cj−1 − cj) . (9.14)

Let us consider the continuous limit, where the tanks of width ∆x→ 0 are labeled with the
value of the x-coordinate at which they are located (i.e., x is the continuous counterpart of j).
Then, using V = A∆x, where A is the cross-sectional area of the tanks perpendicularly to the
x-axis, we find from Eq. (9.14):

∂c(x, t)

∂t
=
r

A
· c(x−∆x, t)− c(x, t)

∆x
. (9.15)

Now, using the Taylor expansion for c(x−∆x):

lim
∆x→0

c(x−∆x)− c(x)

∆x
= lim

∆x→0

[c(x)− c′(x)∆x+O(∆x2)]− c(x)

∆x
= −c′(x) . (9.16)
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Together, Eqs. (9.15) and (9.16) yield:

∂c

∂t
+
r

A

∂c

∂x
= 0 . (9.17)

This is another classic equation of mathematical physics called the (one-dimensional) Wave
Equation. Unlike the Heat Equation, which describes diffusion-like processes, the Wave equation
describes convection (in this case, unidirectional).

Equation (9.17) may describe, in a certain approximation, a flow of some solution through
a (one-dimensional) porous medium. In this case every element of width ∆x of the medium is
considered as a small tank, and the flow of the solution is considered to be unidirectional.

At home you will consider a more realistic
model of a porous medium where the “tanks”
are connected in such a way that the flow is
allowed in both directions, as shown on the
left. You will be asked to derive a general-
ization of Eq. (9.17) in this case.

9.3 Mortgage repayment

In the two previous sections, we started with models that were discrete in space but continuous
in time and derived models that were continuous in both time and space. In this section, we
will consider a model that is discrete in time and does not contain a space dimension. We will
be interested in the continuous-time version of this model.

Suppose one deposits a sum of P0 dollars in a bank account which compounds interest of
r · 100% every year. Then in one year the account will have

P1 = P0(1 + r) , (9.18a)

and in n years,
Pn = P0(1 + r)n . (9.18b)

Now suppose that instead of being compounded once a year, as assumed in (9.18), the interest
is compounded daily. Then:

P1 day = P0

(
1 +

r

365

)
P2 days = P0

(
1 +

r

365

)2

P1 year = P0

(
1 +

r

365

)365

Pn years = P0

(
1 +

r

365

)n·365

.
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Since 365� 1, we can approximately rewrite the last equation as:

Pn years ≈ P0 · lim
N→∞

(
1 +

r

N

)n·N
. (9.19)

This is an indeterminate form of the type 1∞, and at home you will show that

lim
N→∞

(
1 +

r

N

)n·N
= er·n . (9.20)

For now we will only answer the following simple question: What is the effective annual percent
rate (APR) compounded once per year that yields the same increment of the account as the
nominal APR of r · 100% compounded continuously (or daily)? To this end, note that

1 + reff =
(

1 +
r

365

)365

≈ er .

Thus, the answer to the above question is:

reff = er − 1 . (9.21)

To repeat, (9.21) relates the nominal APR of r ·100% compounded continuously with the APR
of reff · 100% that provides the same yield when compounded once a year. From now on we will
disregard the distinction between r and reff , arguing that if we know one of these rates, we can
always find the other one from (9.21).

Now let us suppose that a person takes a mortgage for the principal sum (i.e., initial amount)
of P0 dollars and is obligated to repay it in M years. The person is charged a fixed interest
of (r/12) · 100% every month on the remaining balance, and pays a fixed amount of x dollars
every month. What should this x be for the loan to be paid off in exactly M years?

The balance equation for the amount Pj that the person still owes after the j-th month is:

Pj+1︸︷︷︸
total amount

owed after
(j + 1)th month

= Pj︸︷︷︸
total amount

owed after
j-th month

+
r

12
Pj︸ ︷︷ ︸

the interest
on the

owed amount

− x︸︷︷︸
monthly
payment

. (9.22)

Although it is possible to solve this linear inhomogeneous difference equation (similarly to how
it is possible to solve a linear inhomogeneous differential equation), the corresponding solution
is rather unwieldy. Therefore, we will consider the continuous limit of Eq. (9.22) and then
find its solution (which can be done much easier). This continuous limit follows with one
intermediate step:

Pj+1 − Pj
1 month

=
r

12
Pj − x , ⇒ dP

dt
=

r

12
P − x =

(
− r

12

)( x

(r/12)
− P

)
. (9.23)

In (9.23), P is a function of the continuous variable t (measured in months). Note that the
r.h.s. of (9.23) has been put in the form of the r.h.s.’s of Eqs. (9.1a) and (9.12a). Therefore,
we can immediately write down its solution, replacing in Eq. (9.2) α with (−r/12), uE with
x/(r/12), and u0 with P0:

P (t) =
x

(r/12)
+

(
P0 −

x

r/12

)
e

r
12
t (9.24)
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(recall that we assumed the interest rate r to be constant). If the loan is paid off in T = 12 ·M
months, this means that

P (T ) = 0 . (9.25)

Substituting (9.25) into (9.24) with t = T and solving for x, we obtain (verify):

x =
r

12

P0e
rM

erM − 1
. (9.26)

This is the constant monthly payment.

9.4 Effect of rapid oscillations of the rate coefficient on the solution

Consider Eq. (9.12a), which determines the salt concentration in the tank when the incoming
solution is pumped into the tank at the same rate with which the well-mixed solution is pumped
out of the tank. Suppose that one has two pumping cases. The pumping rate in the first case
is denoted as r1(t). In the second case, the pumping rate differs from r1 by an oscillating term:

r2(t) = r1(t) + ∆r · sinωt . (9.27)

We will assume that the amplitude ∆r of this “ripple” is not small; that is, it has the same
order of magnitude as r1(t). However, we will assume that during the time of interest, t, the
oscillations occur many times:

ωt� 1 . (9.28)

This is schematically illustrated in the figure below. An equivalent way to say that “oscillations
occur many times” is to say that they are fast. Indeed, fast oscillations occur many times during
a given time interval. Therefore, below we will refer to the ripple satisfying condition (9.28) as
fast. We want to find out how much the two resulting concentrations, c1(t) and c2(t), obtained
from the respective solutions (9.13), differ from each other because of such a fast ripple.

The pumping rate r(t) enters only into the exponent in (9.13) as a term integrated over
time. Using (9.27), we can write:∫ t

0

r2(t′)dt′ =

∫ t

0

r1(t′)dt′ +

∫ t

0

∆r · sin(ωt′)dt′ .

To estimate the relative contribution of the ripple to the difference of the two solutions c2(t)
and c1(t) in (9.13), we assume that r1(t) ≡ r1 = const. This is not essential, but will simplify
our consideration. Then, the first term on the r.h.s. of the above equation is simply∫ t

0

r1 dt
′ = r1 · t . (9.29)

The second term above is:

∆r ·
∫ t

0

sin(ωt′)dt′ =
∆r

ω
(1− cos(ωt))

=
∆r

ω
·O(1)

=
∆r · t
ωt

·O(1)

see (9.28)
= ∆r · t ·O

(
1

ωt

)
︸ ︷︷ ︸
�1

(9.29) & ∆r= O(r1)
= O(r1) · t ·O

(
1

ωt

)

�
∫ t

0

r1 dt
′ . (9.30)
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This calculation shows that the faster the ripple, the smaller its relative contribution to the
integral in the exponent of (9.13) and hence the smaller its effect on the solution.

Visually, this can be explained as follows.
The integral (i.e., the area) of each “positive”
half-period is exactly cancelled by the nega-
tive area of the following half-period. Thus,
if the number of whole periods is an integer,
then the integral is exactly zero.

The integral deviates from zero when the contribution from the “positive” half-period is not
exactly cancelled by that of the “negative” half-period. Therefore, the maximum value of the
integral occurs when the number of whole periods is semi-integer. This maximum value is
simply the area of the “positive” half-period and in the order-of-magnitude sense is:

height · width = O(1) ·O
(

1

ω

)
= O

(
1

ω

)
.

Thus, the main conclusion of this section is that high-frequency (i.e., fast) oscillations of the
coefficient r(t) do not significantly change the value of

∫ t
0
r(t′)dt′. In the context of the problem

considered in Sec. 9.2, this means that if the pumping rate r(t) through a tank fluctuates rapidly
about some mean value, this will only slightly affect the concentration c(t) of the solution in the
tank at any given time. Similarly, rapid fluctuations of the interest rate r(t) about a mean value
will only slightly affect the owed dollar amount P (t) and hence the payments x, considered in
Sec. 9.3.

In a homework problem you will extend the above conclusion of the effect of high-frequency
oscillations of t(t) to integrals of the form

∫ t
0
f(t′) r(t′)dt′, where f(t) is any sufficiently slowly

varying function. We will use this result in later Lectures.


