Using MATLAB in Linear Algebra

Tutorial 3

Math 221

Edward Neuman

Department of Mathematics

Southern lllinois University at Carbondale
edneuman@siu.edu

One of the nice features of MATLAB is its ease of computations with vectors and matrices. In

this tutorial the following topics are discussed: vectors and matrices in MATLAB, solving

systems of linear equations, the inverse of a matrix, determinants, vectors in n-dimensional
Euclidean space, linear transformations, real vector spaces and the matrix eigenvalue problem.
Applications of linear algebra to the curve fitting, message coding and computer graphics are also

included.

3.1 Special characters and MATLAB functions used in Tutorial 3

For the reader's convenience we include lists of special characters and MATLAB functions that

are used in this tutorial.

Special characters

Semicolon operator

Conjugated transpose

Transpose

Times

Dot operator

Power operator

Emty vector operator

Colon operator

Assignment

Equality

Backslash or left division

Right division

Imaginary unit

Logical not

Logical not equal

Logical and

Logical or

Cell

Function Description
acos Inverse cosine
axis Control axis scaling and appearance
char Create character array
chol Cholesky factorization
cos Cosine function
Cross Vector cross product
det Determinant
diag Diagonal matrices and diagonals of a matri
double Convert to double precision
eig Eigenvalues and eigenvectors
eye Identity matrix
fill Filled 2-D polygons
fix Round towards zero
fliplr Flip matrix in left/right direction
flops Floating point operation count
grid Grid lines
hadamard Hadamard matrix
hilb Hilbert matrix
hold Hold current graph
inv Matrix inverse
isempty True for empty matrix
legend Graph legend
length Length of vector
linspace Linearly spaced vector
logical Convert numerical values to logical
magic Magic square
max Largest component
min Smallest component
norm Matrix or vector norm
null Null space
num2cell Convert numeric array into cell array
numa2str Convert number to string
ones Ones array
pascal Pascal matrix
plot Linear plot
poly Convert roots to polynomial
polyval Evaluate polynomial
rand Uniformly distributed random numbers
randn Normally distributed random numbers
rank Matrix rank
reff Reduced row echelon form
rem Remainder after division
reshape Change size
roots Find polynomial roots
sin Sine function
size Size of matrix
sort Sort in ascending order

subs Symbolic substitution
sym Construct symbolic bumbers and variables
tic Start a stopwatch timer
title Graph title
toc Read the stopwatch timer
toeplitz Tioeplitz matrix
tril Extract lower triangular part
triu Extract upper triangular part
vander Vandermonde matrix
varargin Variable length input argument list
zeros Zeros array

3.2 Vectors and matrices in MATLAB

The purpose of this section is to demonstrate how to create and transform vectors and matrices in

MATLAB.

This command creates a row vector

a=[123]

a=
1 2 3

Column vectors are inputted in a similar way, however, semicolons must separate the components

of a vector
b =11;2;3]
b=

1
2
3

Thequote operatot is used to create tle®njugate transposef a vector (matrix) while thdot-
guote operator' creates thé&ransposevector (matrix). To illustrate this let us form a complex
vectora + i*b' and next apply these operations to the resulting vector to obtain

(a+i*b')
ans =
1.0000 - 1.0000i
2.0000 - 2.0000i
3.0000 - 3.0000i

while

(a+i*b').
ans =
1.0000 + 1.0000i

2.0000 + 2.0000i
3.0000 + 3.0000i

Commandength returns the number of components of a vector
length(a)
ans =

3

Thedot operator plays a specific role in MATLAB. It is used for the componentwise application
of the operator that follows the dot operator

Componentwise division of vectoasandb can be accomplished by using theckslash operator
\ together with the dot operator

a.\b'

ans =
1 1 1

For the purpose of the next example let us change veetahe column vector
a=a'
a=

1
2
3

Thedot productand theouter produciof vectorsa andb are calculated as follows

dotprod = a*b

dotprod =
14
outprod = a*b'
outprod =

1 2 3
2 4 6
3 6 9

Thecross producbf two three-dimensional vectors is calculated using comrmiares Let the
vectora be the same as above and let

b=[212]

Note that the semicolon after a command avoids display of the result. The cross praduat of
bis

cp = cross(a,b)

cp=
1 8 5

The cross product vectop is perpendicular to bothandb

[cp*a cp*b’]
ans =
0 0

We will now deal with operations on matrices. Addition, subtraction, and scalar multiplication are
defined in the same way as for the vectors.

This creates a 3-by-3 matrix

A=[123:456;7810]

A=
1 2 3
4 5 6
7 8 10

Note that thesemicolon operator separates the rows. To extractubmatriXd consisting of
rows 1 and 3 and columns 1 and 2 of the matriko the following

B=A(13],[12])

To interchange rows 1 and 3Afuse the vector of row indices together with the colon operator

C=A(321],)

C=
7 8 10
4 5 6
1 2 3

Thecolon operator. stands forll columnsor all rows. For the matribA from the last example
the following command

A()

ans =

Bowoworn~wrr

creates a vector version of the matkixWe will use this operator on several occasions.

To deletea row(column) use thempty vectooperator| |
A(, 2) =1l

A=
3
6

~ AR

10

Second column of the matrix is now deleted. To insert a row (column) we use the technique for
creating matrices and vectors

A=[AGL) [25 8] AG,2)]
A=

1 2 3

4 5 6

7 8 10

Matrix A is now restored to its original form.

Using MATLAB commands one can easily extract those entries of a matrix that satisfy an impsed
condition. Suppose that one wants to extract all entries of that are greater than one. First, we
define a new matrii

A=[-123;051]

A=
-1

2 3
0 5 1

CommandA > 1 creates a matrix of zeros and ones
A>1

ans =
0

1 1
0O 1 O
with ones on these positions where the entries gdtisfy the imposed condition and zeros
everywhere else. This illustratlegyical addressingn MATLAB. To extract those entries of the

matrix A that are greater than one we execute the following command
AA>1)

an

woan?

The dot operatorworks for matrices too. Let now
A=[123;321];

The following command

A*A

ans =

1
9

4 9

4 1

computes the entry-by-entry productfofvith A. However, the following command
A*A

“??? Error using ==>*
Inner matrix dimensions must agree.

generates an error message.

Functiondiag will be used on several occasions. This creatiagonal matrixwith the diagonal
entries stored in the vectdr

d=[123];
D = diag(d)
D=

w oo

1 0
0 2
0 O

To extract the main diagonal of the mattixve use functiomliag again to obtain
d = diag(D)
d=

1
2
3

What is the result of executing of the following command?

diag(diag(d));

In some problems that arise in linear algebra one needs to calclitet@r &ombinatiorof

several matrices of the same dimension. In order to obtain the desired combination both the
coefficients and the matrices must be storecklfs.In MATLAB a cell is inputted using curly
brace$§}. This

c={1,-2,3}

c=

(1 [-21 [3]

is an example of the cell. Functibncomb will be used later on in this tutorial.

function M = lincomb(v,A)

% Linear combination M of several matrices of the same size.
% Coefficients v = {v1,v2,...,vm} of the linear combination and the
% matrices A = {A1,A2,...,Am} must be inputted as cells.

m = length(v);
[k,] = size(A{1});
M = zeros(k, I);
for i=1m

M =M + V{i}*A{i};
end

3.3 Solving systems of linear equations

MATLAB has several tool needed for computing a solution of the system of linear equations.

Let A be an m-by-n matrix and lbtbe an m-dimensional (column) vector. To solve
the linear systemx = b one can use thHeackslash operatadr, which is also called tHeft
division

1. Casem=n

In this case MATLAB calculates the exact solution (modulo the roundoff errors) to the system in
guestion.

Let
A=[123;456;7 8 10]
A=
1 3
4 6
7

o U1 N

10

and let

b = ones(3,1);
Then

x =A\b

X =
-1.0000

1.0000
0.0000

In order to verify correctness of the computed solution let us computesideal vector
r="b-A*x
r=
1.0e-015 *
0.1110

0.6661
0.2220

Entries of the computed residuaheoretically should all be equal to zero. This example
illustrates an effect of the roundoff erros on the computed solution

2. Casem>n

If m > n, then the systerix = b is overdetermine@nd in most cases system is inconsistent. A
solution to the systerix = b, obtained with the aid of the backslash operatas theleast-
squares solution

Let now

A=[2-1;110;1 2]

and let the vector of the right-hand sides will be the same as the one in the last example. Then

10

x =A\b

X =
0.5849
0.0491

The residuat of the computed solution is equal to
r="b-A*x

r=
-0.1208
-0.0755
0.3170

Theoretically the residualis orthogonal to theolumn spacef A. We have

r'*A

ans =
1.0e-014 *
0.1110
0.6994

3. Casem<n

If the number of unknowns exceeds the number of equations, then the linear system is
underdeterminedn this case MATLAB computesgarticular solutionprovided the system is
consistent. Let now

A=[123;456];
b = ones(2,1);

Then
x = A\b

X =

-0.5000
0

0.5000

A general solutiorio the given system is obtained by forming a linear combinatiamith the
columns of thenull spaceof A. The latter is computed using MATLAB functionill

z = null(A)

Z =
0.4082
-0.8165
0.4082

11

Suppose that one wants to compute a solution being a linear combinatiandx, with

coefficientsl and-1. Using functiorlincomb we obtain
w = lincomb({1,-1},{x,z})

W =
-0.9082
0.8165
0.0918

The residuat is calculated in a usual way
r="b-A*w
r=

1.0e-015 *

-0.4441
0.1110

3.4 Function rref and its applications

The built-in functionrref allows a user to solve several problems of linear algebra. In this section
we shall employ this function to compute a solution to the system of linear equations and also to
find the rank of a matrix. Other applications are discussed in the subsequent sections of this
tutorial.

Functionrref takes a matrix and returns tre@luced row echelon foruof its argument. Syntax of
therref command is

B =rref(A) or [B, pivot] = rref(A)
The second output paramepévot holds the indices of the pivot columns.

Let
A = magic(3); b = ones(3,1);

A solutionx to the linear systemix = b is obtained in two steps. First the augmented matrix of
the system is transformed to tleeluced echelon forand next its last column is extracted

[X, pivot] = rref([A b])

X =
1.0000 0 0 0.0667
0 1.0000 0 0.0667
0 0 1.0000 0.0667
pivot =
1 2 3

12

X = Xx(:,4)
X =
0.0667

0.0667
0.0667

The residual of the computed solution is
b - A*x

an

coo?

Information stored in the output paramgiermt can be used to compute the rank of the matrix
length(pivot)

ans =
3

3.5 The inverse of a matrix

MATLAB function inv is used to compute the inverse matrix.

Let the matrixA be defined as follows

A=[123456;7810]

A=

1 2 3
4 5 6
7 8 10
Then

B =inv(A)
B=

-0.6667 -1.3333 1.0000
-0.6667 3.6667 -2.0000
1.0000 -2.0000 1.0000

In order to verify that B is the inverse matrix of A it sufficies to showAtigt=1 and
B*A =1, wherel is the 3-by-3 identity matrix. We have

13

A*B
ans =
1.0000 0 -0.0000

0 1.0000 0
0 0 1.0000

In a similar way one can check thattA = | .

ThePascal matrix named in MATLABpascal hasseveral interesting properties. Let

A = pascal(3)
A=
1 1 1
1 2 3
1 3 6
Its inverseB
B =inv(A)
B=
3 3 1
-3 5 -2
1 -2 1

is the matrix of integers. Theholesky trianglef the matrixA is

S = chol(A)
S =
1 1 1
o 1 2
0O 0 1

Note that the upper triangular part®holds the binomial coefficients. One can verify easily that
A = S"™S.

Functionrref can also be used to compute the inverse matrixAligthe same as above. We
create first the augmented matExwith A being followed by the identity matrix of the same size
asA. Running functionref on the augmented matrix and next extracting columns four through
six of the resulting matrix, we obtain

B = rref([A eye(size(A))]):

B =B(:, 4:6)
B =
3 3 1
-3 5 -2

1 -2 1

14

To verify this result, we compute first the prodéctB
A*B

ans =

= OO

1 0
0 1
0 O

and nexB*A
B*A
ans =

1 0 O
0O 1 O
0O 0 1
This shows thaB is indeed the inverse matrix Af

3.6 Determinants

In some applications of linear algebra knowledge of the determinant of a matrix is required.
MATLAB built-in function det is designed for computing determinants.

Let

A = magic(3);

Determinant ofA is equal to
det(A)

ans =

-360

One of the classical methods for computing determinants utilizefaetor expansian-or more
details, see e.g., [2], pp. 103-114.

Functionckl = cofact(A, k,) computes the cofactakl of theay entry of the matrix®
function ckl = cofact(A,k,l)

% Cofactor ckl of the a_kl entry of the matrix A.

[m,n] = size(A);

if m-~=n
error('‘Matrix must be square')

15

end
B = A([1:k-1,k+1:n],[21:1-1,I+1:n]);
ckl = (-1)Mk+)*det(B);

Functiond = mydet(A) implements the method of cofactor expansion for computing
determinants

function d = mydet(A)

% Determinant d of the matrix A. Function cofact must be
% in MATLAB's search path.

[m,n] = size(A);

if m-~=n
error('‘Matrix must be square')
end
a=A(1,);
c=1[
for I=1:n
cll = cofact(A,1,);
¢ = [c;cll];
end
d = a*c;

Let us note that functiomydet uses the cofactor expansion along the tasf the matrixA.

Method of cofactors has a high computational complexity. Therefore it is not recommended for
computations with large matrices. Its is included here for pedagogical reasons only. To measure a
computational complexity of two functionlet andmydet we will use MATLAB built-in

functionflops. It counts the number @bating-point operationgadditions, subtractions,

multiplications and divisions). Let

A =rand(25);

be a 25-by-25 matrix of uniformly distributed random numbers in the inteéval) Using
functiondet we obtain

flops(0)
det(A)

ans =
-0.1867

flops
ans =
10100
For comparison, a number of flops used by functigniet is

flops(0)

16

mydet(A)

ans =
-0.1867

flops
ans =

223350

Theadjoint matrixadj(A) of the matrixA is also of interest in linear algebra (see, e.g., [2],
p.108).

function B = adj(A)
% Adjoint matrix B of the square matrix A.

[m,n] = size(A);

if m-~=n
error('‘Matrix must be square')
end
B=1;
for k=1in
for I=1:n
B = [B;cofact(Ak,I)];
end
end

B = reshape(B,n,n);

The adjoint matrix and the inverse matrix satisfy the equation
A™ = adj(A)/det(A)

(see [2], p.110). Due to the high computational complexity this formula is not recommended for
computing the inverse matrix.

3.7 VectorsinR"

The2-norm(Euclidean normof a vector is computed in MATLAB using functioorm.
Let
a=-22

a=
2 -1 0 1 2

The 2-norm of is equal to

twon = norm(a)

17

twon =
3.1623

With each nonzero vector one can associateitavectorthat is parallel to the given vector. For
instance, for the vectarin the last example its unit vector is

unitv = a /twon

unitv =
-0.6325 -0.3162 0 0.3162 0.6325

The anglef between two vectorsandb of the same dimension is computed using the formula
6 = arccos(a.b/||al| [|bl]]),

wherea.b stands for the dot product afandb, ||a||is the norm of the vect@randarccosis the
inverse cosine function.

Let the vector be the same as defined above and let
b = (1:5)

b=

abhwNE

Then
angle = acos((a*b)/(norm(a)*norm(b)))

angle =
1.1303

Concept of the cross product can be generalized easily to the set consistiigettors in the
n-dimensional Euclidean spaB€. Functioncrossprod provides a generalization of the
MATLAB function cross

function cp = crossprod(A)
% Cross product cp of a set of vectors that are stored in columns of A.

[n, m] = size(A);
if n~=m+1

error('Number of columns of A must be one less than the number of
rows')

18

end
if rank(A) < min(m,n)
cp = zeros(n,1);
else
C =[ones(n,1) Al
cp = zeros(n,1);

for j=1:n
cp(j) = cofact(C,1,j);
end

end

Let

A=[1-23;456;789;101]

P ~NAPR
oo U
—© o w

The cross product of column vectorsfofs
cp = crossprod(A)

Ccp =
-6
20
-14
24

Vectorcp is orthogonal to the column space of the mairiXOne can easily verify this by
computing the vector-matrix product

Cp™*A

ans =
0 0 O

3.8 Linear transformations from R" to R™

LetL: R" - R™ bea linear transformationlt is well known that any linear transformation in
question is represented by an m-by-n madrjx.e.,L(x) = Ax holds true for anyx € R".
Matrices of some linear transformations including thosefidctionsandrotationsare discussed
in detail in Tutorial 4, Section 4.3.

With each matrixone can associate four subspaces calletbtirdfundamentasubspacesThe
subspaces in question are calleddbleimn spacethenullspace therow spaceand thdeft

19

nullspace First two subspaces are tied closely to the linear transformations on the finite-
dimensional spaces.

Throughout the sequel the symb#i&.) andAN(L) will stand for therangeand thekernelof the

linear transformatiot., respectively. Bases of these subspaces can be computed easily. Recall
thatR(L) = column space of Aand /(L) = nullspace of A Thus the problem of computing the
bases of the range and the kernel of a linear transformaim®aquivalent to the problem of

finding bases of the column space and the nullspace of a matrix that represents transformation

Functionfourb uses two MATLAB functionsref andnull to campute bases of four fundamental
subspaces associated with a matrix

function [cs, ns, rs, Ins] = fourb(A)

% Bases of four fundamental vector spaces associated
% with the matrix A.

% cs- basis of the column space of A

% ns- basis of the nullspace of A

% rs- basis of the row space of A

% Ins- basis of the left nullspace of A

[V, pivot] = rref(A);

r = length(pivot);

cs = A(;,pivot);

ns = null(A, o),

rs = V(Lr,)),

Ins = null(A’ ™),

In this example we will find bases of four fundamental subspaces associated with the random
matrix of zeros and ones.
This set up theeedof therandn function toO

randn(‘'seed',0)

Recall that this function generates normally distributed random numbers. Next a 3-by-5 random
matrix is generated using functiosndn

A =randn(3,5)
A=
1.1650 0.3516 0.0591 0.8717 1.2460

0.6268 -0.6965 1.7971 -1.4462 -0.6390
0.0751 1.6961 0.2641 -0.7012 0.5774

The following trick creates a matrix of zeros and ones from the random rhatrix

A=A>=0

A=
1 1 1 1 1
1 0 1 0 O
1 1 1 0 1

20

Bases of four fundamental subspaces of matrae now computed using functiéourb

[cs, ns, rs, Ins] = fourb(A)

cs =
1 1 1
1 0 O
1 1 O
ns =

-1 0
0 -1
1 0
0O O
0 1
rs =

1 0 O
0O 1 O
1 0 O
0O 0 1
0O 1 O
Ins =

Empty matrix: 3-by-0

Vectors that form bases of the subspaces under discussion are saved as the column vectors.
TheFundamental Theorem of Linear Algelstates that the row space/ofs orthogonal to the
nullspace ofA and also that the column spacetaf orthogonal to the left nullspace /f

(see [6]). For the bases of the subspaces in this example we have

rs*ns

coo?
ocoo

cs*Ins

ans =
Empty matrix: 3-by-0

3.9 Real vector spaces

In this section we discuss some computational tools that can be used in studies of real vector
spaces. Focus is on linear span, linear independence, transition matrices and the Gram-Schmidt
orthogonalization.

21

Linear span

Concept of thdinear spanof a set of vectors in a vector space is one of the most important ones
in linear algebra. Using MATLAB one can determine easily whether or not given vector is in the
span of a set of vectors. Functigmantakes a vector, say and an unspecified numbers of

vectors that form a span. All inputted vectors must be of the same size. On the output a message
is displayed to the screen. It says that eithierin the span or thatis not in the span.

function span(v, varargin)

% Test whether or not vector v is in the span of a set
% of vectors.

A=
n = length(varargin);
for i=1:n

u = varargin{i};

u=u',

A=[AuQ)];
end
V=V,
v =v();
if rank(A) == rank([A v])

disp(' Given vector is in the span.’)
else

disp(' Given vector is not in the span.’)

end

The key fact used in this function is a well-known result regarding existence of a solution to the
system of linear equations. Recall that the system of linear equations possesses a solution

iff rank(A) =rank([A b]) . MATLAB function varargin used here allows a user to enter a
variable number of vectors of the span.

To test functiorspanwe will run this function on matrices. Let

v = ones(3);

and choose matrices

A = pascal(3);

and

B =rand(3);

to determine whether or netbelongs to the span 8f andB. Executing functiorspanwe obtain
span(v, A, B)

Given vector is not in the span.

22

Linear independence

Suppose that one wants to check whether or not a given set of vetitaarly independent

Utilizing some ideas used in functispanone can write his/her function that will take an

uspecified number of vectors and return a message regarding linear independence/dependence of
the given set of vectors. We leave this task to the reader (see Problem 32).

Transition matrix

Problem of finding théransition matrixfrom one vector space to another vector space is interest
in linear algebra. We assume that the ordered bases of these spaces are stored in columns of
matricesT andsS, respectively. Functiottansmat implements a well-known method for finding
the transition matrix.

function V = transmat(T, S)

% Transition matrix V from a vector space having the ordered
% basis T to another vector space having the ordered basis S.
% Bases of the vector spaces are stored in columns of the

% matrices T and S.

[m, n] = size(T);

[p. q] = size(S);
it (m~=p)|(n~=0q)
error('Matrices must be of the same dimension')
end
V = rref([S T));

V =V(,(m + 1):(m + n));
Let
T=[12;34];S=[01;10];

be the ordered bases of two vector spaces. The transition Mdtnimn a vector space having the
ordered basis to a vector space whose ordered basis is stored in columns of theShiatrix

V = transmat(T, S)
V=

3 4
1 2

We will use the transition matriX to compute a coordinate vector in the b&siset

oo
X+ _HH

be the coordinate vector in the bakisThen the coordinate vectpds, is

Xs = V*[1;1]

23

w

Gram-Schmidt orthogonalization

Problem discussed in this subsection is formulated as follows. Given &\baéis, U, ... , Uy}

of a nonzero subspat® of R". Find an orthonormal basis= {v., Vs, ... , W} for W.

Assume that the bastof the subspac#/ is stored in columns of the matw i.e.,

A =[uy; Uy ... ; Uy], where eachy is a column vector. Functiars(A) computes an orthonormal

basisV for W using a classical method of Gram and Schmidt.

function V =gs(A)

% Gram-Schmidt orthogonalization of vectors stored in
% columns of the matrix A. Orthonormalized vectors are
% stored in columns of the matrix V.

[m,n] = size(A);

for k=1:n
V(:,k) = A(:,K);
for j=1:k-1

RGK) = VED*ACK,
V(:,k) = V(;,K) - R(,K)*V(.));
end

R(k,k) = norm(V(:,k));
V(:,k) = V(,K)/R(k,K);
end

Let W be a subspace Bf and let the columns of the matéx where

O 10
— O
A=R 1q
B 18
form a basis fokV. An orthonormal basis for W is computed using functiays
V =gs([11;21;31])
V=
0.2673 0.8729

0.5345 0.2182
0.8018 -0.4364

To verify that the columns of form an orthonormal set it sufficies to check tay = |. We
have

24

V*V
ans =

1.0000 0.0000
0.0000 1.0000

We will now use matrix/ to compute the coordinate vecfof,, where
v=[101];

We have

vV

ans =
1.0690 0.4364

3.10 The matrix eigenvalue problem

MATLAB function eigis designed for computing the eigenvalues and the eigenvectors of the
matrix A. Its syntax is shown below

[V, D] = eig(A)

The eigenvalues df are stored as the diagonal entries of the diagonal niatinxd the
associated eigenvectors are stored in columns of the riatrix

Let

A = pascal(3);
Then

[V, D] = eig(A)

V=
0.5438 -0.8165 0.1938
-0.7812 -0.4082 0.4722
0.3065 0.4082 0.8599
D=
0.1270 0 0
0 1.0000 0
0 0 7.8730

Clearly, matrixA is diagonalizable Theeigenvalue-eigenvector decompositior VDV “of A
is calculated as follows

V*DIV

25

ans =
1.0000 1.0000 1.0000
1.0000 2.0000 3.0000
1.0000 3.0000 6.0000

Note the use of theght divisionoperator/ instead of using the inverse matrix functiom. This
is motivated by the fact that computation of the inverse matrix takes longer than the execution of
the right division operation.

Thecharacteristic polynomiabf a matrix is obtained by invoking the functipaly.
Let

A =magic(3) ;

be themagic squareln this example the vectohpol holds the coefficients of theharacteristic
polynomialof the matrixA. Recall that a polynomial is represented in MATLAB by its
coefficients that are ordered by descending powers

chpol = poly(A)

chpol =
1.0000 -15.0000 -24.0000 360.0000

The eigenvalues @f can be computed using functiorts
eigenvals = roots(chpol)

eigenvals =
15.0000
4.8990
-4.8990

This method, however, is not recommended for numerical computing the eigenvalues of a matrix.
There are several reasons for which this approach is not used in numerical linear algebra. An
interested reader is referred to Tutorial 4.

TheCaley-Hamilton Theorerstates that each matrix satisfies its characteristic equation, i.e.,
chpol(A) = 0, where the last zero stands for the matrix of zeros of the appropriate dimension. We
use functiorlincomb to verify this result

Q = lincomb(num2cell(chpol) , {A"3, A72, A, eye(size(A))})

1.0e-012 *

-0.5684 -0.5542 -0.4832
-0.5258 -0.6253 -0.4547
-0.5116 -0.4547 -0.6821

26

3.11 Applications of Linear Algebra

List of applications of methods of linear algebra is long and impressive. Areas that relay heavily
on the methods of linear algebra include the data fitting, mathematical statistics, linear
programming, computer graphics, cryptography, and economics, to mention the most important
ones. Applications discussed in this section include the data fitting, coding messages, and
computer graphics.

Data fitting

In many problems that arise in science and engineering one wants to fit a discrete set of points in
the plane by a smooth curve or function. A typical choice of a smoothing function is a polynomial
of a certain degree. If the smoothing criterion requires minimization of the 2-norm, then one has
to solve thdeast-squarespproximation problemFunctionfit takes three arguments, the degree

of the approximating polynomial, and two vectors holding the x- and the y- coordinates of points
to be approximated. On the output, the coefficients of the least-squares polynomials are returned.
Also, its graph and the plot of the data points are generated.

function c =fit(n, t, y)

% The least-squares approximating polynomial of degree n (n>=0).
% Coordinates of points to be fitted are stored in the column vectors
% t and y. Coefficients of the approximating polynomial are stored in
% the vector c. Graphs of the data points and the least-squares

% approximating polynomial are also generated.

if (n>=length(t)
error('‘Degree is too big')
end
v = fliplr(vander(t));
v = v(;,1:(n+1));
c = Vly;
¢ = fliplr(c";
x = linspace(min(t),max(t));
w = polyval(c, x);

plot(ty, o' ,xw);
title(sprintf("The least-squares polynomial of degree n = %2.0f' ,n))
legend(‘'data points' , 'fitting polynomial’)

To demonstrate functionality of this code we generate first a set of points in the plane. Our goal is
to fit ten evenly spaced points with the y-ordinates being the values of the funetigin(2t) at
these points

t = linspace(O0, pi/2, 10); t =t

y = sin(2*t);

We will fit the data by a polynomial of degree at most three
c =fit(3, t, y)

c=
-0.0000 -1.6156 2.5377 -0.0234

27

Fitting polynomial of degree at most 3
12 T T T T T T T

o data points
fitting polynomial

Coded messages

Some elementary tools of linear algebra can be used to code and decode messages. A typical
message can be represented as a string. The followinlgd message's an example of the

string in MATLAB. Strings in turn can be converted to a sequence of positive integers using
MATLAB's function double. To code a transformed message multiplication by a nonsingular
matrix is used. Process of decoding messages can be viewed as the inverse process to the one
described earlier. This time multiplication by the inverse of the coding matrix is applied and next
MATLAB's function char is applied to the resulting sequence to recover the original message.
Functionscodeanddecodeimplement these steps.

function B = code(s, A)

% String s is coded using a nonsingular matrix A.
% A coded message is stored in the vector B.

p = length(s);
[n,n] = size(A);
b = double(s);
r = rem(p,n);
if r~=0
b = [b zeros(1,n-nN];
end
b = reshape(b,n,length(b)/n);
B = A*b;
B =B();

28

function s = dcode(B, A)

% Coded message, stored in the vector B, is

% decoded with the aid of the nonsingular matrix A
% and is stored in the string s.

[n,n]= size(A);

p = length(B);
B = reshape(B,n,p/n);
d = A\B;

s = char(d(:)");
A message to be coded is
s = 'Linear algebra is fun’;

As a coding matrix we use the Pascal matrix
A = pascal(4);

This codes the message

B = code(s,A)

B =
Columns 1 through 6
392 1020 2061 3616 340
809
Columns 7 through 12
1601 2813 410 1009 2003
3490
Columns 13 through 18
348 824 1647 2922 366
953
Columns 19 through 24
1993 3603 110 110 110
110

To decode this message we have to work with the same coding fatrix
dcode(B,A)

ans =
Linear algebra is fun

Computer graphics

Linear algebra provides many tools that are of interest for computer programmers especially for
those who deal with the computer graphics. Once the graphical object is created one has to
transform it to another object. Certain plane and/or space transformations are linear. Therefore
they can be realized as the matrix-vector multiplication. For instance, the reflections, translations,

29

rotations all belong to this class of transformations. A computer code provided below deals with
the plane rotations in the counterclockwise direction. Funotitiu takes a planar object
represented by two vectarsandy and returns its image. The angle of rotation is supplied in the
degree measure.

function [xt, yt] = rot2d(t, x, y)

% Rotation of a two-dimensional object that is represented by two
% vectors x and y. The angle of rotation t is in the degree measure.
% Transformed vectors x and y are saved in xt and yt, respectively.

t1 = t*pi/180;

r = [cos(t1) -sin(t1);sin(t1) cos(t1)];
X =[x x(1)];

y=1lyy@)J;

hold on

grid on

axis equal

fill(x, vy, b)

z =rxyl;

xt =z(1,:);

yt =2(2,2);

fill(xt, yt, ™),

title(sprintf('Plane rotation through the angle of %3.2f degrees' 1)
hold off

Vectorsx andy
x=[1232];y=[3124];

are the vertices of the parallelogram. We will test functafd on these vectors using as the
angle of rotation = 75.

[xt, yt] = rot2d(75, X, y)

Xt =

-2.6390 -0.4483 -1.1554 -3.3461 -2.6390
yt=

1.7424 2.1907 3.4154 29671 1.7424

Plane rotation through the angle of 75.00 degrees

The right object is the original parallelogram while the left one is its image.

30

31

References

[1] B.D. Hahn, Essential MATLAB for Scientists and Engineers, John Wiley & Sons, New
York, NY, 1997.

[2] D.R. Hill and D.E. Zitarelli, Linear Algebra Labs with MATLAB, Second edition, Prentice
Hall, Upper Saddle River, NJ, 1996.

[3] B. Kolman, Introductory Linear Algebra with Applications, Sixth edition, Prentice Hall,
Upper Saddle River, NJ, 1997.

[4] R.E. Larson and B.H. Edwards, Elementary Linear Algebra, Third edition, D.C. Heath and
Company, Lexington, MA, 1996.

[5] S.J. Leon, Linear Algebra with Applications, Fifth edition, Prentice Hall, Upper Saddle
River, NJ, 1998.

[6] G. Strang, Linear Algebra and Its Applications, Second edition, Academic Press, Orlando,
FL, 1980.

32

Problems

In Problems 1 — 12 you cannot use lo@psand/orwhile.
Problems 40 - 42 involve symbolic computations. In order to do these problems you have to use
the Symbolic Math Toolbox

1.

Create a ten-dimensional row vector whose all components areZedisal cannot enter
number2 more than once.

Given a row vectoa = [1 2 3 4 5] Create a column vectorthat has the same components as
the vectora but they must bestored in the reversed order.

MATLAB built-in function sort(a) sorts components of the vectoin the ascending order.
Use functionsort to sort components of the vectom the descending order.

To find the largest (smallest) entry of a vector you can use functior(min). Suppose that
these functions are not available. How would you calculate

(a) the largest entry of a vector ?
(b) the smallest entry of a vector?

Suppose that one wants to create a vectdrones and zeros whose length is equahto
(n=1, 2, ...). For instance, whem= 3, thena = [1 0 1 0 1 Q]Given value ofi create a
vectora with the desired property.

Let a be a vector of integers.

(a) Create a vectds whose all components are the even entries of the vactor
(b) Repeat part (a) where ndawconsists of all odd entries of the vecior

Hint: Functionlogical is often used to logical tests. Another useful function you may
consider to use iem(x, y) - the remainder after division gfoyy.

Given two nonempty row vectoesandb and two vectorgndlandind2 with length(a) =
length(ind1) andlength(b) = length(ind2) Components oihd1 andind2 are positive
integers. Create a vectowhose components are those of vectorsdb. Their indices are
determined by vectoiadl andind2, respectively.

Using functionrand, generate a vector of random integers that are uniformly distributed in
the interval(2, 10) In order to insure that the resulting vector is not empty begin with a
vector that has a sufficient number of components.

Hint: Functionfix might be helpful. Typé&elp fix in the Command Window to learn more
about this function.

Let A be a square matrix. Create a maBiwhose entries are the same as those exXcept
the entries along the main diagonal. The main diagonal of the rBaghruld consist entierly
of ones

10.

11.

12.

13.

33

Let A be a square matrix. Create a tridiagonal matrixhose subdiagonal, main diagonal,
and the superdiagonal are taken from the matrix

Hint: You may wish to use MATLAB functiortsiu andtril . These functions take a second
optional argument. To learn more about these functions use MATLAB's help.

In this exercise you are to test a square matriar symmetry. Write MATLAB function
s = issymm(A)that takes a matri& and returns a numberlf A is symmetric, thes = 1,
otherwises = Q

LetA be an m-by-n and I& be an n-by-p matrices. Computing the prodtict AB

requiresmnp multiplications. If eitheA or B has a special structure, then the number of
multiplications can be reduced drastically. Bebe a full matrix of dimension m-by-n and let

B be an upper triangular matrix of dimension n-by-n whose all nonzero entries are equal to
one. The productB can be calculated without using a single multiplicationa. Write an
algorithm for computing the matrix product= A*B that does not require multiplications.
Test your code with the following matricés= pascal(3)andB = triu(ones(3)).

Given square invertible matricésandB and the column vectdr. Assume that the matrices

A andB and the vectob have the same number of rows. Suppose that one wants to solve a
linear system of equatiodsBx = b. Without computing the matrix-matrix produ&tB , find

a solutionx to to this system using the backslash opetator

14. Find all solutions to the linear systefm = b, where the matriX\ consists of rows one
through three of the 5-by-5 magic square
A = magic(b);
A=A1:3,)
A=

15.

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

andb = ones(3; 1)

Determine whether or not the system of linear equations b, where

A =ones(3, 2); b=[1;2; 3];

16.

possesses an exact solution

The purpose of this exercise is to demonstrate that for some matrices the computed solution
to Ax = b can be poor. Define

A = hilb(50); b =rand(50,1);

Find the 2-norm of the residuaF A*x —b. How would you explain a fact that the computed
norm is essentially bigger than zero?

17.

18.

19.

20.

21.

22.

23.

24.

34

In this exercise you are to compare computational complexity of two methods for finding a
solution to the linear systeAx = b whereA is a square matrix. First method utilizes the
backslash operatomvhile the second method requires a use of the funotidnUse

MATLAB function flops to compare both methods for various linear systems of your choice.
Which of these methods require, in general, a smaller number of flops?

Repeat an experiment described in Problem 17 using as a measure of efficiency a time needed
to compute the solution vector. MATLAB has a pair of functianandtoc that can be used

in this experiment. This illustrates use of the above mentioned functions

tic; x = A\b; toc. Using linear systems of your choice compare both methods for speed.

Which method is a faster one? Experiment with linear systems having at least ten equations.

Let A be a real matrix. Use MATLAB functiomef to extract all

(@) columns ofA that are linearly independent
(b) rows ofA that are linearly independent

In this exercise you are to use MATLAB functiorf to compute the rank of the following
matrices:

(a) A =magic(3)
(b) A =magic(4)
(c) A =magic(5)
(d) A =magic(6)

Based on the results of your computations what hypotheses would you formulate about
therank(magic(n)), whenn is odd, whem is even?

Use MATLAB to demonstrate thaet(A + B) # det(A) + det(B) for matrices of your choice.

Let A = hilb(5). Hilbert matrix is often used to test computer algorithms for reliability. In this
exercise you will use MATLAB functionum2str that converts numbers to strings, to see
that contrary to the well-known theorem of Linear Algebra the computed determinant
det(A*A") is not necessarily the samedes(A)*det(A"). You can notice a difference in
computed quantities by executing the following commandsi2str(det(A*A"), 16) and
numa2str(det(A)*det(A"), 16).

The inverse matrix of a symmetric nonsingular matrix is a symmetric matrix. Check this
property using functiomv and a symmetric nonsingular matrix of your choice.

The following matrix

A = ones(5) + eye(5)

A=

PR REREN
PR RN
PR NR R
PNR R
NR R R

35

is a special case of tRei matrix Normalize columns of the matrix so that all columns of
the resulting matrix, sa¥, have the Euclidean norm (2-norm) equal to one.

25. Find the angles between consecutive columns of the niatof¥Problem 24.

26. Find the cross product vectop that is perpendicular to columns one through four of the Pei
matrix of Problem 24.

27. LetL be a linear transformation froRr’ to IR® that is represented by the Pei matrix of
Problem 24. Use MATLAB to determine the range and the kernel of this transformation.

28. Let [P, denote a space of algebraic polynomials of degree atrmésinsformatiorn.
fromIP, toR® is defined as follows

K; |
p(t)dtO
O

L(p)=g p(0) O
g O

0
0
i H

(a) Show that is a linear transformation.

(b) Find a matrix that represents transformatiowith respect to the ordered basis
{1

(c) Use MATLAB to compute bases of the range and the kerriel BErform your
experiment for the following values of= 2, 3, 4

29. TransformatiorL. fromIP, toP,,_; is defined as followk(p) = p'(t) . SymbolP,, is
introduced in Problem 28. Answer questions (a) through (c) of Problem 28 for the
transformatiori of this problem.

30. Given vectorsx = [1; 2; 3]andb = [-3; 0; 2]. Determine whether or not vector= [4; 1;1]is
in the span of vectosandb.

31. Determine whether or not the Toeplitz matrix
A = toeplitz([101 11])

A=

PR R OR
PR ORO
RPOROR
OrRrORR
RPORRR

is in the span of matricBs= ones(5)andC = magic(5)

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

36

Write MATLAB function linind(varargin) that takes an arbitrary number of vectors
(matrices) of the same dimension and determines whether or not the inputted vectors
(matrices) are linearly independent. You may wish to reuse some lines of code that are
contained in the functiospanpresented in Section 3.9 of this tutorial.

Use functiorlinind of Problem 32 to show that the columns of the mdtrof Problem
31 are linearly independent.

Let [a]a = ones(5,1pe the coordinate vector with respect to the basisccolumns of the
matrix A of Problem 31. Find the coordinate vedtr , whereP is the basis of the vector
space spanned by the columns of the mataiscal(5)

Let A be a real symmetric matrix. Use the well-known fact from linear algebra to determine
the interval containing all the eigenvaluestofWrite MATLAB function

[a, b] = interval(A) that takes a symmetric matdxand returns the endpoirdsandb of the
interval that contains all the eigenvalueg of

Without solving the matrix eigenvalue problem find the sum and the product of all
eigenvalues of the following matrices:

(@) P = pascal(30)

(b) M= magic(40)

(c) H = hilb(50)

(d) H = hadamard(64)

Find a matrixB that is similar toA = magic(3).

In this exercise you are to compute a power of the diagonalizable rhatret
A = pascal(5) Use the eigenvalue decompositiorAofo calculate the ninth
power ofA. You cannot apply the power operatoto the matrixA.

Let A be a square matrix. A matrixis said to be thequare rooof A if BA2 = A.

In MATLAB the square root of a matrix can be found using the power opératiothis

exercise you are to use the eigenvalue-eigenvector decomposition of a matrix find the square
root of A =[3 3;-2 -2].

Declare a variabli to be a symbolic variable typirgyms kin the Command Window.
Find a value ok for which the following symbolic matrix
A= sym([1k*22;1k-1;2-10])s notinvertible.

Let the matrixA be the same as in Problem 40.

(a) Without solving the matrix eigenvalue problem, determine a valiueafwhich all the
eigenvalues of are real.

(b) Letv be a number you found in part (a). Convert the symbolic mattixa numeric
matrix B using the substitution commagdbs i.e.,B = subs(A, k, v)

(c) Determine whether or not the matBxs diagonalizable. If so, find a diagonal matix
that is similar taB.

37
(d) If matrix B is diagonalizable use the results of part (¢c) to compute all the eigenvectors of
the matrixB. Do not use MATLAB's functiomig.
42. Given a symbolic matria = sym([L0k; 22 0; 33 3])

(a) Find a nonzero value aéffor which all the eigenvalues éf are real.
(b) For what value ok two eigenvalues ok are complex and the remaining one is real?

