
��������	

���
�	������	�
	��
���	�������

����	���

Edward Neuman
Department of Mathematics

Southern Illinois University at Carbondale
edneuman@siu.edu

One of the nice features of MATLAB is its ease of computations with vectors and matrices. In
this tutorial the following topics are discussed: vectors and matrices in MATLAB, solving
systems of linear equations, the inverse of a matrix, determinants, vectors in n-dimensional
Euclidean space, linear transformations, real vector spaces and the matrix eigenvalue problem.
Applications of linear algebra to the curve fitting, message coding and computer graphics are also
included.

�� 		�������	����������	�
�	������	��
����
�	����	�
	��������	

For the reader's convenience we include lists of special characters and MATLAB functions that
are used in this tutorial.

Special characters
; Semicolon operator
' Conjugated transpose
.' Transpose
* Times
. Dot operator
^ Power operator
[] Emty vector operator
: Colon operator
= Assignment

== Equality
\ Backslash or left division
/ Right division

i, j Imaginary unit
~ Logical not

~= Logical not equal
& Logical and
| Logical or

{ } Cell

2

Function Description
acos Inverse cosine
axis Control axis scaling and appearance
char Create character array
chol Cholesky factorization
cos Cosine function

cross Vector cross product
det Determinant
diag Diagonal matrices and diagonals of a matrix

double Convert to double precision
eig Eigenvalues and eigenvectors
eye Identity matrix
fill Filled 2-D polygons
fix Round towards zero

fliplr Flip matrix in left/right direction
flops Floating point operation count
grid Grid lines

hadamard Hadamard matrix
hilb Hilbert matrix
hold Hold current graph
inv Matrix inverse

isempty True for empty matrix
legend Graph legend
length Length of vector

linspace Linearly spaced vector
logical Convert numerical values to logical
magic Magic square
max Largest component
min Smallest component

norm Matrix or vector norm
null Null space

num2cell Convert numeric array into cell array
num2str Convert number to string

ones Ones array
pascal Pascal matrix
plot Linear plot
poly Convert roots to polynomial

polyval Evaluate polynomial
rand Uniformly distributed random numbers

randn Normally distributed random numbers
rank Matrix rank
reff Reduced row echelon form
rem Remainder after division

reshape Change size
roots Find polynomial roots
sin Sine function
size Size of matrix
sort Sort in ascending order

3

subs Symbolic substitution
sym Construct symbolic bumbers and variables
tic Start a stopwatch timer

title Graph title
toc Read the stopwatch timer

toeplitz Tioeplitz matrix
tril Extract lower triangular part
triu Extract upper triangular part

vander Vandermonde matrix
varargin Variable length input argument list

zeros Zeros array

��			�������	�
�	��������	�
	������

The purpose of this section is to demonstrate how to create and transform vectors and matrices in
MATLAB.

This command creates a row vector

a = [1 2 3]

a =
 1 2 3

Column vectors are inputted in a similar way, however, semicolons must separate the components
of a vector

b = [1;2;3]

b =
 1
 2
 3

The quote operator ' is used to create the conjugate transpose of a vector (matrix) while the dot-
quote operator .' creates the transpose vector (matrix). To illustrate this let us form a complex
vector a + i*b' and next apply these operations to the resulting vector to obtain

(a+i*b')'

ans =
 1.0000 - 1.0000i
 2.0000 - 2.0000i
 3.0000 - 3.0000i

while

4

(a+i*b').'

ans =
 1.0000 + 1.0000i
 2.0000 + 2.0000i
 3.0000 + 3.0000i

Command length returns the number of components of a vector

length(a)

ans =
 3

The dot operator. plays a specific role in MATLAB. It is used for the componentwise application
of the operator that follows the dot operator

a.*a

ans =
 1 4 9

The same result is obtained by applying the power operator ^ to the vector a

a.^2

ans =
 1 4 9

Componentwise division of vectors a and b can be accomplished by using the backslash operator
\ together with the dot operator .

a.\b'

ans =
 1 1 1

For the purpose of the next example let us change vector a to the column vector

a = a'

a =
 1
 2
 3

The dot product and the outer product of vectors a and b are calculated as follows

dotprod = a'*b

5

dotprod =
 14
outprod = a*b'

outprod =
 1 2 3
 2 4 6
 3 6 9

The cross product of two three-dimensional vectors is calculated using command cross. Let the
vector a be the same as above and let

b = [-2 1 2];

Note that the semicolon after a command avoids display of the result. The cross product of a and
b is

cp = cross(a,b)

cp =
 1 -8 5

The cross product vector cp is perpendicular to both a and b

[cp*a cp*b']

ans =
 0 0

We will now deal with operations on matrices. Addition, subtraction, and scalar multiplication are
defined in the same way as for the vectors.

This creates a 3-by-3 matrix

A = [1 2 3;4 5 6;7 8 10]

A =
 1 2 3
 4 5 6
 7 8 10

Note that the semicolon operator ; separates the rows. To extract a submatrix B consisting of
rows 1 and 3 and columns 1 and 2 of the matrix A do the following

B = A([1 3], [1 2])

B =
 1 2
 7 8

To interchange rows 1 and 3 of A use the vector of row indices together with the colon operator

C = A([3 2 1],:)

6

C =
 7 8 10
 4 5 6
 1 2 3

The colon operator : stands for all columns or all rows. For the matrix A from the last example
the following command

A(:)

ans =
 1
 4
 7
 2
 5
 8
 3
 6
 10

creates a vector version of the matrix A. We will use this operator on several occasions.

To delete a row (column) use the empty vector operator []

A(:, 2) = []

A =
 1 3
 4 6
 7 10

Second column of the matrix A is now deleted. To insert a row (column) we use the technique for
creating matrices and vectors

A = [A(:,1) [2 5 8]' A(:,2)]
A =
 1 2 3
 4 5 6
 7 8 10

Matrix A is now restored to its original form.

Using MATLAB commands one can easily extract those entries of a matrix that satisfy an impsed
condition. Suppose that one wants to extract all entries of that are greater than one. First, we
define a new matrix A

A = [-1 2 3;0 5 1]

A =
 -1 2 3
 0 5 1

7

Command A > 1 creates a matrix of zeros and ones

A > 1

ans =
 0 1 1
 0 1 0

with ones on these positions where the entries of A satisfy the imposed condition and zeros
everywhere else. This illustrates logical addressing in MATLAB. To extract those entries of the
matrix A that are greater than one we execute the following command

A(A > 1)

ans =
 2
 5
 3

The dot operator . works for matrices too. Let now

A = [1 2 3; 3 2 1] ;

The following command

A.*A

ans =
 1 4 9
 9 4 1

computes the entry-by-entry product of A with A. However, the following command

A*A

¨??? Error using ==> *
Inner matrix dimensions must agree.

generates an error message.

Function diag will be used on several occasions. This creates a diagonal matrix with the diagonal
entries stored in the vector d

d = [1 2 3];

D = diag(d)

D =
 1 0 0
 0 2 0
 0 0 3

8

To extract the main diagonal of the matrix D we use function diag again to obtain

d = diag(D)

d =
 1
 2
 3

What is the result of executing of the following command?

diag(diag(d));

In some problems that arise in linear algebra one needs to calculate a linear combination of
several matrices of the same dimension. In order to obtain the desired combination both the
coefficients and the matrices must be stored in cells. In MATLAB a cell is inputted using curly
braces{ } . This

c = {1,-2,3}

c =
 [1] [-2] [3]

is an example of the cell. Function lincomb will be used later on in this tutorial.

function M = lincomb(v,A)

% Linear combination M of several matrices of the same size.
% Coefficients v = {v1,v2,…,vm} of the linear combination and the
% matrices A = {A1,A2,...,Am} must be inputted as cells.

m = length(v);
[k, l] = size(A{1});
M = zeros(k, l);
for i = 1:m
 M = M + v{i}*A{i};
end

�
			��� �
�	�!�����	��	��
���	�"�����
�

MATLAB has several tool needed for computing a solution of the system of linear equations.

Let A be an m-by-n matrix and let b be an m-dimensional (column) vector. To solve
the linear system Ax = b one can use the backslash operator \ , which is also called the left
division.

9

1. Case m = n

In this case MATLAB calculates the exact solution (modulo the roundoff errors) to the system in
question.

 Let

A = [1 2 3;4 5 6;7 8 10]

A =
 1 2 3
 4 5 6
 7 8 10

and let

b = ones(3,1);

Then

x = A\b

x =
 -1.0000
 1.0000
 0.0000

In order to verify correctness of the computed solution let us compute the residual vector r

r = b - A*x

r =
 1.0e-015 *
 0.1110
 0.6661
 0.2220

Entries of the computed residual r theoretically should all be equal to zero. This example
illustrates an effect of the roundoff erros on the computed solution.

2. Case m > n

If m > n, then the system Ax = b is overdetermined and in most cases system is inconsistent. A
solution to the system Ax = b, obtained with the aid of the backslash operator \ , is the least-
squares solution.

Let now

A = [2 –1; 1 10; 1 2];

and let the vector of the right-hand sides will be the same as the one in the last example. Then

10

x = A\b
x =
 0.5849
 0.0491

The residual r of the computed solution is equal to

r = b - A*x

r =
 -0.1208
 -0.0755
 0.3170

Theoretically the residual r is orthogonal to the column space of A. We have

r'*A

ans =
 1.0e-014 *
 0.1110
 0.6994

3. Case m < n

If the number of unknowns exceeds the number of equations, then the linear system is
underdetermined. In this case MATLAB computes a particular solution provided the system is
consistent. Let now

A = [1 2 3; 4 5 6];
b = ones(2,1);

Then

x = A\b

x =
 -0.5000
 0
 0.5000

A general solution to the given system is obtained by forming a linear combination of x with the
columns of the null space of A. The latter is computed using MATLAB function null

z = null(A)

z =
 0.4082
 -0.8165
 0.4082

11

Suppose that one wants to compute a solution being a linear combination of x and z, with
coefficients 1 and –1. Using function lincomb we obtain
w = lincomb({1,-1},{x,z})

w =
 -0.9082
 0.8165
 0.0918

The residual r is calculated in a usual way

r = b - A*w

r =
 1.0e-015 *
 -0.4441
 0.1110

�#			$�
����
	����	�
�	���	����������
�

The built-in function rref allows a user to solve several problems of linear algebra. In this section
we shall employ this function to compute a solution to the system of linear equations and also to
find the rank of a matrix. Other applications are discussed in the subsequent sections of this
tutorial.

Function rref takes a matrix and returns the reduced row echelon form of its argument. Syntax of
the rref command is

B = rref(A) or [B, pivot] = rref(A)

The second output parameter pivot holds the indices of the pivot columns.

Let

A = magic(3); b = ones(3,1);

A solution x to the linear system Ax = b is obtained in two steps. First the augmented matrix of
the system is transformed to the reduced echelon form and next its last column is extracted

 [x, pivot] = rref([A b])

x =
 1.0000 0 0 0.0667
 0 1.0000 0 0.0667
 0 0 1.0000 0.0667
pivot =
 1 2 3

12

x = x(:,4)

x =
 0.0667
 0.0667
 0.0667

The residual of the computed solution is

b - A*x

ans =
 0
 0
 0

Information stored in the output parameter pivot can be used to compute the rank of the matrix A

length(pivot)

ans =
 3

�%			���	�
 ����	��	�	�����&

MATLAB function inv is used to compute the inverse matrix.

Let the matrix A be defined as follows

A = [1 2 3;4 5 6;7 8 10]

A =
 1 2 3
 4 5 6
 7 8 10

Then

B = inv(A)

B =
 -0.6667 -1.3333 1.0000
 -0.6667 3.6667 -2.0000
 1.0000 -2.0000 1.0000

In order to verify that B is the inverse matrix of A it sufficies to show that A*B = I and
B*A = I , where I is the 3-by-3 identity matrix. We have

13

A*B

ans =
 1.0000 0 -0.0000
 0 1.0000 0
 0 0 1.0000

In a similar way one can check that B*A = I .

The Pascal matrix, named in MATLAB pascal, has several interesting properties. Let

A = pascal(3)

A =
 1 1 1
 1 2 3
 1 3 6

Its inverse B

B = inv(A)

B =
 3 -3 1
 -3 5 -2
 1 -2 1

is the matrix of integers. The Cholesky triangle of the matrix A is

S = chol(A)

S =
 1 1 1
 0 1 2
 0 0 1

Note that the upper triangular part of S holds the binomial coefficients. One can verify easily that
A = S'*S.

Function rref can also be used to compute the inverse matrix. Let A is the same as above. We
create first the augmented matrix B with A being followed by the identity matrix of the same size
as A. Running function rref on the augmented matrix and next extracting columns four through
six of the resulting matrix, we obtain

B = rref([A eye(size(A))]);

B = B(:, 4:6)

B =
 3 -3 1
 -3 5 -2
 1 -2 1

14

To verify this result, we compute first the product A *B

A*B

ans =
 1 0 0
 0 1 0
 0 0 1

and next B*A

B*A

ans =
 1 0 0
 0 1 0
 0 0 1

This shows that B is indeed the inverse matrix of A.

�' (������
�
��

In some applications of linear algebra knowledge of the determinant of a matrix is required.
MATLAB built-in function det is designed for computing determinants.

Let

A = magic(3);

Determinant of A is equal to

det(A)

ans =
 -360

One of the classical methods for computing determinants utilizes a cofactor expansion. For more
details, see e.g., [2], pp. 103-114.

Function ckl = cofact(A, k, l) computes the cofactor ckl of the akl entry of the matrix A

function ckl = cofact(A,k,l)

% Cofactor ckl of the a_kl entry of the matrix A.

[m,n] = size(A);
if m ~= n
 error('Matrix must be square')

15

end
B = A([1:k-1,k+1:n],[1:l-1,l+1:n]);
ckl = (-1)^(k+l)*det(B);

Function d = mydet(A) implements the method of cofactor expansion for computing
determinants

function d = mydet(A)

% Determinant d of the matrix A. Function cofact must be
% in MATLAB's search path.

[m,n] = size(A);
if m ~= n
 error('Matrix must be square')
end
a = A(1,:);
c = [];
for l=1:n
 c1l = cofact(A,1,l);
 c = [c;c1l];
end
d = a*c;

Let us note that function mydet uses the cofactor expansion along the row 1 of the matrix A.
Method of cofactors has a high computational complexity. Therefore it is not recommended for
computations with large matrices. Its is included here for pedagogical reasons only. To measure a
computational complexity of two functions det and mydet we will use MATLAB built-in
function flops. It counts the number of floating-point operations (additions, subtractions,
multiplications and divisions). Let

A = rand(25);

be a 25-by-25 matrix of uniformly distributed random numbers in the interval (0, 1). Using
function det we obtain

flops(0)
det(A)

ans =
 -0.1867

flops

ans =
 10100

For comparison, a number of flops used by function mydet is

flops(0)

16

mydet(A)

ans =
 -0.1867

flops

ans =
 223350

The adjoint matrix adj(A) of the matrix A is also of interest in linear algebra (see, e.g., [2],
p.108).

function B = adj(A)

% Adjoint matrix B of the square matrix A.

[m,n] = size(A);
if m ~= n
 error('Matrix must be square')
end
B = [];
for k = 1:n
 for l=1:n
 B = [B;cofact(A,k,l)];
 end
end
B = reshape(B,n,n);

The adjoint matrix and the inverse matrix satisfy the equation

A-1 = adj(A)/det(A)

(see [2], p.110). Due to the high computational complexity this formula is not recommended for
computing the inverse matrix.

�) �������	�
	��

The 2-norm (Euclidean norm) of a vector is computed in MATLAB using function norm.

 Let

a = -2:2

a =
 -2 -1 0 1 2

The 2-norm of a is equal to

twon = norm(a)

17

twon =
 3.1623

With each nonzero vector one can associate a unit vector that is parallel to the given vector. For
instance, for the vector a in the last example its unit vector is

unitv = a /twon

unitv =
 -0.6325 -0.3162 0 0.3162 0.6325

The angle θ between two vectors a and b of the same dimension is computed using the formula

� = arccos(a.b/||a|| ||b||),

where a.b stands for the dot product of a and b, ||a|| is the norm of the vector a and arccos is the
inverse cosine function.

Let the vector a be the same as defined above and let

b = (1:5)'

b =
 1
 2
 3
 4
 5

Then

angle = acos((a*b)/(norm(a)*norm(b)))

angle =
 1.1303

Concept of the cross product can be generalized easily to the set consisting of n -1 vectors in the
n-dimensional Euclidean space �

n. Function crossprod provides a generalization of the
MATLAB function cross.

function cp = crossprod(A)

% Cross product cp of a set of vectors that are stored in columns of A.

[n, m] = size(A);
if n ~= m+1
 error('Number of columns of A must be one less than the number of
rows')

18

end
if rank(A) < min(m,n)
 cp = zeros(n,1);
else
 C = [ones(n,1) A]';
 cp = zeros(n,1);
 for j=1:n
 cp(j) = cofact(C,1,j);
 end
end

Let

A = [1 -2 3; 4 5 6; 7 8 9; 1 0 1]

A =
 1 -2 3
 4 5 6
 7 8 9
 1 0 1

The cross product of column vectors of A is

cp = crossprod(A)

cp =
 -6
 20
 -14
 24

Vector cp is orthogonal to the column space of the matrix A. One can easily verify this by
computing the vector-matrix product

cp'*A

ans =
 0 0 0

�* ��
���	���
���������
�	����	��	��	��

Let L: �n � �m be a linear transformation. It is well known that any linear transformation in
question is represented by an m-by-n matrix A, i.e., L(x) = Ax holds true for any x � �n.
Matrices of some linear transformations including those of reflections and rotations are discussed
in detail in Tutorial 4, Section 4.3.

With each matrix one can associate four subspaces called the four fundamental subspaces. The
subspaces in question are called the column space, the nullspace, the row space, and the left

19

nullspace. First two subspaces are tied closely to the linear transformations on the finite-
dimensional spaces.

Throughout the sequel the symbols �(L) and �(L) will stand for the range and the kernel of the
linear transformation L , respectively. Bases of these subspaces can be computed easily. Recall
that �(L) = column space of A and �(L) = nullspace of A. Thus the problem of computing the
bases of the range and the kernel of a linear transformation L is equivalent to the problem of
finding bases of the column space and the nullspace of a matrix that represents transformation L .

Function fourb uses two MATLAB functions rref and null to campute bases of four fundamental
subspaces associated with a matrix A.

function [cs, ns, rs, lns] = fourb(A)

% Bases of four fundamental vector spaces associated
% with the matrix A.
% cs- basis of the column space of A
% ns- basis of the nullspace of A
% rs- basis of the row space of A
% lns- basis of the left nullspace of A

[V, pivot] = rref(A);
r = length(pivot);
cs = A(:,pivot);
ns = null(A, 'r');
rs = V(1:r,:)';
lns = null(A', 'r');

In this example we will find bases of four fundamental subspaces associated with the random
matrix of zeros and ones.
This set up the seed of the randn function to 0

randn('seed',0)

Recall that this function generates normally distributed random numbers. Next a 3-by-5 random
matrix is generated using function randn

A = randn(3,5)

A =
 1.1650 0.3516 0.0591 0.8717 1.2460
 0.6268 -0.6965 1.7971 -1.4462 -0.6390
 0.0751 1.6961 0.2641 -0.7012 0.5774

The following trick creates a matrix of zeros and ones from the random matrix A

A = A >= 0

A =
 1 1 1 1 1
 1 0 1 0 0
 1 1 1 0 1

20

Bases of four fundamental subspaces of matrix A are now computed using function fourb

[cs, ns, rs, lns] = fourb(A)

cs =
 1 1 1
 1 0 0
 1 1 0
ns =
 -1 0
 0 -1
 1 0
 0 0
 0 1
rs =
 1 0 0
 0 1 0
 1 0 0
 0 0 1
 0 1 0
lns =
 Empty matrix: 3-by-0

Vectors that form bases of the subspaces under discussion are saved as the column vectors.
The Fundamental Theorem of Linear Algebra states that the row space of A is orthogonal to the
nullspace of A and also that the column space of A is orthogonal to the left nullspace of A
(see [6]). For the bases of the subspaces in this example we have

rs'*ns

ans =
 0 0
 0 0
 0 0

cs'*lns

ans =
 Empty matrix: 3-by-0

�+ ,���	 �����	������

In this section we discuss some computational tools that can be used in studies of real vector
spaces. Focus is on linear span, linear independence, transition matrices and the Gram-Schmidt
orthogonalization.

21

Linear span

Concept of the linear span of a set of vectors in a vector space is one of the most important ones
in linear algebra. Using MATLAB one can determine easily whether or not given vector is in the
span of a set of vectors. Function span takes a vector, say v, and an unspecified numbers of
vectors that form a span. All inputted vectors must be of the same size. On the output a message
is displayed to the screen. It says that either v is in the span or that v is not in the span.

function span(v, varargin)

% Test whether or not vector v is in the span of a set
% of vectors.

A = [];
n = length(varargin);
for i=1:n
 u = varargin{i};
 u = u';
 A = [A u(:)];
end
v = v';
v = v(:);
if rank(A) == rank([A v])
 disp(' Given vector is in the span.')
else
 disp(' Given vector is not in the span.')
end

The key fact used in this function is a well-known result regarding existence of a solution to the
system of linear equations. Recall that the system of linear equations Ax = b possesses a solution
iff rank(A) = rank([A b]) . MATLAB function varargin used here allows a user to enter a
variable number of vectors of the span.

To test function span we will run this function on matrices. Let

v = ones(3);

and choose matrices

A = pascal(3);

and

B = rand(3);

to determine whether or not v belongs to the span of A and B. Executing function span we obtain

span(v, A, B)

 Given vector is not in the span.

22

Linear independence

Suppose that one wants to check whether or not a given set of vectors is linearly independent.
Utilizing some ideas used in function span one can write his/her function that will take an
uspecified number of vectors and return a message regarding linear independence/dependence of
the given set of vectors. We leave this task to the reader (see Problem 32).

Transition matrix

 Problem of finding the transition matrix from one vector space to another vector space is interest
in linear algebra. We assume that the ordered bases of these spaces are stored in columns of
matrices T and S, respectively. Function transmat implements a well-known method for finding
the transition matrix.

function V = transmat(T, S)

% Transition matrix V from a vector space having the ordered
% basis T to another vector space having the ordered basis S.
% Bases of the vector spaces are stored in columns of the
% matrices T and S.

[m, n] = size(T);
[p, q] = size(S);
 if (m ~= p) | (n ~= q)
 error('Matrices must be of the same dimension')
 end
V = rref([S T]);
V = V(:,(m + 1):(m + n));

Let

T = [1 2;3 4]; S = [0 1;1 0];

be the ordered bases of two vector spaces. The transition matrix V form a vector space having the
ordered basis T to a vector space whose ordered basis is stored in columns of the matrix S is

V = transmat(T, S)

V =
 3 4
 1 2

We will use the transition matrix V to compute a coordinate vector in the basis S. Let

[x] T = 







1

1

be the coordinate vector in the basis T. Then the coordinate vector [x] S, is

 xs = V*[1;1]

23

xs =
 7
 3

Gram-Schmidt orthogonalization

Problem discussed in this subsection is formulated as follows. Given a basis A = {u1, u2, … , um}
of a nonzero subspace W of �n. Find an orthonormal basis V = {v1, v2, … , vm} for W.
Assume that the basis S of the subspace W is stored in columns of the matrix A, i.e.,
A = [u1; u2; … ; um], where each uk is a column vector. Function gs(A) computes an orthonormal
basis V for W using a classical method of Gram and Schmidt.

function V = gs(A)

% Gram-Schmidt orthogonalization of vectors stored in
% columns of the matrix A. Orthonormalized vectors are
% stored in columns of the matrix V.

[m,n] = size(A);
for k=1:n
 V(:,k) = A(:,k);
 for j=1:k-1
 R(j,k) = V(:,j)'*A(:,k);
 V(:,k) = V(:,k) - R(j,k)*V(:,j);
 end
 R(k,k) = norm(V(:,k));
 V(:,k) = V(:,k)/R(k,k);
end

Let W be a subspace of �3 and let the columns of the matrix A, where
















=

13

12

11

A

form a basis for W. An orthonormal basis V for W is computed using function gs

V = gs([1 1;2 1;3 1])

V =
 0.2673 0.8729
 0.5345 0.2182
 0.8018 -0.4364

To verify that the columns of V form an orthonormal set it sufficies to check that VTV = I . We
have

24

V'*V

ans =
 1.0000 0.0000
 0.0000 1.0000

We will now use matrix V to compute the coordinate vector [v] V, where

v = [1 0 1];

We have

v*V

ans =
 1.0690 0.4364

��-			���	�����&	����
 ����	�������

MATLAB function eig is designed for computing the eigenvalues and the eigenvectors of the
matrix A. Its syntax is shown below

 [V, D] = eig(A)

The eigenvalues of A are stored as the diagonal entries of the diagonal matrix D and the
associated eigenvectors are stored in columns of the matrix V.

Let

A = pascal(3);

Then

[V, D] = eig(A)

V =
 0.5438 -0.8165 0.1938
 -0.7812 -0.4082 0.4722
 0.3065 0.4082 0.8599
D =
 0.1270 0 0
 0 1.0000 0
 0 0 7.8730

Clearly, matrix A is diagonalizable. The eigenvalue-eigenvector decomposition A = VDV -1of A
is calculated as follows

V*D/V

25

ans =
 1.0000 1.0000 1.0000
 1.0000 2.0000 3.0000
 1.0000 3.0000 6.0000

Note the use of the right division operator / instead of using the inverse matrix function inv. This
is motivated by the fact that computation of the inverse matrix takes longer than the execution of
the right division operation.

The characteristic polynomial of a matrix is obtained by invoking the function poly.
Let

A = magic(3) ;

be the magic square. In this example the vector chpol holds the coefficients of the characteristic
polynomial of the matrix A. Recall that a polynomial is represented in MATLAB by its
coefficients that are ordered by descending powers

chpol = poly(A)

chpol =
 1.0000 -15.0000 -24.0000 360.0000

The eigenvalues of A can be computed using function roots

eigenvals = roots(chpol)

eigenvals =
 15.0000
 4.8990
 -4.8990

This method, however, is not recommended for numerical computing the eigenvalues of a matrix.
There are several reasons for which this approach is not used in numerical linear algebra. An
interested reader is referred to Tutorial 4.

The Caley-Hamilton Theorem states that each matrix satisfies its characteristic equation, i.e.,
chpol(A) = 0, where the last zero stands for the matrix of zeros of the appropriate dimension. We
use function lincomb to verify this result

Q = lincomb(num2cell(chpol) , {A^3, A^2, A, eye(size(A))})

Q =
 1.0e-012 *
 -0.5684 -0.5542 -0.4832
 -0.5258 -0.6253 -0.4547
 -0.5116 -0.4547 -0.6821

26

���			����������
�	��	��
���	�������

List of applications of methods of linear algebra is long and impressive. Areas that relay heavily
on the methods of linear algebra include the data fitting, mathematical statistics, linear
programming, computer graphics, cryptography, and economics, to mention the most important
ones. Applications discussed in this section include the data fitting, coding messages, and
computer graphics.

���� �������

In many problems that arise in science and engineering one wants to fit a discrete set of points in
the plane by a smooth curve or function. A typical choice of a smoothing function is a polynomial
of a certain degree. If the smoothing criterion requires minimization of the 2-norm, then one has
to solve the least-squares approximation problem. Function fit takes three arguments, the degree
of the approximating polynomial, and two vectors holding the x- and the y- coordinates of points
to be approximated. On the output, the coefficients of the least-squares polynomials are returned.
Also, its graph and the plot of the data points are generated.

function c = fit(n, t, y)

% The least-squares approximating polynomial of degree n (n>=0).
% Coordinates of points to be fitted are stored in the column vectors
% t and y. Coefficients of the approximating polynomial are stored in
% the vector c. Graphs of the data points and the least-squares
% approximating polynomial are also generated.

if (n >= length(t))
 error('Degree is too big')
end
v = fliplr(vander(t));
v = v(:,1:(n+1));
c = v\y;
c = fliplr(c');
x = linspace(min(t),max(t));
w = polyval(c, x);
plot(t,y, 'ro' ,x,w);
title(sprintf('The least-squares polynomial of degree n = %2.0f' ,n))
legend('data points' , 'fitting polynomial')

To demonstrate functionality of this code we generate first a set of points in the plane. Our goal is
to fit ten evenly spaced points with the y-ordinates being the values of the function y = sin(2t) at
these points

t = linspace(0, pi/2, 10); t = t';

y = sin(2*t);

We will fit the data by a polynomial of degree at most three

c = fit(3, t, y)

c =
 -0.0000 -1.6156 2.5377 -0.0234

27

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Fitting polynomial of degree at most 3

data points
fitting polynomial

	
���
�������

Some elementary tools of linear algebra can be used to code and decode messages. A typical
message can be represented as a string. The following 'coded message' is an example of the
string in MATLAB. Strings in turn can be converted to a sequence of positive integers using
MATLAB's function double. To code a transformed message multiplication by a nonsingular
matrix is used. Process of decoding messages can be viewed as the inverse process to the one
described earlier. This time multiplication by the inverse of the coding matrix is applied and next
MATLAB's function char is applied to the resulting sequence to recover the original message.
Functions code and decode implement these steps.

function B = code(s, A)

% String s is coded using a nonsingular matrix A.
% A coded message is stored in the vector B.

p = length(s);
[n,n] = size(A);
b = double(s);
r = rem(p,n);
if r ~= 0
 b = [b zeros(1,n-r)]';
end
b = reshape(b,n,length(b)/n);
B = A*b;
B = B(:)';

28

function s = dcode(B, A)

% Coded message, stored in the vector B, is
% decoded with the aid of the nonsingular matrix A
% and is stored in the string s.

[n,n]= size(A);
p = length(B);
B = reshape(B,n,p/n);
d = A\B;
s = char(d(:)');

A message to be coded is

s = 'Linear algebra is fun';

As a coding matrix we use the Pascal matrix

A = pascal(4);

This codes the message s

B = code(s,A)

B =
 Columns 1 through 6
 392 1020 2061 3616 340
809
 Columns 7 through 12
 1601 2813 410 1009 2003
3490
 Columns 13 through 18
 348 824 1647 2922 366
953
 Columns 19 through 24
 1993 3603 110 110 110
110

To decode this message we have to work with the same coding matrix A

dcode(B,A)

ans =
Linear algebra is fun

	

����� ��������

Linear algebra provides many tools that are of interest for computer programmers especially for
those who deal with the computer graphics. Once the graphical object is created one has to
transform it to another object. Certain plane and/or space transformations are linear. Therefore
they can be realized as the matrix-vector multiplication. For instance, the reflections, translations,

29

rotations all belong to this class of transformations. A computer code provided below deals with
the plane rotations in the counterclockwise direction. Function rot2d takes a planar object
represented by two vectors x and y and returns its image. The angle of rotation is supplied in the
degree measure.

function [xt, yt] = rot2d(t, x, y)

% Rotation of a two-dimensional object that is represented by two
% vectors x and y. The angle of rotation t is in the degree measure.
% Transformed vectors x and y are saved in xt and yt, respectively.

t1 = t*pi/180;
r = [cos(t1) -sin(t1);sin(t1) cos(t1)];
x = [x x(1)];
y = [y y(1)];
hold on
grid on
axis equal
fill(x, y, 'b')
z = r*[x;y];
xt = z(1,:);
yt = z(2,:);
fill(xt, yt, 'r');
title(sprintf('Plane rotation through the angle of %3.2f degrees' ,t))
hold off

Vectors x and y

x = [1 2 3 2]; y = [3 1 2 4];

are the vertices of the parallelogram. We will test function rot2d on these vectors using as the
angle of rotation t = 75.

[xt, yt] = rot2d(75, x, y)

xt =
 -2.6390 -0.4483 -1.1554 -3.3461 -2.6390
yt =
 1.7424 2.1907 3.4154 2.9671 1.7424

30

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Plane rotation through the angle of 75.00 degrees

The right object is the original parallelogram while the left one is its image.

31

,�����
���

[1] B.D. Hahn, Essential MATLAB for Scientists and Engineers, John Wiley & Sons, New
 York, NY, 1997.

[2] D.R. Hill and D.E. Zitarelli, Linear Algebra Labs with MATLAB, Second edition, Prentice
 Hall, Upper Saddle River, NJ, 1996.

[3] B. Kolman, Introductory Linear Algebra with Applications, Sixth edition, Prentice Hall,
 Upper Saddle River, NJ, 1997.

[4] R.E. Larson and B.H. Edwards, Elementary Linear Algebra, Third edition, D.C. Heath and
 Company, Lexington, MA, 1996.

[5] S.J. Leon, Linear Algebra with Applications, Fifth edition, Prentice Hall, Upper Saddle
 River, NJ, 1998.

[6] G. Strang, Linear Algebra and Its Applications, Second edition, Academic Press, Orlando,
 FL, 1980.

32

.�������

In Problems 1 – 12 you cannot use loops for and/or while.
Problems 40 - 42 involve symbolic computations. In order to do these problems you have to use
the Symbolic Math Toolbox.

1. Create a ten-dimensional row vector whose all components are equal 2. You cannot enter
number 2 more than once.

2. Given a row vector a = [1 2 3 4 5]. Create a column vector b that has the same components as
the vector a but they must bestored in the reversed order.

3. MATLAB built-in function sort(a) sorts components of the vector a in the ascending order.
Use function sort to sort components of the vector a in the descending order.

4. To find the largest (smallest) entry of a vector you can use function max (min). Suppose that
these functions are not available. How would you calculate

(a) the largest entry of a vector ?
(b) the smallest entry of a vector?

5. Suppose that one wants to create a vector a of ones and zeros whose length is equal to 2n
 (n = 1, 2, …). For instance, when n = 3, then a = [1 0 1 0 1 0]. Given value of n create a
 vector a with the desired property.

6. Let a be a vector of integers.

(a) Create a vector b whose all components are the even entries of the vector a.
(b) Repeat part (a) where now b consists of all odd entries of the vector a.

Hint: Function logical is often used to logical tests. Another useful function you may
consider to use is rem(x, y) - the remainder after division of x by y.

7. Given two nonempty row vectors a and b and two vectors ind1and ind2 with length(a) =
length(ind1) and length(b) = length(ind2). Components of ind1 and ind2 are positive
integers. Create a vector c whose components are those of vectors a and b. Their indices are
determined by vectors ind1 and ind2, respectively.

8. Using function rand, generate a vector of random integers that are uniformly distributed in
the interval (2, 10). In order to insure that the resulting vector is not empty begin with a
vector that has a sufficient number of components.
Hint: Function fix might be helpful. Type help fix in the Command Window to learn more
about this function.

9. Let A be a square matrix. Create a matrix B whose entries are the same as those of A except
the entries along the main diagonal. The main diagonal of the matrix B should consist entierly
of ones.

33

10. Let A be a square matrix. Create a tridiagonal matrix T whose subdiagonal, main diagonal,
and the superdiagonal are taken from the matrix A.
Hint: You may wish to use MATLAB functions triu and tril . These functions take a second
optional argument. To learn more about these functions use MATLAB's help.

11. In this exercise you are to test a square matrix A for symmetry. Write MATLAB function
 s = issymm(A) that takes a matrix A and returns a number s. If A is symmetric, then s = 1,
 otherwise s = 0.

12. Let A be an m-by-n and let B be an n-by-p matrices. Computing the product C = AB
requires mnp multiplications. If either A or B has a special structure, then the number of
multiplications can be reduced drastically. Let A be a full matrix of dimension m-by-n and let
B be an upper triangular matrix of dimension n-by-n whose all nonzero entries are equal to
one. The product AB can be calculated without using a single multiplicationa. Write an
algorithm for computing the matrix product C = A*B that does not require multiplications.
Test your code with the following matrices A = pascal(3) and B = triu(ones(3)).

13. Given square invertible matrices A and B and the column vector b. Assume that the matrices
A and B and the vector b have the same number of rows. Suppose that one wants to solve a
linear system of equations ABx = b. Without computing the matrix-matrix product A*B , find
a solution x to to this system using the backslash operator \.

14. Find all solutions to the linear system Ax = b, where the matrix A consists of rows one
through three of the 5-by-5 magic square

 A = magic(5);

 A = A(1:3,:)

A =
 17 24 1 8 15
 23 5 7 14 16

 4 6 13 20 22

 and b = ones(3; 1).

15. Determine whether or not the system of linear equations Ax = b, where

 A = ones(3, 2); b = [1; 2; 3];

 possesses an exact solution x.

16. The purpose of this exercise is to demonstrate that for some matrices the computed solution
to Ax = b can be poor. Define

 A = hilb(50); b = rand(50,1);

 Find the 2-norm of the residual r = A*x – b . How would you explain a fact that the computed
 norm is essentially bigger than zero?

34

17. In this exercise you are to compare computational complexity of two methods for finding a
solution to the linear system Ax = b where A is a square matrix. First method utilizes the
backslash operator \ while the second method requires a use of the function rref . Use
MATLAB function flops to compare both methods for various linear systems of your choice.
Which of these methods require, in general, a smaller number of flops?

18. Repeat an experiment described in Problem 17 using as a measure of efficiency a time needed
 to compute the solution vector. MATLAB has a pair of functions tic and toc that can be used
 in this experiment. This illustrates use of the above mentioned functions
 tic; x = A\b; toc. Using linear systems of your choice compare both methods for speed.
 Which method is a faster one? Experiment with linear systems having at least ten equations.

19. Let A be a real matrix. Use MATLAB function rref to extract all

(a) columns of A that are linearly independent
(b) rows of A that are linearly independent

20. In this exercise you are to use MATLAB function rref to compute the rank of the following
matrices:

(a) A = magic(3)
(b) A = magic(4)
(c) A = magic(5)
(d) A = magic(6)

 Based on the results of your computations what hypotheses would you formulate about
 the rank(magic(n)), when n is odd, when n is even?

21. Use MATLAB to demonstrate that det(A + B) � det(A) + det(B) for matrices of your choice.

22. Let A = hilb(5). Hilbert matrix is often used to test computer algorithms for reliability. In this
exercise you will use MATLAB function num2str that converts numbers to strings, to see
that contrary to the well-known theorem of Linear Algebra the computed determinant
det(A*A') is not necessarily the same as det(A)*det(A'). You can notice a difference in
computed quantities by executing the following commands: num2str(det(A*A'), 16) and
num2str(det(A)*det(A'), 16).

23. The inverse matrix of a symmetric nonsingular matrix is a symmetric matrix. Check this
property using function inv and a symmetric nonsingular matrix of your choice.

24. The following matrix

 A = ones(5) + eye(5)

 A =
 2 1 1 1 1
 1 2 1 1 1
 1 1 2 1 1
 1 1 1 2 1
 1 1 1 1 2

35

 is a special case of the Pei matrix. Normalize columns of the matrix A so that all columns of
 the resulting matrix, say B, have the Euclidean norm (2-norm) equal to one.

25. Find the angles between consecutive columns of the matrix B of Problem 24.

26. Find the cross product vector cp that is perpendicular to columns one through four of the Pei
matrix of Problem 24.

27. Let L be a linear transformation from �5 to �5 that is represented by the Pei matrix of
Problem 24. Use MATLAB to determine the range and the kernel of this transformation.

28. Let �n denote a space of algebraic polynomials of degree at most n. Transformation L
from �n to �3 is defined as follows























=

∫

0

)0(p

dt)t(p

)p(L

1

0

(a) Show that L is a linear transformation.
(b) Find a matrix that represents transformation L with respect to the ordered basis
 {t n, tn –1, … 1}.
(c) Use MATLAB to compute bases of the range and the kernel of L . Perform your

experiment for the following values of n = 2, 3, 4.

29. Transformation L from �n to �n –1 is defined as follows L(p) = p'(t) . Symbol �n, is
introduced in Problem 28. Answer questions (a) through (c) of Problem 28 for the
transformation L of this problem.

30. Given vectors a = [1; 2; 3] and b = [-3; 0; 2]. Determine whether or not vector c = [4; 1;1] is
in the span of vectors a and b.

31. Determine whether or not the Toeplitz matrix

 A = toeplitz([1 0 1 1 1])

 A =
 1 0 1 1 1
 0 1 0 1 1
 1 0 1 0 1
 1 1 0 1 0
 1 1 1 0 1

 is in the span of matrices B = ones(5) and C = magic(5).

36

32. Write MATLAB function linind(varargin) that takes an arbitrary number of vectors
(matrices) of the same dimension and determines whether or not the inputted vectors
(matrices) are linearly independent. You may wish to reuse some lines of code that are
contained in the function span presented in Section 3.9 of this tutorial.

33. Use function linind of Problem 32 to show that the columns of the matrix A of Problem
31 are linearly independent.

34. Let [a]A = ones(5,1) be the coordinate vector with respect to the basis A – columns of the
matrix A of Problem 31. Find the coordinate vector [a]P , where P is the basis of the vector
space spanned by the columns of the matrix pascal(5).

35. Let A be a real symmetric matrix. Use the well-known fact from linear algebra to determine
the interval containing all the eigenvalues of A. Write MATLAB function

 [a, b] = interval(A) that takes a symmetric matrix A and returns the endpoints a and b of the
 interval that contains all the eigenvalues of A.

36. Without solving the matrix eigenvalue problem find the sum and the product of all
eigenvalues of the following matrices:

(a) P = pascal(30)
(b) M= magic(40)
(c) H = hilb(50)
(d) H = hadamard(64)

37. Find a matrix B that is similar to A = magic(3).

38. In this exercise you are to compute a power of the diagonalizable matrix A. Let
 A = pascal(5). Use the eigenvalue decomposition of A to calculate the ninth
 power of A. You cannot apply the power operator ^ to the matrix A.

39. Let A be a square matrix. A matrix B is said to be the square root of A if B^2 = A.
In MATLAB the square root of a matrix can be found using the power operator ^ . In this
exercise you are to use the eigenvalue-eigenvector decomposition of a matrix find the square
root of A = [3 3;-2 -2].

40. Declare a variable k to be a symbolic variable typing syms k in the Command Window.
Find a value of k for which the following symbolic matrix

 A = sym([1 k^2 2; 1 k -1; 2 –1 0]) is not invertible.

41. Let the matrix A be the same as in Problem 40.

(a) Without solving the matrix eigenvalue problem, determine a value of k for which all the
eigenvalues of A are real.

(b) Let v be a number you found in part (a). Convert the symbolic matrix A to a numeric
matrix B using the substitution command subs, i.e., B = subs(A, k, v).

(c) Determine whether or not the matrix B is diagonalizable. If so, find a diagonal matrix D
that is similar to B.

37

(d) If matrix B is diagonalizable use the results of part (c) to compute all the eigenvectors of
the matrix B. Do not use MATLAB's function eig.

42. Given a symbolic matrix A = sym([1 0 k; 2 2 0; 3 3 3]).

(a) Find a nonzero value of k for which all the eigenvalues of A are real.
(b) For what value of k two eigenvalues of A are complex and the remaining one is real?

