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This tutorial is devoted to discussion of the computational methods used in numerical linear
algebra. Topics discussed include, matrix multiplication, matrix transformations, numerical
methods for solving systems of linear equations, the linear least squares, orthogonality, singular
value decomposition, the matrix eigenvalue problem, and computations with sparse matrices.
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The following MATLAB functions will be used in this tutorial.

Function Description
abs Absolute value
chol Cholesky factorization
cond Condition number
det Determinant
diag Diagonal matrices and diagonals of a matrix
diff Difference and approximate derivative
eps Floating point relative accuracy
eye Identity matrix

fliplr Flip matrix in left/right direction
flipud Flip matrix in up/down direction
flops Floating point operation count
full Convert sparse matrix to full matrix

funm Evaluate general matrix function
hess Hessenberg form
hilb Hilbert matrix
imag Complex imaginary part
inv Matrix inverse

length Length of vector
lu LU factorization

max Largest component
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min Smallest component
norm Matrix or vector norm
ones Ones array

pascal Pascal matrix
pinv Pseudoinverse
qr Orthogonal-triangular decomposition

rand Uniformly distributed random numbers
randn Normally distributed random numbers
rank Matrix rank
real Complex real part

repmat Replicate and tile an array
schur Schur decomposition
sign Signum function
size Size of matrix
sqrt Square root
sum Sum of elements
svd Singular value decomposition
tic Start a stopwatch timer
toc Read the stopwach timer

trace Sum of diagonal entries
tril Extract lower triangular part
triu Extract upper triangular part

zeros Zeros array
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Computation of the product of two or more matrices is one of the basic operations in the
numerical linear algebra. Number of flops needed for computing a product of two matrices A and
B can be decreased drastically if a special structure of matrices A and B is utilized properly. For
instance, if both A and B are upper (lower) triangular, then the product of A and B is an upper
(lower) triangular matrix.

function C = prod2t(A, B)

% Product C = A*B of two upper triangular matrices A and B.

[m,n] = size(A);
[u,v] = size(B);
if (m ~= n) | (u ~= v)
   error( 'Matrices must be square' )
end
if n ~= u
   error( 'Inner dimensions must agree' )
end
C = zeros(n);
 for i=1:n
   for j=i:n
       C(i,j) = A(i,i:j)*B(i:j,j);
   end
end
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In the following example a product of two random triangular matrices is computed using function
prod2t. Number of flops is also determined.

A = triu(randn(4));  B = triu(rand(4));
flops(0)
C = prod2t(A, B)
nflps = flops   

C =
   -0.4110   -1.2593   -0.6637   -1.4261
         0    0.9076    0.6371    1.7957
         0         0   -0.1149   -0.0882
         0         0         0    0.0462
nflps =
    36   

For comparison, using MATLAB's "general purpose" matrix multiplication operator * ,
the number of flops needed for computing the product of matrices A and B is

flops(0)
A*B;
flops   

ans =
   128   

Product of two Hessenberg matrices A and B, where A is a lower Hessenberg and B is an upper
Hessenberg can be computed using function Hessprod.

function C = Hessprod(A, B)

% Product C = A*B, where A and B are the lower and
% upper Hessenberg matrices, respectively.

[m, n] = size(A);
C = zeros(n);
for i=1:n
   for j=1:n
      if ( j<n )
         l = min(i,j)+1;
      else
         l = n;
      end
         C(i,j) = A(i,1:l)*B(1:l,j);
      end
   end

We will run this function on Hessenberg matrices obtained from the Hilbert matrix H

H = hilb(10);   
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A = tril(H,1);   B = triu(H,-1);   

flops(0)   

C = Hessprod(A,B);   

nflps = flops   

nflps =
        1039   

Using the multiplication operator *  the number of flops used for the same problem is

flops(0)   

C = A*B;   

nflps = flops   

nflps =
        2000   

For more algorithms for computing the matrix-matrix products see the subsequent sections of this
tutorial.
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The goal of this section is to discuss important matrix transformations that are used in numerical
linear algebra.

On several occasions we will use function ek(k, n) – the kth coordinate vector in the
n-dimensional Euclidean space

function v = ek(k, n)

% The k-th coordinate vector in the n-dimensional Euclidean space.

v = zeros(n,1);
v(k) = 1;

4.3.1    Gauss transformation

In many problems that arise in applied mathematics one wants to transform a matrix to an upper
triangular one. This goal can be accomplished using the Gauss transformation (synonym:
elementary matrix).

Let m, ek � �
n. The Gauss transformation Mk � M  is defined as M = I – mek

T. Vector m used
here is called the Gauss vector and I is the n-by-n identity matrix. In this section we present two
functions for computations with this transformation. For more information about this
transformation the reader is referred to [3].
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function m = Gaussv(x, k)

% Gauss vector m from the vector x and the position
% k (k > 0)of the pivot entry.

if x(k) == 0
   error( 'Wrong vector' )
end ;
n = length(x);
x = x(:);
if ( k > 0 & k < n )
   m = [zeros(k,1);x(k+1:n)/x(k)];
else
   error( 'Index k is out of range' )
end

Let M  be the Gauss transformation. The matrix-vector product M*b  can be computed without
forming the matrix M explicitly. Function Gaussprod implements a well-known formula for the
product in question.

function c = Gaussprod(m, k, b)

% Product c = M*b, where M is the Gauss transformation
% determined by the Gauss vector m and its column
% index k.

n = length(b);
if ( k < 0 | k > n-1 )
   error( 'Index k is out of range' )
end
b = b(:);
c = [b(1:k);-b(k)*m(k+1:n)+b(k+1:n)];

Let

x = 1:4; k = 2;
m = Gaussv(x,k)   

m =
         0
         0
    1.5000
    2.0000   

Then

c = Gaussprod(m, k, x)   

c =
     1
     2
     0
     0   
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4.3.2    Householder transformation

The Householder transformation H, where H = I – 2uuT, also called the Householder reflector, is
a frequently used tool in many problems of numerical linear algebra. Here u stands for the real
unit vector. In this section we give several functions for computations with this matrix.

function u = Housv(x)

% Householder reflection unit vector u from the vector x.

m = max(abs(x));
u = x/m;
if  u(1) == 0
   su = 1;
else
   su = sign(u(1));
end
u(1) = u(1)+su*norm(u);
u = u/norm(u);
u = u(:);

Let

x = [1 2 3 4]';

Then

u  = Housv(x)   

u =
    0.7690
    0.2374
    0.3561
    0.4749   

The Householder reflector H is computed as follows

H = eye(length(x))-2*u*u'   

H =
   -0.1826   -0.3651   -0.5477   -0.7303
   -0.3651    0.8873   -0.1691   -0.2255
   -0.5477   -0.1691    0.7463   -0.3382
   -0.7303   -0.2255   -0.3382    0.5490   

An efficient method of computing the matrix-vector or matrix-matrix products with Householder
matrices utilizes a special form of this matrix.
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function P = Houspre(u, A)

% Product P = H*A, where H is the Householder reflector
% determined by the vector u and A is a matrix.

[n, p] = size(A);
m = length(u);
if m ~= n
   error( 'Dimensions of u and A must agree' )
end
v = u/norm(u);
v = v(:);
P = [];
for j=1:p
   aj = A(:,j);
   P = [P aj-2*v*(v'*aj)];
end

Let

A =  pascal(4);   

and let

u = Housv(A(:,1))   

u =
    0.8660
    0.2887
    0.2887
    0.2887   

Then

P = Houspre(u, A)   

P =
   -2.0000   -5.0000  -10.0000  -17.5000
   -0.0000   -0.0000   -0.6667   -2.1667
   -0.0000    1.0000    2.3333    3.8333
   -0.0000    2.0000    6.3333   13.8333   

In some problems that arise in numerical linear algebra one has to compute a product of several
Householder transformations. Let the Householder transformations are represented by their
normalized reflection vectors stored in columns of the matrix V. The product in question, denoted
by Q, is defined as

Q = V(:, 1)*V(:, 2)* … *V(:, n)

where n stands for the number of columns of the matrix V.
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function Q = Housprod(V)

% Product Q of several Householder transformations
% represented by their reflection vectors that are
% saved in columns of the matrix V.

[m, n] = size(V);
Q = eye(m)-2*V(:,n)*V(:,n)';
for i=n-1:-1:1
   Q = Houspre(V(:,i),Q);
end

Among numerous applications of the Householder transformation the following one: reduction of
a square matrix to the upper Hessenberg form and reduction of an arbitrary matrix to the upper
bidiagonal matrix, are of great importance in numerical linear algebra. It is well known that any
square matrix A can always be transformed to an upper Hessenberg matrix H by orthogonal
similarity (see [7] for more details). Householder reflectors are used in the course of
computations. Function Hessred implements this method

function [A, V] = Hessred(A)

% Reduction of the square matrix A to the upper
% Hessenberg form using Householder reflectors.
% The reflection vectors are stored in columns of
% the matrix V. Matrix A is overwritten with its
% upper Hessenberg form.

[m,n] =size(A);
if A == triu(A,-1)
   V = eye(m);
   return
end
V = [];
for k=1:m-2
   x = A(k+1:m,k);
   v = Housv(x);
   A(k+1:m,k:m) = A(k+1:m,k:m) - 2*v*(v'*A(k+1:m,k:m));
   A(1:m,k+1:m) = A(1:m,k+1:m) - 2*(A(1:m,k+1:m)*v)*v';
   v = [zeros(k,1);v];
   V = [V v];
end

Householder reflectors used in these computations can easily be reconstructed from the columns
of the matrix V. Let

A = [0 2 3;2 1 2;1 1 1];  

To compute the upper Hessenberg form H  of the matrix A we run function Hessred to obtain

[H, V] = Hessred(A)   
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H =
         0   -3.1305    1.7889
   -2.2361    2.2000   -1.4000
         0   -0.4000   -0.2000
V =
         0
    0.9732
    0.2298   

The only Householder reflector P used in the course of computations is shown below

P = eye(3)-2*V*V'   

P =
    1.0000         0         0
         0   -0.8944   -0.4472
         0   -0.4472    0.8944   

To verify correctness of these results it suffices to show that P*H*P = A . We have

P*H*P   

ans =
         0    2.0000    3.0000
    2.0000    1.0000    2.0000
    1.0000    1.0000    1.0000   

Another application of the Householder transformation is to transform a matrix to an upper
bidiagonal form. This reduction is required in some algorithms for computing the singular value
decomposition (SVD) of a matrix. Function upbid works with square matrices only

function [A, V, U] = upbid(A)

% Bidiagonalization of the square matrix A using the
% Golub- Kahan method. The reflection vectors of the
% left Householder matrices are saved in columns of
% the matrix V, while the reflection vectors of the
% right Householder reflections are saved in columns
% of the matrix U. Matrix A is overwritten with its
% upper bidiagonal form.

[m, n] = size(A);
if  m ~= n
   error( 'Matrix must be square' )
end
if  tril(triu(A),1) == A
   V = eye(n-1);
   U = eye(n-2);
end
V = [];
U = [];
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for k=1:n-1
   x = A(k:n,k);
   v = Housv(x);
   l = k:n;
   A(l,l) = A(l,l) - 2*v*(v'*A(l,l));
   v = [zeros(k-1,1);v];
   V = [V v];
   if  k < n-1
      x = A(k,k+1:n)';
      u = Housv(x);
      p = 1:n;
      q = k+1:n;
      A(p,q) = A(p,q) - 2*(A(p,q)*u)*u';
      u = [zeros(k,1);u];
      U = [U u];
   end
end

Let (see [1], Example 10.9.2, p.579)

A = [1 2 3;3 4 5;6 7 8];   

Then

[B, V, U] = upbid(A)   

B =
   -6.7823   12.7620   -0.0000
    0.0000    1.9741   -0.4830
    0.0000    0.0000   -0.0000
V =
    0.7574         0
    0.2920   -0.7248
    0.5840    0.6889
U =
         0
   -0.9075
   -0.4201   

Let the matrices V and U be the same as in the last example and let

Q = Housprod(V); P = Housprod(U);   

Then

Q'*A*P   

ans =
   -6.7823   12.7620   -0.0000
    0.0000    1.9741   -0.4830
    0.0000   -0.0000    0.0000   

which is the same as the bidiagonal form obtained earlier.
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4.3.3    Givens transformation

Givens transformation (synonym: Givens rotation) is an orthogonal matrix used for zeroing a
selected entry of the matrix. See [1] for details. Functions included here deal with this
transformation.

function J = GivJ(x1, x2)

% Givens plane rotation J = [c s;-s c]. Entries c and s
% are computed using numbers x1 and x2.

if x1 == 0 & x2 == 0
   J = eye(2);
   return
end
if abs(x2) >= abs(x1)
   t = x1/x2;
   s = 1/sqrt(1+t^2);
   c = s*t;
else
   t = x2/x1;
   c = 1/sqrt(1+t^2);
   s = c*t;
end
J = [c s;-s c];

 
Premultiplication and postmultiplication by a Givens matrix can be performed without computing
a Givens matrix explicitly.

function A = preGiv(A, J, i, j)

% Premultiplication of A by the Givens rotation
% which is represented by the 2-by-2 planar rotation
% J. Integers i and j describe position of the
% Givens parameters.

A([i j],:) = J*A([i j],:);

Let

A = [1 2 3;-1 3 4;2 5 6];
  

Our goal is to zeroe the (2,1) entry of the matrix A. First the Givens matrix J is created using
function GivJ

J = GivJ(A(1,1), A(2,1))

J =
   -0.7071    0.7071
   -0.7071   -0.7071   
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Next, using function preGiv we obtain

A = preGiv(A,J,1,2)

A =
   -1.4142    0.7071    0.7071
         0   -3.5355   -4.9497
    2.0000    5.0000    6.0000   

Postmultiplication by the Givens rotation can be accomplished using function postGiv

function A = postGiv(A, J, i, j)

% Postmultiplication of A by the Givens rotation
% which is represented by the 2-by-2 planar rotation
% J. Integers i and j describe position of the
% Givens parameters.

A(:,[i j]) = A(:,[i j])*J;

An important application of the Givens transformation is to compute the QR factorization of a
matrix.

function [Q, A] = Givred(A)

% The QR factorization A = Q*R of the rectangular
% matrix A using Givens rotations. Here Q is the
% orthogonal matrix. On the output matrix A is
% overwritten with the matrix R.

[m, n] = size(A);
if m == n
   k = n-1;
elseif m > n
   k = n;
else
   k = m-1;
end
Q = eye(m);
for j=1:k
   for i=j+1:m
      J = GivJ(A(j,j),A(i,j));
      A = preGiv(A,J,j,i);
      Q = preGiv(Q,J,j,i);
   end
end
Q = Q';

Let

A = pascal(4)   
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A =
     1     1     1     1
     1     2     3     4
     1     3     6    10
     1     4    10    20   

Then

[Q, R] = Givred(A)   

Q =
    0.5000   -0.6708    0.5000   -0.2236
    0.5000   -0.2236   -0.5000    0.6708
    0.5000    0.2236   -0.5000   -0.6708
    0.5000    0.6708    0.5000    0.2236
R =
    2.0000    5.0000   10.0000   17.5000
    0.0000    2.2361    6.7082   14.0872
    0.0000         0    1.0000    3.5000
   -0.0000         0   -0.0000    0.2236   

A relative error in the computed QR factorization of the matrix A is

norm(A-Q*R)/norm(A)   

ans =
  1.4738e-016   


�
 ���&���	�'��
��	��	���
��	
(�������

A good numerical algorithm for solving a system of linear equations should, among other things,
minimize computational complexity. If the matrix of the system has a special structure, then this
fact should be utilized in the design of the algorithm. In this section, we give an overview of
MATLAB's functions for computing a solution vector x to the linear system Ax = b. To this end,
we will assume that the matrix A is a square matrix.

4.4.1    Triangular systems

If the matrix of the system is either a lower triangular or upper triangular, then one can easily
design a computer code for computing the vector x. We leave this task to the reader (see
Problems 2 and 3).

4.4.2    The LU factorization

MATLAB's function lu computes the LU factorization PA = LU of the matrix A using a partial
pivoting strategy. Matrix L  is unit lower triangular, U is upper triangular, and P is the
permutation matrix. Since P is orthogonal, the linear system Ax = b is equivalent to LUx =PTb.
This method is recommended for solving linear systems with multiple right hand sides.
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Let

A = hilb(5);   b = [1 2 3 4 5]';   

The following commands are used to compute the LU decomposition of A, the solution vector x,
and the upper bound on the relative error in the computed solution

[L, U, P] = lu(A);   

x = U\(L\(P'*b))   

x =
  1.0e+004 *
    0.0125
   -0.2880
    1.4490
   -2.4640
    1.3230   

rl_err = cond(A)*norm(b-A*x)/norm(b)   

rl_err =
  4.3837e-008   

Number of decimal digits of accuracy in the computed solution x is defined as the negative
decimal logarithm of the relative error (see e.g., [6]). Vector x of the last example has

dda = -log10(rl_err)   

dda =
    7.3582   

about seven decimal digits of accuracy.

4.4.3    Cholesky factorization

For linear systems with symmetric positive definite matrices the recommended method is based
on the Cholesky factorization A = HTH of the matrix A. Here H is the upper triangular matrix
with positive diagonal entries. MATLAB's function chol calculates the matrix H from A or
generates an error message if A is not positive definite. Once the matrix H is computed, the
solution x to Ax = b can be found using the trick used in 4.4.2.
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In some problems of applied mathematics one seeks a solution to the overdetermined linear
system Ax = b. In general, such a system is inconsistent. The least squares solution to this system
is a vector x that minimizes the Euclidean norm of the residual r = b – Ax. Vector x always
exists, however it is not necessarily unique. For more details, see e.g.,  [7], p. 81. In this section
we discuss methods for computing the least squares solution.
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4.5.1    Using MATLAB built-in functions

MATLAB's backslash operator \ can be used to find the least squares solution x = A\b. For the
rank deficient systems a warning message is generated during the course of computations.
A second MATLAB's function that can be used for computing the least squares solution is the
pinv command. The solution is computed using the following command x = pinv(A)*b . Here
pinv stands for the pseudoinverse matrix. This method however, requires more flops than the
backslash method does. For more information about the pseudoinverses, see Section 4.7 of this
tutorial.

4.5.2    Normal  equations

This classical method, which is due to C.F. Gauss, finds a vector x that satisfies the normal
equations ATAx = ATb. The method under discussion is adequate when the condition number of
A is small.

function [x, dist] = lsqne(A, b)

% The least-squares solution x to the overdetermined
% linear system Ax = b. Matrix A must be of full column
% rank.

% Input:
%       A- matrix of the system
%       b- the right-hand sides
% Output:
%       x- the least-squares solution
%       dist- Euclidean norm of the residual b - Ax

[m, n] = size(A);
if (m <= n)
   error( 'System is not overdetermined' )
end
if (rank(A) < n)
   error( 'Matrix must be of full rank' )
end
H = chol(A'*A);
x = H\(H'\(A'*b));
r = b - A*x;
dist = norm(r);

Throughout the sequel the following matrix A and the vector b will be used to test various
methods for solving the least squares problem

format long  

A = [.5 .501;.5 .5011;0 0;0 0]; b = [1;-1;1;-1];  

Using the method of normal equations we obtain

[x,dist] = lsqne(A,b)   
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x =
  1.0e+004 *
   2.00420001218025
  -2.00000001215472
dist =
   1.41421356237310   

One can judge a quality of the computed solution by verifying orthogonality of the residual to the
column space of the matrix A. We have

err = A'*(b - A*x)   

err =
  1.0e-011 *
   0.18189894035459
   0.24305336410179   

4.5.3    Methods based on the QR factorization of a matrix

Most numerical methods for finding the least squares solution to the overdetermined linear
systems are based on the orthogonal factorization of the matrix A = QR. There are two variants
of the QR factorization method: the full and the reduced factorization. In the full version of the
QR factorization the matrix Q is an m-by-m orthogonal matrix and R is an m-by-n matrix with an
n-by-n upper triangular matrix stored in rows 1 through n and having zeros everywhere else. The
reduced factorization computes an m-by-n matrix Q with orthonormal columns and an n-by-n
upper triangular matrix R. The QR factorization of A can be obtained using one of the following
methods:

(i) Householder reflectors
(ii)  Givens rotations
(iii)  Modified Gram-Schmidt orthogonalization

Householder QR factorization

MATLAB function qr  computes matrices Q and R using Householder reflectors. The command
[Q, R] = qr(A)  generates a full form of the QR factorization of A while  [Q, R] = qr(A, 0)
computes the reduced form. The least squares solution x to Ax = b satisfies the system of
equations RTRx = ATb. This follows easily from the fact that the associated residual r = b – Ax is
orthogonal to the column space of A. Thus no explicit knowledge of the matrix Q is required.
Function mylsq will be used on several occasions to compute a solution to the overdetermined
linear system Ax = b with known QR factorization of A

function x = mylsq(A, b, R)

% The least squares solution x to the overdetermined
% linear system Ax = b. Matrix R is such that R = Q'A,
% where Q is a matrix whose columns are orthonormal.

m = length(b);
[n,n] = size(R);
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if m < n
   error( 'System is not overdetermined' )
end
x = R\(R'\(A'*b));

Assume that the matrix A and the vector b are the same as above. Then

[Q,R] = qr(A,0);                  % Reduced QR factorization of A

x = mylsq(A,b,R)   

x =
  1.0e+004 *
   2.00420000000159
  -2.00000000000159   

Givens QR factorization

Another method of computing the QR factorization of a matrix uses Givens rotations rather than
the Householder reflectors. Details of this method are discussed earlier in this tutorial. This
method, however, requires more flops than the previous one. We will run function Givred on the
overdetermined system introduced earlier in this chapter

[Q,R]= Givred(A);   

x = mylsq(A,b,R)   

x =
  1.0e+004 *
   2.00420000000026
  -2.00000000000026   

Modified Gram-Schmidt orthogonalization

The third method is a variant of the classical Gram-Schmidt orthogonalization. A version used in
the function mgs is described in detail in [4]. Mathematically the Gram-Schmidt and the modified
Gram-Schmidt method are equivalent, however the latter is more stable. This method requires
that matrix A is of a full column rank

function [Q, R] = mgs(A)

% Modified Gram-Schmidt orthogonalization of the
% matrix A = Q*R, where Q is orthogonal and R upper
% is an upper triangular matrix. Matrix A must be
% of a full column rank.

[m, n] = size(A);
for i=1:n
   R(i,i) = norm(A(:,i));
   Q(:,i) = A(:,i)/R(i,i);
   for j=i+1:n
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      R(i,j) = Q(:,i)'*A(:,j);
      A(:,j) = A(:,j) - R(i,j)*Q(:,i);
   end
end

Running function mgs on our test system we obtain

[Q,R] = mgs(A);   

x = mylsq(A,b,R)   

x =
  1.0e+004 *
   2.00420000000022
  -2.00000000000022   

This small size overdetermined linear system was tested using three different functions for
computing the QR factorization of the matrix A.  In all cases the least squares solution was found
using function mylsq. The flop count and the check of orthogonality of Q are contained in the
following table. As a measure of closeness of the computed Q to its exact value is determined by
errorQ = norm(Q'*Q – eye(k)), where k = 2 for the reduced form and k = 4 for the full form of
the QR factorization

Function Flop count errorQ
qr(, 0) 138 2.6803e-016
Givred 488 2.2204e-016

mgs 98 2.2206e-012

For comparison the number of flops used by the backslash operator was equal to 122 while the
pinv command found a solution using 236 flops.

Another method for computing the least squares solution finds first the QR factorization of the
augmented matrix [A b]   i.e., QR = [A b] using one of the methods discussed above. The least
squares solution x is then found solving a linear system Ux = Qb, where U is an n-by- n principal
submatrix of R and Qb is the n+1st column of the matrix R. See e.g., [7] for more details.
Function mylsqf implements this method

function x = mylsqf(A, b, f, p)

% The least squares solution x to the overdetermined
% linear system Ax = b using the QR factorization.
% The input parameter f is the string holding the
% name of a function used to obtain the QR factorization.
% Fourth input parameter p is optional and should be
% set up to 0 if the reduced form of the qr function
% is used to obtain the QR factorization.

[m, n] = size(A);
if m <= n
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   error( 'System is not overdetermined' )
end
if nargin == 4
   [Q, R] = qr([A b],0);
else
   [Q, R] = feval(f,[A b]);
end
Qb = R(1:n,n+1);
R = R(1:n,1:n);
x = R\Qb;

A choice of a numerical algorithm for solving a particular problem is often a complex task.
Factors that should be considered include numerical stability of a method used and accuracy of
the computed solution, to mention the most important ones. It is not our intention to discuss these
issues in this tutorial. The interested reader is referred to [5] and [3].
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Many properties of a matrix can be derived from its singular value decomposition (SVD). The
SVD is motivated by the following fact: the image of the unit sphere under the m-by-n matrix is a
hyperellipse. Function SVDdemo takes a 2-by-2  matrix and generates two graphs: the original
circle together with two perpendicular vectors and their images under the transformation used. In
the example that follows the function under discussion a unit circle C with center at the origin is
transformed using a 2-by-2 matrix A.

function SVDdemo(A)

% This illustrates a geometric effect of the application
% of the 2-by-2 matrix A to the unit circle C.

t = linspace(0,2*pi,200);
x = sin(t);
y = cos(t);
[U,S,V] = svd(A);
vx = [0 V(1,1) 0 V(1,2)];
vy = [0 V(2,1) 0 V(2,2)];
axis equal
h1_line = plot(x,y,vx,vy);
set(h1_line(1), 'LineWidth' ,1.25)
set(h1_line(2), 'LineWidth' ,1.25, 'Color' ,[0 0 0])
grid
title( 'Unit circle C and right singular vectors v_i' )
pause(5)
w = [x;y];
z = A*w;
U = U*S;
udx = [0 U(1,1) 0 U(1,2)];
udy = [0 U(2,1) 0 U(2,2)];
figure
h1_line = plot(udx,udy,z(1,:),z(2,:));
set(h1_line(2), 'LineWidth' ,1.25, 'Color' ,[0 0 1])
set(h1_line(1), 'LineWidth' ,1.25, 'Color' ,[0 0 0])
grid
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title( 'Image A*C of C and vectors \sigma_iu_i' )

Define a matrix

A = [1 2;3 4];   

Then

SVDdemo(A)   
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The full form of the singular value decomposition of the m-by-n matrix A (real or complex) is the
factorization of the form A = USV*, where U and V are unitary matrices of dimensions m and n,
respectively and S is an m-by-n diagonal matrix with nonnegative diagonal entries stored in the
nonincreasing order. Columns of matrices U and V are called the left singular vectors and the
right singular vectors, respectively. The diagonal entries of S are the singular values of the
matrix A. MATLAB's function svd computes matrices of the SVD of A by invoking the
command [U, S, V] = svd(A). The reduced form of the SVD of the matrix A is computed using
function svd with a second input parameter being set to zero [U, S, V] = svd(A, 0). If m > n, then
only the first n columns of U are computed and S is an n-by-n matrix.

Computation of the SVD of a matrix is a nontrivial task. A common method used nowadays is the
two-phase method. Phase one reduces a given matrix A to an upper bidiagonal form using the
Golub-Kahan method. Phase two computes the SVD of A using a variant of the QR factorization.
Function mysvd implements a method proposed in Problem 4.15 in [4]. This code works for
the 2-by-2 real matrices only.

function [U, S, V] = mysvd(A)

% Singular value decomposition A = U*S*V'of a
% 2-by-2 real matrix A. Matrices U and V are orthogonal.
% The left and the right singular vectors of A are stored
% in columns of matrices U and V,respectively. Singular
% values of A are stored, in the nonincreasing order, on
% the main diagonal of the diagonal matrix S.
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if A == zeros(2)
   S = zeros(2);
   U = eye(2);
   V = eye(2);
   return
end
[S, G] = symmat(A);
[S, J] = diagmat(S);
U = G'*J;
V = J;
d = diag(S);
s = sign(d);
for j=1:2
   if s(j) < 0
      U(:,j) = -U(:,j);
   end
end
d = abs(d);
S = diag(d);
if d(1) < d(2)
   d = flipud(d);
   S = diag(d);
   U = fliplr(U);
   V = fliplr(V);
end

In order to run this function two other functions symmat and diagmat must be in MATLAB's
search path

function [S, G] = symmat(A)

% Symmetric 2-by-2 matrix S from the matrix A. Matrices
% A, S, and G satisfy the equation G*A = S, where G
% is the Givens plane rotation.

if  A(1,2) == A(2,1)
   S = A;
   G = eye(2);
   return
end
t = (A(1,1) + A(2,2))/(A(1,2) - A(2,1));
s = 1/sqrt(1 + t^2);
c = -t*s;
G(1,1) = c;
G(2,2) = c;
G(1,2)= s;
G(2,1) = -s;
S = G*A;

function [D, G] = diagmat(A);

% Diagonal matrix D obtained by an application of the
% two-sided Givens rotation to the matrix A. Second output
% parameter G is the Givens rotation used to diagonalize
% matrix A, i.e., G.'*A*G = D.
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if A ~= A'
   error( 'Matrix must be symmetric' )
end
if abs(A(1,2)) < eps & abs(A(2,1)) < eps
   D = A;
   G = eye(2);
   return
end
r = roots([-1 (A(1,1)-A(2,2))/A(1,2) 1]);
[t, k] = min(abs(r));
t = r(k);
c = 1/sqrt(1+t^2);
s = c*t;
G = zeros(size(A));
G(1,1) = c;
G(2,2) = c;
G(1,2) = s;
G(2,1) = -s;
D = G.'*A*G;

Let

A = [1 2;3 4];  

Then

[U,S,V] = mysvd(A)   

U =
    0.4046   -0.9145
    0.9145    0.4046
S =
    5.4650         0
         0    0.3660
V =
    0.5760    0.8174
    0.8174   -0.5760   

To verify this result we compute

AC = U*S*V'   

AC =
    1.0000    2.0000
    3.0000    4.0000   

and the relative error in the computed SVD decomposition

 norm(AC-A)/norm(A)

ans =
  1.8594e-016   
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Another algorithm for computing the least squares solution x of the overdetermined linear system
Ax = b utilizes the singular value decomposition of A. Function lsqsvd should be used for ill-
conditioned or rank deficient matrices.

function x = lsqsvd(A, b)

% The least squares solution x to the overdetermined
% linear system Ax = b using the reduced singular
% value decomposition of A.

[m, n] = size(A);
if m <= n
   error( 'System must be overdetermined' )
end
[U,S,V] = svd(A,0);
d = diag(S);
r = sum(d > 0);
b1 = U(:,1:r)'*b;
w = d(1:r).\b1;
x = V(:,1:r)*w;
re = b - A*x;        % One step of the iterative
b1 = U(:,1:r)'*re;   % refinement
w = d(1:r).\b1;
e = V(:,1:r)*w;
x = x + e;

The linear system with

A = ones(6,3); b = ones(6,1);  

is ill-conditioned and rank deficient. Therefore the least squares solution to this system is not
unique

x = lsqsvd(A,b)   

x =
    0.3333
    0.3333
    0.3333   
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Another application of the SVD is for computing the pseudoinverse of a matrix. Singular or
rectangular matrices always possess the pseudoinverse matrix. Let the matrix A be defined as
follows

A = [1 2 3;4 5 6]   

A =
     1     2     3
     4     5     6   
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Its pseudoinverse is

B = pinv(A)

B =
   -0.9444    0.4444
   -0.1111    0.1111
    0.7222   -0.2222   

The pseudoinverse B of the matrix A satisfy the Penrose conditions

ABA = A,  BAB = B,  (AB)T = AB,  (BA)T = BA

We will verify the first condition only

norm(A*B*A-A)   

ans =
  3.6621e-015   

and leave it to the reader to verify the remaining ones.
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The matrix eigenvalue problem, briefly discussed in Tutorial 3, is one of the central problems in
the numerical linear algebra. It is formulated as follows.

Given a square matrix A = [aij ], 1� i, j � n, find a nonzero vector x � �n and a number � that
satisfy the equation Ax = �x. Number � is called the eigenvalue of the matrix A and x is the
associated right eigenvector of A.

 In this section we will show how to localize the eigenvalues of a matrix using celebrated
Gershgorin's Theorem. Also, we will present MATLAB's code for computing the dominant
eigenvalue and the associated eigenvector of a matrix. The QR iteration for computing all
eigenvalues of the symmetric matrices is also discussed.

Gershgorin Theorem states that each eigenvalue � of the matrix A satisfies at least one of the
following inequalities  |� - akk| � rk, where r k  is the sum of all off-diagonal entries in row k of the
matrix |A| (see, e.g., [1], pp.400-403 for more details). Function Gershg computes the centers and
the radii of the Gershgorin circles of the matrix A and plots all Gershgorin circles. The
eigenvalues of the matrix A are also displayed.

function [C] = Gershg(A)

% Gershgorin's circles C of the matrix A.

d = diag(A);
cx = real(d);
cy = imag(d);
B = A - diag(d);
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[m, n] = size(A);
r = sum(abs(B'));
C = [cx cy r(:)];
t = 0:pi/100:2*pi;
c = cos(t);
s = sin(t);
[v,d] = eig(A);
d = diag(d);
u1 = real(d);
v1 = imag(d);
hold on
grid on
axis equal
xlabel( 'Re' )
ylabel( 'Im' )
h1_line = plot(u1,v1, 'or' );
set(h1_line, 'LineWidth' ,1.5)
for i=1:n
x = zeros(1,length(t));
y = zeros(1,length(t));
   x = cx(i) + r(i)*c;
   y = cy(i) + r(i)*s;
   h2_line = plot(x,y);
   set(h2_line, 'LineWidth' ,1.2)
end
hold off
title( 'Gershgorin circles and the eigenvalues of a' )

To illustrate functionality of this function we define a matrix A, where

A = [1 2 3;3 4 9;1 1 1];   

Then

C = Gershg(A)   

C =
     1     0     5
     4     0    12
     1     0     2
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Gershgorin circles and the eigenvalues of a matrix

Information about each circle (coordinates of the origin and its radius) is contained in successive
rows of the matrix C.

It is well known that the eigenvalues are sensitive to small changes in the entries of the matrix
(see, e.g., [3]). The condition number of the simple eigenvalue � of the matrix A is defined as
follows

Cond(�) = 1/|yTx|

where y and x are the left and right eigenvectors of A, respectively with ||x||2 = ||y||2 = 1. Recall
that a nonzero vector y is said to be a left eigenvector of A if yTA = �yT. Clearly Cond(�) � 1.
Function eigsen computes the condition number of all eigenvalues of a matrix.

function s = eigsen(A)

% Condition numbers s of all eigenvalues of the diagonalizable
% matrix A.

[n,n] = size(A);
[v1,la1] = eig(A);
[v2,la2] = eig(A');
[d1, j] = sort(diag(la1));
v1 = v1(:,j);
[d2, j] = sort(diag(la2));
v2 = v2(:,j);
s = [];
for i=1:n
   v1(:,i) = v1(:,i)/norm(v1(:,i));
   v2(:,i) = v2(:,i)/norm(v2(:,i));
   s = [s;1/abs(v1(:,i)'*v2(:,i))];
end
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In this example we will illustrate sensitivity of the eigenvalues of the celebrated Wilkinson's
matrix W. Its is an upper bidiagonal 20-by-20 matrix with diagonal entries 20, 19, … , 1. The
superdiagonal entries are all equal to 20. We create this matrix using some MATLAB functions
that are discussed in Section 4.9.

W =  spdiags([(20:-1:1)', 20*ones(20,1)],[0 1], 20,20);   

format long   

s = eigsen(full(W))   

s =
  1.0e+012 *
   0.00008448192546
   0.00145503286853
   0.01206523295175
   0.06389158525507
   0.24182386727359
   0.69411856608888
   1.56521713930244
   2.83519277292867
   4.18391920177580
   5.07256664475500
   5.07256664475500
   4.18391920177580
   2.83519277292867
   1.56521713930244
   0.69411856608888
   0.24182386727359
   0.06389158525507
   0.01206523295175
   0.00145503286853
   0.00008448192546   

Clearly all eigenvalues of the Wilkinson's matrix are sensitive.

 Let us perturb the w20,1 entry of W

W(20,1)=1e-5;   

and next compute the eigenvalues of the perturbed matrix

eig(full(W))   

ans =
 -1.00978219090288
 -0.39041284468158 + 2.37019976472684i
 -0.39041284468158 - 2.37019976472684i
  1.32106082150033 + 4.60070993953446i
  1.32106082150033 - 4.60070993953446i
  3.88187526711025 + 6.43013503466255i
  3.88187526711025 - 6.43013503466255i
  7.03697639135041 + 7.62654906220393i



29

  7.03697639135041 - 7.62654906220393i
 10.49999999999714 + 8.04218886506797i
 10.49999999999714 - 8.04218886506797i
 13.96302360864989 + 7.62654906220876i
 13.96302360864989 - 7.62654906220876i
 17.11812473289285 + 6.43013503466238i
 17.11812473289285 - 6.43013503466238i
 19.67893917849915 + 4.60070993953305i
 19.67893917849915 - 4.60070993953305i
 21.39041284468168 + 2.37019976472726i
 21.39041284468168 - 2.37019976472726i
 22.00978219090265   

 Note a dramatic change in the eigenvalues.

In some problems only selected eigenvalues and associated eigenvectors are needed. Let the
eigenvalues {�k } be rearranged so that |�1| > |�2| � … � |�n|. The dominant eigenvalue �1 and/or
the associated eigenvector can be found using one of the following methods: power iteration,
inverse iteration, and Rayleigh quotient iteration. Functions powerit and Rqi implement the first
and the third method, respectively.

function [la, v] = powerit(A, v)

% Power iteration with the Rayleigh quotient.
% Vector v is the initial estimate of the eigenvector of
% the matrix A. Computed eigenvalue la and the associated
% eigenvector v satisfy the inequality% norm(A*v - la*v,1) < tol,
% where tol = length(v)*norm(A,1)*eps.

if norm(v) ~= 1
   v = v/norm(v);
end
la = v'*A*v;
tol = length(v)*norm(A,1)*eps;
while norm(A*v - la*v,1) >= tol
   w = A*v;
   v = w/norm(w);
   la = v'*A*v;
end

function [la, v] = Rqi(A, v, iter)

% The Rayleigh quotient iteration.
% Vector v is an approximation of the eigenvector associated with the
% dominant eigenvalue la of the matrix A. Iterative process is
% terminated either if norm(A*v - la*v,1) < norm(A,1)*length(v)*eps
% or if the number of performed iterations reaches the allowed number
% of iterations iter.

if norm(v) > 1
   v = v/norm(v);
end
la = v'*A*v;
tol = norm(A,1)*length(v)*eps;
for k=1:iter
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   if norm(A*v - la*v,1) < tol
      return
   else
      w = (A - la*eye(size(A)))\v;
      v = w/norm(w);
      la = v'*A*v;
   end
end

Let ( [7], p.208, Example 27.1)

A = [2 1 1;1 3 1;1 1 4];  v = ones(3,1);   

Then

format long   

 flops(0)   

[la, v] = powerit(A, v)   

la =
   5.21431974337753
v =
   0.39711254978701
   0.52065736843959
   0.75578934068378   

flops   

ans =
        3731   

Using function Rqi, for computing the dominant eigenpair of the matrix A, we obtain

flops(0)   

[la, v] = Rqi(A,ones(3,1),5)

la =
   5.21431974337754
v =
   0.39711254978701
   0.52065736843959
   0.75578934068378   

flops   

ans =
   512   
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Once the dominant eigenvalue (eigenpair) is computed one can find another eigenvalue or
eigenpair by applying a process called deflation. For details the reader is referred to [4],
pp. 127-128.

function [l2, v2, B] = defl(A, v1)

% Deflated matrix B from the matrix A with a known eigenvector v1 of A.
% The eigenpair (l2, v2) of the matrix A is computed.
% Functions Housv, Houspre, Housmvp and Rqi are used
% in the body of the function defl.

n = length(v1);
v1 = Housv(v1);
C = Houspre(v1,A);
B = [];
for i=1:n
   B = [B Housmvp(v1,C(i,:))];
end
l1 = B(1,1);
b = B(1,2:n);
B = B(2:n,2:n);
[l2, y] = Rqi(B, ones(n-1,1),10);
if l1 ~= l2
   a = b*y/(l2-l1);
   v2 = Housmvp(v1,[a;y]);
else
   v2 = v1;
end

Let A be an 5-by-5 Pei matrix, i.e.,

A = ones(5)+diag(ones(5,1))   

A =
     2     1     1     1     1
     1     2     1     1     1
     1     1     2     1     1
     1     1     1     2     1
     1     1     1     1     2   

Its dominant eigenvalue is �1 = 6 and all the remaining eigenvalues are equal to one. To compute
the dominant eigenpair of A we use function Rqi

[l1,v1] = Rqi(A,rand(5,1),10)   

l1 =
   6.00000000000000
v1 =
   0.44721359549996
   0.44721359549996
   0.44721359549996
   0.44721359549996
   0.44721359549996   

and next apply function defl to compute another eigenpair of A
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[l2,v2] = defl(A,v1)   

l2 =
   1.00000000000000
v2 =
  -0.89442719099992
   0.22360679774998
   0.22360679774998
   0.22360679774998
   0.22360679774998   

To check these results we compute the norms of the "residuals"

[norm(A*v1-l1*v1);norm(A*v2-l2*v2)]   

ans =
  1.0e-014 *
   0.07691850745534
   0.14571016336181   

To this end we will deal with the symmetric eigenvalue problem. It is well known that the
eigenvalues of a symmetric matrix are all real. One of the most efficient algorithms is the QR
iteration with or without shifts. The algorithm included here is the two-phase algorithm. Phase
one reduces a symmetric matrix A to the symmetric tridiagonal matrix T using MATLAB's
function hess. Since T is orthogonally similar to A,  sp(A) = sp(T). Here sp stands for the
spectrum of a matrix. During the phase two the off diagonal entries of T are annihilated. This is
an iterative process, which theoretically is an infinite one. In practice, however, the off diagonal
entries approach zero fast. For details the reader is referred to [2] and [7].

Function qrsft  computes all eigenvalues of the symmetric matrix A. Phase two uses Wilkinson's
shift. The latter is computed using function wsft.

function [la, v] = qrsft(A)

% All eigenvalues la of the symmetric matrix A.
% Method used: the QR algorithm with Wilkinson's shift.
% Function wsft is used in the body of the function qrsft.

[n, n] = size(A);
A = hess(A);
la = [];
i = 0;
while i < n
   [j, j] = size(A);
   if j == 1
      la = [la;A(1,1)];
      return
   end
   mu = wsft(A);
   [Q, R] = qr(A - mu*eye(j));
   A = R*Q + mu*eye(j);
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   if abs(A(j,j-1))< 10*(abs(A(j-1,j-1))+abs(A(j,j)))*eps
      la = [la;A(j,j)];
      A = A(1:j-1,1:j-1);
      i = i + 1;
   end
end

function mu = wsft(A)

% Wilkinson's shift mu of the symmetric matrix A.

[n, n] = size(A);
if A == diag(diag(A))
   mu = A(n,n);
   return
end
mu = A(n,n);
if n > 1
   d = (A(n-1,n-1)-mu)/2;
   if d ~= 0
      sn = sign(d);
   else
      sn = 1;
   end
  bn = A(n,n-1);
  mu = mu - sn*bn^2/(abs(d) + sqrt(d^2+bn^2));
end

We will test function qrsft on the matrix A used earlier in this section

A = [2 1 1;1 3 1;1 1 4];   

la = qrsft(A)   

la =
   5.21431974337753
   2.46081112718911
   1.32486912943335   

Function eigv computes both the eigenvalues and the eigenvectors of a symmetric matrix
provided the eigenvalues are distinct. A method for computing the eigenvectors is discussed in
 [1], Algorithm 8.10.2, pp. 452-454

function [la, V] = eigv(A)

% Eigenvalues la and eigenvectors V of the symmetric
% matrix A with distinct eigenvalues.

V = [];
[n, n] = size(A);
[Q,T] = schur(A);
la = diag(T);



34

if nargout == 2
   d = diff(sort(la));
   for k=1:n-1
      if d(k) < 10*eps
         d(k) = 0;
      end
   end
   if ~all(d)
      disp( 'Eigenvalues must be distinct' )
   else
      for k=1:n
         U = T - la(k)*eye(n);
         t = U(1:k,1:k);
         y1 = [];
         if k>1
            t11 = t(1:k-1,1:k-1);
            s = t(1:k-1,k);
            y1 = -t11\s;
         end
         y = [y1;1];
         z = zeros(n-k,1);
         y = [y;z];
         v = Q*y;
         V = [V v/norm(v)];
      end
   end
end

We will use this function to compute the eigenvalues and the eigenvectors of the matrix A of the
last example

[la, V] = eigv(A)   

la =
   1.32486912943335
   2.46081112718911
   5.21431974337753
V =
   0.88765033882045  -0.23319197840751   0.39711254978701
  -0.42713228706575  -0.73923873953922   0.52065736843959
  -0.17214785894088   0.63178128111780   0.75578934068378   

To check these results let us compute the residuals Av - �v

A*V-V*diag(la)   

ans =
  1.0e-014 *
                  0  -0.09992007221626   0.13322676295502
  -0.02220446049250  -0.42188474935756   0.44408920985006
                  0   0.11102230246252  -0.13322676295502   
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MATLAB has several built-in functions for computations with sparse matrices. A partial list of
these functions is included here.

Function Description
condest Condition estimate for sparse matrix

eigs Few eigenvalues
find Find indices of nonzero entries
full Convert sparse matrix to full matrix

issparse True for sparse matrix
nnz Number of nonzero entries

nonzeros Nonzero matrix entries
sparse Create sparse matrix
spdiags Sparse matrix formed from diagonals
speye Sparse identity matrix
spfun Apply function to nonzero entries

sprand Sparse random matrix
sprandsym Sparse random symmetric matrix

spy  Visualize sparsity pattern
svds Few singular values

Function spy works for matrices in full form as well.

Computations with sparse matrices

The following MATLAB functions work with sparse matrices: chol, det, inv, jordan , lu, qr ,
size, \.

Command sparse is used to create a sparse form of a matrix.

Let

A = [0 0 1 1; 0 1 0 0; 0 0 0 1];

Then

B = sparse(A)

B =
   (2,2)        1
   (1,3)        1
   (1,4)        1
   (3,4)        1   

Command full  converts a sparse form of a matrix to the full form
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C = full(B)

C =
     0     0     1     1
     0     1     0     0
     0     0     0     1   

Command sparse has the following syntax

sparse(k,l,s,m,n)

where k and l are arrays of row and column indices, respectively, s ia an array of nonzero
numbers whose indices are specified in k and l, and m and n are the row and column dimensions,
respectively.

 Let

S = sparse([1 3 5 2], [2 1 3 4], [1 2 3 4], 5, 5)

S =
   (3,1)        2
   (1,2)        1
   (5,3)        3
   (2,4)        4   

F = full(S)

F =
     0     1     0     0     0
     0     0     0     4     0
     2     0     0     0     0
     0     0     0     0     0
     0     0     3     0     0   

To create a sparse matrix with several diagonals parallel to the main diagonal one can use the
command spdiags. Its syntax is shown below

spdiags(B, d, m, n)

The resulting matrix is an m-by-n sparse matrix. Its diagonals are the columns of the matrix B.
Location of the diagonals are described in the vector d.

Function mytrid  creates a sparse form of the tridiagonal matrix with constant entries along the
diagonals.

function T = mytrid(a,b,c,n)

% The n-by-n tridiagonal matrix T with constant entries
% along diagonals. All entries on the subdiagonal, main
% diagonal,and the superdiagonal are equal a, b, and c,
% respectively.
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e = ones(n,1);
T = spdiags([a*e b*e c*e],-1:1,n,n);

To create a symmetric 6-by-6-tridiagonal matrix with all diagonal entries are equal 4 and all
subdiagonal and superdiagonal entries are equal to one execute the following command

T = mytrid(1,4,1,6);   

Function spy creates a graph of the matrix. The nonzero entries are displayed as the dots.

spy( T )

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

nz = 16

The following is the example of a sparse matrix created with the aid of the nonsparse matrix
magic

spy(rem(magic(16),2))   
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16

nz = 128

Using a sparse form rather than the full form of a matrix one can reduce a number of flops used.
Let

A = sprand(50,50,.25);   

The above command generates a 50-by-50 random sparse matrix A with a density of about 25%.
We will use this matrix to solve a linear system Ax = b with

b = ones(50,1);   

Number of flops used is determined in usual way

flops(0)   

A\b;   

flops   

ans =
       54757   



39

Using the full form of A the number of flops needed to solve the same linear system is

flops(0)   

full(A)\b;   

flops   

ans =
       72014   
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1. Let A by an n-by-n matrix and let v be an n-dimensional vector. Which of the
following methods is faster?

(i) (v*v')*A
(ii)  v*(v'*A)

2. Suppose that L � �n x n is lower triangular and b � �n. Write MATLAB function x = ltri(L, b)
that computes a solution x to the linear system Lx = b.

3.   Repeat Problem 2 with L  being replaced by the upper triangular matrix U. Name
      your function utri(U, b) .

4. Let A � �n x n be a triangular matrix. Write a function dettri(A)  that computes the
     determinant of the matrix A.

5. Write MATLAB function MA = Gausspre(A, m, k) that overwrites matrix A � �n x p with
the product MA , where M � �n x n is the Gauss transformation which is determined by the
Gauss vector m and its column index k.
Hint : You may wish to use the following formula   MA = A – m(ek

TA).

6. A system of linear equations Ax = b, where A is a square matrix, can be solved applying
successively Gauss transformations to the augmented matrix [A, b] . A solution x then can be
found using back substitution, i.e., solving a linear system with an upper triangular matrix.
Using functions Gausspre of Problem 5, Gaussv described in Section 4.3, and utri  of
Problem 3, write a function x = sol(A, b) which computes a solution x to the linear system

      Ax = b.

7. Add a few lines of code to the function sol of Problem 6 to compute the determinant of the
matrix A. The header of your function might look like this function [x, d] = sol(A, b). The
second output parameter d stands for the determinant of A.

8. The purpose of this problem is to test function sol of Problem 6.

(i) Construct at least one matrix A for which function sol fails to compute a solution.
Explain why it happened.

(ii)  Construct at least one matrix A for which the computed solution x is poor. For
comparison of a solution you found using function sol with an acceptable solution
you may wish to use MATLAB's backslash operator \. Compute the relative error in
x. Compare numbers of flops used by function sol and MATLAB's command \.
Which of these methods is faster in general?

9. Given a square matrix A. Write MATLAB function [L, U] = mylu(A)  that computes the LU
      decomposition of A using partial pivoting.
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10. Change your working format to format long e and run function mylu of Problem 11on the
following matrices

(i) A = [eps 1;  1 1]
(ii)  A = [1 1; eps 1]
(iii)  A = hilb(10)
(iv) A = rand(10)

				In each case compute the error �A - LU�F.

11. Let A be a tridiagonal matrix that is either diagonally dominant or positive definite.
      Write MATLAB's function [L, U] =  trilu(a, b, c) that computes the LU factorization
      of A. Here a, b, and c stand for the subdiagonal, main diagonal, and superdiagonal
      of A, respectively.

12. The following function computes the Cholesky factor L  of the symmetric positive
      definite matrix A. Matrix L  is lower triangular and satisfies the equation A = LL T.

function L = mychol(A)

% Cholesky factor L of the matrix A; A = L*L'.

[n, n] = size(A);
for j=1:n

   for k=1:j-1
       A(j:n,j) = A(j:n,j) - A(j:n,k)*A(j,k);
    end
   A(j,j) = sqrt(A(j,j));
   A(j+1:n,j) = A(j+1:n,j)/A(j,j);

end
L = tril(A);

  Add a few lines of code that generates the error messages when A is neither

• symmetric nor
• positive definite

     Test the modified function mychol on the following matrices

(i) A = [1 2 3; 2 1 4; 3 4 1]
(ii)  A = rand(5)

13. Prove that any 2-by-2 Householder reflector is of the form
      H = [cos � sin �; sin � -cos �]. What is the Householder reflection vector u of H?

14. Find the eigenvalues and the associated eigenvectors of the matrix H of Problem 13.

15. Write MATLAB function [Q, R] = myqr(A)  that computes a full QR factorization
A = QR of A � �m x n with m � n using Householder reflectors. The output matrix Q is an m-
by-m orthogonal matrix and R is an m-by-n upper triangular with zero entries in rows n+1
through m.
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Hint : You may wish to use function Housprod in the body of the function myqr .
16. Let A be an n-by-3 random matrix generated by the MATLAB function rand. In this
     exercise you are to plot the error �A - QR�F versus n for n = 3, 5, … , 25. To

compute the QR factorization of A use the function myqr  of Problem 15. Plot the graph of the
computed errors using MATLAB's function semilogy instead of the function plot. Repeat this
experiment several times. Does the error increase as n does?

17. Write MATLAB function  V = Vandm(t, n) that generates Vandermonde's matrix V
      used in the polynomial least-squares fit. The degree of the approximating polynomial
      is n while the x-coordinates of the points to be fitted are stored in the vector t.

18. In this exercise you are to compute coefficients of the least squares polynomials using four
methods, namely the normal equations, the QR factorization, modified Gram-Schmidt
orthogonalization and the singular value decomposition.

      Write MATLAB function C = lspol(t, y, n) that computes coefficients of the
      approximating polynomials. They should be saved in columns of the matrix
      C � �(n+1) x 4. Here n stands for the degree of the polynomial, t and y are the vectors
      holding the x- and the y-coordinates of the points to be approximated, respectively.
      Test your function using t = linspace(1.4, 1.8), y = sin(tan(t)) – tan(sin(t)), n = 2, 4, 8.
      Use format long to display the output to the screen.
      Hint : To create the Vandermonde matrix needed in the body of the function lspol you
      may wish to use function Vandm of Problem 17.

19. Modify function lspol of Problem 18 adding a second output parameter err   so that
the header of the modified function should look like this
function [C, err] = lspol(t, y, n). Parameter err  is the least squares error in the computed
solution c to the overdetermined linear system Vc � y. Run the modified function on the data
of Problem 18. Which of the methods used seems to produce the least reliable numerical
results? Justify your answer.

20. Write MATLAB function [r, c] = nrceig(A) that computes the number of real and
complex eigenvalues of the real matrix A. You cannot use MATLAB function eig. Run
function nrceig on several random matrices generated by the functions rand and randn.
Hint:  You may wish to use the following MATLAB functions schur, diag, find . Note that
the diag function takes a second optional argument.

21. Assume that an eigenvalue of a matrix is sensitive if its condition number is
      greater than 103. Construct an n-by-n matrix (5 � n � 10) whose all eigenvalues are
      real and sensitive.

22. Write MATLAB function A = pent(a, b, c, d, e, n) that creates the full form of the
n-by-n pentadiagonal matrix A with constant entries a along the second subdiagonal, constant
entries b along the subdiagonal, etc.

23. Let A = pent(1, 26, 66, 26, 1, n) be an n-by-n symmetric pentadiagonal matrix
      generated by function pent of Problem 22. Find the eigenvalue decomposition

A = Q�QT of A for various values of n. Repeat this experiment using random numbers in the
band of the matrix A. Based on your observations, what conjecture can be formulated about
the eigenvectors of A?

24. Write MATLAB function [la, x] = smeig(A, v) that computes the smallest
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      (in magnitude) eigenvalue of the nonsingular matrix A and the associated
      eigenvector x. The input parameter v is an estimate of the eigenvector of A that is
      associated with the largest (in magnitude) eigenvalue of A.

25. In this exercise you are to experiment with the eigenvalues and eigenvectors of the
partitioned matrices. Begin with a square matrix A with known eigenvalues and
eigenvectors. Next construct a matrix B using MATLAB's built-in function repmat
to define the matrix B as B = repmat(A, 2, 2). Solve the matrix eigenvalue
problem for the matrix B and compare the eigenvalues and eigenvectors of matrices
A and B. You may wish to continue in this manner using larger values for the second
and third parameters in the function repmat. Based on the results of your experiment,
what conjecture about the eigenvalues and eigenvectors of B can be formulated?


