
��������	

			���
�����	��������	����	������

����	��
���	��

MATLAB has many tools that make this package well suited for numerical computations. This
tutorial deals with the rootfinding, interpolation, numerical differentiation and integration and
numerical solutions of the ordinary differential equations. Numerical methods of linear algebra
are discussed in Tutorial 4.

�� 			������	���������	��
 	��	��������	

Function Description
abs Absolute value

dblquad Numerically evaluate double integral
erf Error function

feval Execute function specified by string
fzero Scalar nonlinear zero finding

gamma Gamma function
inline Construct INLINE object

interp1 One-dimensional interpolation
interp2 Two-dimensional interpolation
linspace Evenly spaced vector

meshgrid X and Y arrays for 3-D plots
norm Matrix or vector norm
ode23 Solve non-stiff differential equations
ode45 Solve non-stiff differential equations
ode113 Solve non-stiff differential equations
ode15s Solve stiff differential equations
ode23s Solve stiff differential equations
poly Convert roots to polynomial

polyval Evaluate polynomial
ppval Evaluate piecewise polynomial
quad Numerically evaluate integral, low order method
quad8 Numerically evaluate integral, higher order method
rcond Reciprocal condition estimator
roots Find polynomial roots
spline Cubic spline data interpolation
surf 3-D colored surface

unmkpp Supply details about piecewise polynomial

2

�!				"������ ��#

A central problem discussed in this section is formulated as follows. Given a real-valued function
f: �n � �n, n � 1, find a vector r so that f(r) = 0. Vector r is called the root or zero of f.

5.2.1 Computing roots of the univariate polynomials

Polynomials are represented in MATLAB by their coefficients in the descending order of powers.
For instance, the cubic polynomial p(x) = 3x3 + 2x2 - 1 is represented as

p = [3 2 0 1];

Its roots can be found using function roots

format long

r = roots(p)

r =
 -1.00000000000000
 0.16666666666667 + 0.55277079839257i
 0.16666666666667 - 0.55277079839257i

To check correctness of this result we evaluate p(x) at r using function polyval

err = polyval(p, r)

err =
 1.0e-014 *
 0.22204460492503
 0 + 0.01110223024625i
 0 - 0.01110223024625i

To reconstruct a polynomial from its roots one can use function poly. Using the roots r computed
earlier we obtain

poly(r)

ans =
 1.00000000000000 0.66666666666667 0.00000000000000
0.33333333333333

Let us note that these are the coefficients of p(x) all divided by 3. The coefficients of p(x) can be
recovered easily

3*ans

ans =
 3.00000000000000 2.00000000000000 0.00000000000000
1.00000000000000

3

Numerical computation of roots of a polynomial is the ill-conditioned problem. Consider the fifth
degree polynomial p(x) = x5 – 10x4 + 40x3 – 80x2 + 80x – 32. Let us note that p(x) = (x –2)5.
Using function roots we find

format short

p = [1 –10 40 –80 80 –32];

x = roots(p)

x =
 2.0017
 2.0005 + 0.0016i
 2.0005 - 0.0016i
 1.9987 + 0.0010i
 1.9987 - 0.0010i

These results are not satisfactory. We will return to the problem of finding the roots of p(x) in the
next section.

5.2.2 Finding zeros of the univariate functions using MATLAB function fzero

Let now f be a transcendental function from � to �. MATLAB function fzero computes a zero of
the function f using user supplied initial guess of a zero sought.

In the following example let f(x) = cos(x) – x. First we define a function y = f1(x)

function y = f1(x)

% A univariate function with a simple zero.

y = cos(x) - x;

To compute its zero we use MATLAB function fzero

r = fzero('f1', 0.5)

r =
 0.73908513321516

Name of the function whose zero is computed is entered as a string. Second argument of function
fzero is the initial approximation of r . One can check last result using function feval

err = feval('f1', r)

err =
 0

In the case when a zero of function is bracketed a user can enter a two-element vector that
designates a starting interval. In our example we choose [0 1] as a starting interval to obtain

4

r = fzero('f1', [0 1])

r =
 0.73908513321516

However, this choice of the designated interval

fzero('f1', [1 2])

¨??? Error using ==> fzero
The function values at the interval endpoints must differ in sign.

generates the error message.

By adding the third input parameter tol you can force MATLAB to compute the zero of a
function with the relative error tolerance tol. In our example we let tol = 10-3 to obtain

rt = fzero('f1', .5, 1e-3)

rt =
 0.73886572291538

A relative error in the computed zero rt is

rel_err = abs(rt-r)/r

rel_err =
 2.969162630892787e-004

Function fzero takes fourth optional parameter. If it is set up to 1, then the iteration information is
displayed. Using function f1, with x0 = 0.5, we obtain

format short

rt = fzero('f1', .5, eps, 1)

 Func evals x f(x) Procedure
 1 0.5 0.377583 initial
 2 0.485858 0.398417 search
 3 0.514142 0.356573 search
 4 0.48 0.406995 search
 5 0.52 0.347819 search
 6 0.471716 0.419074 search
 7 0.528284 0.335389 search
 8 0.46 0.436052 search
 9 0.54 0.317709 search
 10 0.443431 0.459853 search
 11 0.556569 0.292504 search
 12 0.42 0.493089 search
 13 0.58 0.256463 search
 14 0.386863 0.539234 search
 15 0.613137 0.20471 search
 16 0.34 0.602755 search
 17 0.66 0.129992 search
 18 0.273726 0.689045 search

5

 19 0.726274 0.0213797 search
 20 0.18 0.803844 search
 21 0.82 -0.137779 search

 Looking for a zero in the interval [0.18, 0.82]

 22 0.726355 0.0212455 interpolation
 23 0.738866 0.00036719 interpolation
 24 0.739085 -6.04288e-008 interpolation
 25 0.739085 2.92788e-012 interpolation
 26 0.739085 0 interpolation
rt =
 0.7391

We have already seen that MATLAB function roots had faild to produce satisfactory results
when computing roots of the polynomial p(x) = (x – 2)5. This time we will use function fzero to
find a multiple root of p(x). We define a new function named f2

function y = f2(x)

y = (x - 2)^5;

and next change format to

format long

Running function fzero we obtain

rt = fzero('f2', 1.5)

rt =
 2.00000000000000

This time the result is as expected.

Finally, we will apply function fzero to compute the multiple root of p(x) using an expanded
form of the polynomial p(x)

function y = f3(x)

y = x^5 - 10*x^4 + 40*x^3 -80*x^2 + 80*x - 32;

rt = fzero('f3', 1.5)

rt =
 1.99845515925755

Again, the computed approximation of the root of p(x) has a few correct digits only.

6

5.2.3 The Newton-Raphson method for systems of nonlinear equations

This section deals with the problem of computing zeros of the vector-valued function
f : �n � �n, n � 1. Assume that the first order partial derivatives of f are continuous on an open
domain holding all zeros of f. A method discussed below is called the Newton-Raphson method.
To present details of this method let us introduce more notation. Using MATLAB's convention
for representing vectors we write f as a column vector f = [f 1; …;f n], where each fk is a function
from �n to �. Given an initial approximation x(0) � �n of r this method generates a sequence of
vectors {x(k)} using the iteration

x(k+1) = x(k) – Jf (x
(k))-1 f(x(k)), k = 0, 1, … .

Here Jf stands for the Jacobian matrix of f, i.e., Jf (x) = [�f i(x)/�xj], 1 � i, j � n. For more details
the reader is referred to [6] and [9].

Function NR computes a zero of the system of nonlinear equations.

function [r, niter] = NR(f, J, x0, tol, rerror, maxiter)

% Zero r of the nonlinear system of equations f(x) = 0.
% Here J is the Jacobian matrix of f and x0 is the initial
% approximation of the zero r.
% Computations are interrupted either if the norm of
% f at current approximation is less (in magnitude)
% than the number tol,or if the relative error of two
% consecutive approximations is smaller than the prescribed
% accuracy rerror, or if the number of allowed iterations
% maxiter is attained.
% The second output parameter niter stands for the number
% of performed iterations.

Jc = rcond(feval(J,x0));
if Jc < 1e-10
 error('Try a new initial approximation x0')
end
 xold = x0(:);
 xnew = xold - feval(J,xold)\feval(f,xold);
for k=1:maxiter
 xold = xnew;
 niter = k;
 xnew = xold - feval(J,xold)\feval(f,xold);
 if (norm(feval(f,xnew)) < tol) | ...
 norm(xold-xnew, 'inf')/norm(xnew, 'inf') < tol| ...
 (niter == maxiter)
 break
 end
end
r = xnew;

The following nonlinear system

 f1(x) = x1 + 2x2 – 2,
 f2(x) = x1

2 + 4x2
2 – 4

7

has the exact zeros r = [0 1]T and r = [2 0]T (see [6], p. 166). Functions fun1 and J1 define the
system of equations and its Jacobian, respectively

function z = fun1(x)

z = zeros(2,1);
z(1) = x(1) + 2*x(2) - 2;
z(2) = x(1)^2 + 4*x(2)^2 - 4;

function s = J1(x)

s = [1 2;2*x(1) 8*x(2)];

Let

x0 = [0 0];

Then

[r, iter] = NR('fun1', 'J1', x0, eps, eps, 10)

¨??? Error using ==> nr
Try a new initial approximation x0

For x0 as chosen above the associated Jacobian is singular. Let's try another initial guess for r

x0 = [1 0];

[r, niter] = NR('fun1', 'J1', x0, eps, eps, 10)

r =
 2.00000000000000
 -0.00000000000000
niter =
 5

Consider another nonlinear system

 f1(x) = x1 + x2 –1
 f2(x) = sin(x1

2 + x2
2) – x1.

The m-files needed for computing its zeros are named fun2 and J2

function w = fun2(x);

w(1) = x(1) + x(2) - 1;
w(2) = sin(x(1)^2 + x(2)^2) - x(1);
w = w(:);

8

function s = J2(x)

s = [1 1;
 2*x(1)*cos(x(1)^2 + x(2)^2)-1 2*x(2)*cos(x(1)^2 + x(2)^2)];

With the initial guess

x0 = [0 1];

the zero r is found to be

 [r, niter] = NR('fun2', 'J2', x0, eps, eps, 10)

r =
 0.48011911689839
 0.51988088310161
niter =
 5

while the initial guess

x0 = [1 1];

[r, iter] = NR('fun2', 'J2', x0, eps, eps, 10)

r =
 -0.85359545600207
 1.85359545600207
iter =
 10

gives another solution. The value of function fun2 at the computed zero r is

feval('fun2', r)

ans =
 1.0e-015 *
 0
 -0.11102230246252

Implementation of other classical methods for computing the zeros of scalar equations, including
the fixed-point iteration, the secant method and the Schroder method are left to the reader (see
Problems 3, 6, and 12 at the end of this tutorial).

�$				%�
	&��
�������	'��
�(�������

Interpolation of functions is one of the classical problems in numerical analysis. A one
dimensional interpolation problem is formulated as follows.

Given set of n+1 points �xk , yk�, 0 � k � n, with x0 < x1 < … < xn, find a function f(x) whose
graph interpolates the data points, i.e., f(xk) = yk, for k = 0, 1, …, n.

9

In this section we will use as the interpolating functions algebraic polynomials and spline
functions.

5.3.1 MATLAB function interp1

The general form of the function interp1 is yi = interp1(x, y, xi, method), where the vectors x
and y are the vectors holding the x- and the y- coordinates of points to be interpolated,
respectively, xi is a vector holding points of evaluation, i.e., yi = f(xi) and method is an optional
string specifying an interpolation method. The following methods work with the function interp1

• Nearest neighbor interpolation, method = 'nearest'. Produces a locally piecewise constant
interpolant.

• Linear interpolation method = 'linear' . Produces a piecewise linear interpolant.
• Cubic spline interpolation, method = 'spline'. Produces a cubic spline interpolant.
• Cubic interpolation, method = 'cubic' . Produces a piecewise cubic polynomial.

In this example, the following points (xk, yk) = (k�/5, sin(2xk)), k = 0, 1, … , 5,

x = 0:pi/5:pi;

y = sin(2.*x);

are interpolated using two methods of interpolation 'nearest' and 'cubic' . The interpolant is
evaluated at the following points

xi = 0:pi/100:pi;

yi = interp1(x, y, xi, 'nearest');

Points of interpolation together with the resulting interpolant are displayed below

plot(x, y, 'o', xi, yi), title('Piecewise constant interpolant of y =
sin(2x)')

10

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Piecewise constant interpolant of y = sin(2x)

yi = interp1(x, y, xi, 'cubic');

plot(x, y, 'o', xi, yi), title('Cubic interpolant of y = sin(2x)')

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Cubic interpolant of y = sin(2x)

11

5.3.2 Interpolation by algebraic polynomials

Assume now that the interpolating function is an algebraic polynomial pn(x) of degree at most n,
where n = number of points of interpolation – 1. It is well known that the interpolating
polynomial pn always exists and is unique (see e.g., [6], [9]). To determine the polynomial
interpolant one can use either the Vandermonde's method or Lagrange form or Newton's form or
Aitken's method. We shall describe briefly the Newton's method.

We begin writing p(x) as

(5.3.1) pn(x) = a0 + a1(x – x0) + a2(x – x0)(x – x1) + … + an(x – x0)(x – x1) … (x – xn-1)

Coefficients a0, a1, … , an are called the divided differences and they can be computed
recursively. Representation (5.3.1) of pn(x) is called the Newton's form of the interpolating
polynomial. The k-th order divided difference based on points x0, … xk, denoted by [x0, … , xk],
is defined recursively as

[xm] = ym if k = 0

[x0, … , xk] = ([x1, … , xk] – [x0, … , xk-1])/(xk – x0) if k > 0.

Coefficients {ak} in representation (5.3.1) and the divided differences are related in the following
way

 ak = [x0, … , xk].

Function Newtonpol evaluates an interpolating polynomial at the user supplied points.

function [yi, a] = Newtonpol(x, y, xi)

% Values yi of the interpolating polynomial at the points xi.
% Coordinates of the points of interpolation are stored in
% vectors x and y. Horner's method is used to evaluate
% a polynomial. Second output parameter a holds coeeficients
% of the interpolating polynomial in Newton's form.

a = divdiff(x, y);
n = length(a);
val = a(n);
for m = n-1:-1:1
 val = (xi - x(m)).*val + a(m);
end
yi = val(:);

function a = divdiff(x, y)

% Divided differences based on points stored in arrays x and y.

n = length(x);
for k=1:n-1

12

 y(k+1:n) = (y(k+1:n) - y(k))./(x(k+1:n) - x(k));
end
a = y(:);

For the data of the last example, we will evaluate Newton's interpolating polynomial of degree at
most five, using function Newtonpol. Also its graph together with the points of interpolation will
be plotted.

[yi, a] = Newtonpol(x, y, xi);

plot(x, y, 'o', xi, yi), title('Quintic interpolant of y = sin(2x)')

0 0.5 1 1.5 2 2.5 3 3.5
-1.5

-1

-0.5

0

0.5

1

1.5
Quintic interpolant of y = sin(2x)

Interpolation process not always produces a sequence of polynomials that converge uniformly to
the interpolated function as degree of the interpolating polynomial tends to infinity. A famous
example of divergence, due to Runge, illustrates this phenomenon. Let g(x) = 1/(1 + x2),
 -5 � x � 5, be the function that is interpolated at n + 1 evenly spaced points xk = -5 + 10k/n,
 k = 0, 1, … , n.

Script file showint creates graphs of both, the function g(x) ant its interpolating polynomial pn(x).

% Script showint.m
% Plot of the function 1/(1 + x^2) and its
% interpolating polynomial of degree n.

m = input('Enter number of interpolating polynomials ');

13

for k=1:m
 n = input('Enter degree of the interpolating polynomial ');
 hold on
 x = linspace(-5,5,n+1);
 y = 1./(1 + x.*x);

z = linspace(-5.5,5.5);
 t = 1./(1 + z.^2);
 h1_line = plot(z,t, '-.');
 set(h1_line, 'LineWidth' ,1.25)
 t = Newtonpol(x,y,z);
 h2_line = plot(z,t, 'r');
 set(h2_line, 'LineWidth' ,1.3, 'Color' ,[0 0 0])
 axis([-5.5 5.5 -.5 1])
 title(sprintf('Example of divergence (n = %2.0f)' ,n))
 xlabel('x')
 ylabel('y')
 legend('y = 1/(1+x^2)' , 'interpolant')
 hold off
end

Typing showint in the Command Window you will be prompted to enter value for the parameter
m = number of interpolating polynomials you wish to generate and also you have to enter
value(s) of the degree of the interpolating polynomial(s). In the following example m = 1 and
n = 9

Divergence occurs at points that are close enough to the endpoints of the interval of interpolation
[-5, 5].

We close this section with the two-point Hermite interpolaion problem by cubic polynomials.
Assume that a function y= g(x) is differentiable on the interval [a, b]. We seek a cubic
polynomial p3(x) that satisfies the following interpolatory conditions

14

(5.3.2) p3(a) = g(a), p3(b) = g(b), p3'(a) = g'(a), p3
'
 (b) = g'(b)

Interpolating polynomial p3(x) always exists and is represented as follows

(5.3.3) p3(x) = (1 + 2t)(1 - t)2g(a) + (3 - 2t)t2g(b) + h[t(1 - t)2g'(a) + t2(t - 1)g'(b)] ,

where t = (x - a)/(b - a) and h = b – a.

Function Hermpol evaluates the Hermite interpolant at the points stored in the vector xi.

function yi = Hermpol(ga, gb, dga, dgb, a, b, xi)

% Two-point cubic Hermite interpolant. Points of interpolation
% are a and b. Values of the interpolant and its first order
% derivatives at a and b are equal to ga, gb, dga and dgb,
% respectively.
% Vector yi holds values of the interpolant at the points xi.

h = b – a;
t = (xi - a)./h;
t1 = 1 - t;
t2 = t1.*t1;
yi = (1 + 2*t).*t2*ga + (3 - 2*t).*(t.*t)*gb +…
h.*(t.*t2*dga + t.^2.**(t - 1)*dgb);

In this example we will interpolate function g(x) = sin(x) using a two-point cubic Hermite
interpolant with a = 0 and b = �/2

xi = linspace(0, pi/2);

yi = Hermpol(0, 1, 1, 0, 0, pi/2, xi);

zi = yi – sin(xi);

plot(xi, zi), title('Error in interpolation of sin(x) by a two-point
cubic Hermite polynomial')

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0
Error in interpolation of sin(x) by a two-point cubic Hermite polynomial

5.3.3 Interpolation by splines

In this section we will deal with interpolation by polynomial splines. In recent decades splines
have attracted attention of both researchers and users who need a versatile approximation tools.
We begin with the definition of the polynomial spline functions and the spline space.

Given an interval [a, b]. A partition � of the interval [a, b] with the breakpoints {xl}1
m is defined

as � = {a = x1 < x2 < … < xm = b}, where m > 1. Further, let k and n, k < n, be nonnegative
integers. Function s(x) is said to be a spline function of degree n with smoothness k if the
following conditions are satisfied:

(i) On each subinterval [xl, xl+1] s(x) coincides with an algebraic polynomial of degree at
most n.

(ii) s(x) and its derivatives up to order k are all continuous on the interval [a, b]

Throughout the sequel the symbol Sp(n, k, �) will stand for the space of the polynomial splines
of degree n with smoothness k , and the breakpoints �. It is well known that Sp(n, k, �) is a
linear subspace of dimension (n + 1)(m – 1) – (k + 1)(m – 2). In the case when k = n – 1, we will
write Sp(n, �) instead of Sp(n, n – 1, �).

MATLAB function spline is designed for computations with the cubic splines (n = 3) that are
twice continuously differentiable (k = 2) on the interval [x1, xm]. Clearly
dim Sp(3, �) = m + 2. The spline interpolant s(x) is determined uniquely by the interpolatory
conditions s(xl) = yl, l = 1, 2, … , m and two additional boundary conditions, namely that s'''(x)
is continuous at x = x2 and x = xm-1. These conditions are commonly referred to as the not-a-knot
end conditions.

16

MATLAB's command yi = spline(x, y, xi) evaluates cubic spline s(x) at points stored in the array
xi. Vectors x and y hold coordinates of the points to be interpolated. To obtain the piecewise
polynomial representation of the spline interpolant one can execute the command
pp = spline(x, y). Command zi = ppval(pp, xi) evaluates the piecewise polynomial form of the
spline interpolant. Points of evaluation are stored in the array xi. If a spline interpolant has to be
evaluated for several vectors xi, then the use of function ppval is strongly recommended.

In this example we will interpolate Runge's function g(x) = 1/(1 + x2) on the interval [0, 5] using
six evenly spaced breakpoints

x = 0:5;

y = 1./(1 + x.^2);

xi = linspace(0, 5);

yi = spline(x, y, xi);

plot(x, y, 'o', xi, yi), title('Cubic spline interpolant')

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cubic spline interpolant

The maximum error on the set xi in approximating Runge's function by the cubic spline we found
is

17

err = norm(abs(yi-1./(1+xi.^2)),'inf')

err =
 0.0859

Detailed information about the piecewise polynomial representation of the spline interpolant can
be obtained running function spline with two input parameters x and y

pp = spline(x, y);

and next executing command unmkpp

[brpts, coeffs, npol, ncoeff] = unmkpp(pp)

brpts =
 0 1 2 3 4 5
coeffs =
 0.0074 0.0777 -0.5852 1.0000
 0.0074 0.1000 -0.4074 0.5000
 -0.0371 0.1223 -0.1852 0.2000
 -0.0002 0.0110 -0.0519 0.1000
 -0.0002 0.0104 -0.0306 0.0588
npol =
 5
ncoeff =
 4

The output parameters brpts, coeffs, npol, and ncoeff represent the breakpoints of the spline
interpolant, coefficients of s(x) on successive subintervals, number of polynomial pieces that
constitute spline function and number of coefficients that represent each polynomial piece,
respectively. On the subinterval [xl, xl+1] the spline interpolant is represented as

s(x) = cl1(x – xl)
3 + cl2(x – xl)

2 + cl3(x – xl) + cl4

where [cl1 cl2 cl3 cl4] is the lth row of the matrix coeffs. This form is called the piecewise
polynomial form (pp–form) of the spline function.

Differentiation of the spline function s(x) can be accomplished running function splder. In order
for this function to work properly another function pold (see Problem 19) must be in MATLAB's
search path.

function p = splder(k, pp, x)

% Piecewise polynomial representation of the derivative
% of order k (0 <= k <= 3) of a cubic spline function in the
% pp form with the breakpoints stored in the vector x.

m = pp(3);
lx4 = length(x) + 4;
n = pp(lx4);
c = pp(1 + lx4:length(pp))';
c = reshape(c, m, n);
b = pold(c, k);
b = b(:)';

18

p = pp(1:lx4);
p(lx4) = n - k;
p = [p b];

The third order derivative of the spline function of the last example is shown below

p = splder(3, pp, x);

yi = ppval(p, xi);

plot(xi, yi), title('Third order derivative of s(x)')

0 1 2 3 4 5
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
Third order derivative of s(x)

Note that s'''(x) is continuous at the breakpoints x2 = 1 and x5 = 4. This is due to the fact that the
not-a-knot boundary conditions were imposed on the spline interpolant.

Function evalppf is the utility tool for evaluating the piecewise polynomial function s(x) at the
points stored in the vector xi. The breakpoints x = {x1 < x2 < … < xm} of s(x) and the points of
evaluation xi must be such that x1 = xi1 and xm = xip, where p is the index of the largest number in
xi. Coefficients of the polynomial pieces of s(x) are stored in rows of the matrix A in the
descending order of powers.

function [pts, yi] = evalppf(x, xi, A)

% Values yi of the piecewise polynomial function (pp-function)
% evaluated at the points xi. Vector x holds the breakpoints
% of the pp-function and matrix A holds the coefficients of the
% pp-function. They are stored in the consecutive rows in

19

% the descending order of powers.The output parameter pts holds
% the points of the union of two sets x and xi.

n = length(x);
[p, q] = size(A);
if n-1 ~= p
 error('Vector t and matrix A must be "compatible"')
end
yi = [];
pts = union(x, xi);
for m=1:p
 l = find(pts == x(m));
 r = find(pts == x(m+1));
 if m < n-1
 yi = [yi polyval(A(m,:), pts(l:r-1))];
 else
 yi = [yi polyval(A(m,:), pts(l:r))];
 end
end

In this example we will evaluate and plot the graph of the piecewise linear function s(x) that is
defined as follows

s(x) = 0, if |x| � 1
s(x) = 1 + x, if -1 � x � 0
s(x) = 1 – x, if 0 � x � 1

Let

x = -2:2;

xi = linspace(-2, 2);

A = [0 0;1 1;1 –1;0 0];

[pts, yi] = evalppf(x, xi, A);

plot(pts, yi), title('Graph of s(x)'), axis([-2 2 -.25 1.25])

20

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Graph of s(x)

�$��				���	&��
�������	'��
�(�������

The interpolation problem discussed in this section is formulated as follows.

Given a rectangular grid {xk, yl} and the associated set of numbers zkl, 1 � k � m, 1 � l � n, find
a bivariate function z = f(x, y) that interpolates the data, i.e., f(xk. yl) = zkl for all values of k and l.
The grid points must be sorted monotonically, i.e. x1 < x2 < … < xm with a similar ordering of the
y-ordinates.

MATLAB's built-in function zi = interp2(x, y, z, xi, yi, 'method') generates a bivariate
interpolant on the rectangular grids and evaluates it in the points specified in the arrays xi and yi.
Sixth input parameter 'method' is optional and specifies a method of interpolation. Available
methods are:

• 'nearest' - nearest neighbor interpolation
• 'linear' - bilinear interpolation
• 'cubic' - bicubic interpolation
• 'spline' - spline interpolation

In the following example a bivariate function z = sin(x2 + y2) is interpolated on the square
–1 � x � 1, -1 � y � 1 using the 'linear' and the 'cubic' methods.

[x, y] = meshgrid(-1:.25:1);

z = sin(x.^2 + y.^2);

[xi, yi] = meshgrid(-1:.05:1);

21

zi = interp2(x, y, z, xi, yi, 'linear');

surf(xi, yi, zi), title('Bilinear interpolant to sin(x^2 + y^2)')

The bicubic interpolant is obtained in a similar fashion

zi = interp2(x, y, z, xi, yi, 'cubic');

22

�� ���
�����	'��
#������	�� 	&���
�
��������

A classical problem of the numerical integration is formulated as follows.

Given a continuous function f(x), a � x � b, find the coefficients {wk} and the nodes {xk},
1 � k � n, so that the quadrature formula

(5.4.1))x(fwdx)x(f k

n

1k
k

b

a

∑∫
=

≈

is exact for polynomials of a highest possible degree.

For the evenly spaced nodes {xk} the resulting family of the quadrature formulas is called the
Newton-Cotes formulas. If the coefficients {wk} are assumed to be all equal, then the quadrature
formulas are called the Chebyshev quadrature formulas. If both, the coefficients {wk} and the
nodes {xk} are determined by requiring that the formula (5.4.1) is exact for polynomials of the
highest possible degree, then the resulting formulas are called the Gauss quadrature formulas.

23

5.4.1 Numerical integration using MATLAB functions quad and quad8

Two MATLAB functions quad('f ', a, b, tol, trace, p1, p2, …) and
quad8('f ', a, b, tol, trace, p1, p2, …) are designed for numerical integration of the univariate
functions. The input parameter 'f' is a string containing the name of the function to be integrated
from a to b. The fourth input parameter tol is optional and specifies user's chosen relative error in
the computed integral. Parameter tol can hold both the relative and the absolute errors supplied by
the user. In this case a two-dimensional vector tol = [rel_tol, abs_tol] must be included.
Parameter trace is optional and traces the function evaluations with a point plot of the integrand.
To use default values for tol or trace one may pass in the empty matrix [] . Parameters p1, p2, …
are also optional and they are supplied only if the integrand depends on p1, p2, … .

In this example a simple rational function

f(x) = 2cx1

bxa

+
+

function y = rfun(x, a, b, c)

% A simple rational function that depends on three
% parameters a, b and c.

y = (a + b.*x)./(1 + c.*x.^2);
y = y';

is integrated numerically from 0 to 1 using both functions quad and quad8. The assumed relative
and absolute errors are stored in the vector tol

tol = [1e-5 1e-3];

format long

[q, nfev] = quad('rfun', 0, 1, tol, [], 1, 2, 1)

q =
 1.47856630183943
nfev =
 9

Using function quad8 we obtain

[q8,nfev] = quad8('rfun', 0, 1, tol, [], 1, 2, 1)

q8 =
 1.47854534395683
nfev =
 33

Second output parameter nfev gives an information about the number of function evaluations
needed in the course of computation of the integral.

24

The exact value of the integral in question is

exact = log(2) + pi/4

exact =
 1.47854534395739

The relative errors in the computed approximations q and q8 are

rel_errors = [abs(q – exact)/exact; abs(q8 – exact)/exact]

rel_errors =
 1.0e-004 *
 0.14174663036002
 0.00000000380400

5.4.2 Newton – Cotes quadrature formulas

One of the oldest method for computing the approximate value of the definite integral over the
interval [a, b] was proposed by Newton and Cotes. The nodes of the Newton – Cotes formulas
are chosen to be evenly spaced in the interval of integration. There are two types of the Newton –
Cotes formulas the closed and the open formulas. In the first case the endpoints of the interval of
integration are included in the sets of nodes whereas in the open formulas they are not. The
weights {wk} are determined by requiring that the quadrature formula is exact for polynomials of
a highest possible degree.

Let us discuss briefly the Newton – Cotes formulas of the closed type. The nodes of the n – point
formula are defined as follows xk = a + (k – 1)h, k = 1, 2, … , n, where h = (b – a)/(n – 1),
n > 1. The weights of the quadrature formula are determined from the conditions that the
following equations are satisfied for the monomials f(x) = 1, x, … xn - 1

)x(fwdx)x(f k

b

a

n

1k
k∫ ∑

=

=

function [s, w, x] = cNCqf(fun, a, b, n, varargin)

% Numerical approximation s of the definite integral of
% f(x). fun is a string containing the name of the integrand f(x).
% Integration is over the interval [a, b].
% Method used:
% n-point closed Newton-Cotes quadrature formula.
% The weights and the nodes of the quadrature formula
% are stored in vectors w and x, respectively.

if n < 2
 error(' Number of nodes must be greater than 1')
end
x = (0:n-1)/(n-1);

25

f = 1./(1:n);
V = Vander(x);
V = rot90(V);
w = V\f';
w = (b-a)*w;
x = a + (b-a)*x;
x = x';
s = feval(fun,x,varargin{:});
s = w'*s;

In this example the error function Erf(x) , where

Erf(x) = dte
2

x

0

t 2

∫ −

π

will be approximated at x = 1 using the closed Newton – Cotes quadrature formulas wit n = 2
(Trapezoidal Rule), n = 3 (Simpson's Rule), and n = 4 (Boole's Rule). The integrand of the last
integral is evaluated using function exp2

function w = exp2(x)

% The weight function w of the Gauss-Hermite quadrarure formula.

w = exp(-x.^2);

approx_v = [];

for n =2:4
 approx_v = [approx_v; (2/sqrt(pi))*cNCqf('exp2', 0, 1, n)];
end

approx_v

approx_v =
 0.77174333225805
 0.84310283004298
 0.84289057143172

For comparison, using MATLAB's built - in function erf we obtain the following approximate
value of the error function at x = 1

exact_v = erf(1)

exact_v =
 0.84270079294971

26

5.4.3 Gauss quadature formulas

This class of numerical integration formulas is constructed by requiring that the formulas are
exact for polynomials of the highest possible degree. The Gauss formulas are of the type

)x(fwdx)x(f)x(p k

b

a

n

1k
k∫ ∑

=

≈

where p(x) denotes the weight function. Typical choices of the weight functions together with the
associated intervals of integration are listed below

Weight p(x) Interval [a, b] Quadrature name
1 [-1, 1] Gauss-Legendre

1/ 2x1− [-1, 1] Gauss-Chebyshev

xe−),0[∞ Gauss-Laguerre
2xe−),(∞−∞ Gauss-Hermite

It is well known that the weights of the Gauss formulas are all positive and the nodes are the roots
of the class of polynomials that are orthogonal, with respect to the given weight function p(x), on
the associated interval.

Two functions included below, Gquad1 and Gquad2 are designed for numerical computation of
the definite integrals using Gauss quadrature formulas. A method used here is described in [3],
pp. 93 – 94.

function [s, w, x] = Gquad1(fun, a, b, n, type, varargin)

% Numerical integration using either the Gauss-Legendre (type = 'L')
% or the Gauss-Chebyshev (type = 'C') quadrature with n (n > 0) nodes.
% fun is a string representing the name of the function that is
% integrated from a to b. For the Gauss - Chebyshev quadrature
% it is assumed that a = -1 and b = 1.
% The output parameters s, w, and x hold the computed approximation
% of the integral, list of weights, and the list of nodes,
% respectively.

d = zeros(1,n-1);
if type == 'L'
 k = 1:n-1;
 d = k./(2*k - 1).*sqrt((2*k - 1)./(2*k + 1));
 fc = 2;
 J = diag(d,-1) + diag(d,1);
 [u,v] = eig(J);
 [x,j] = sort(diag(v));
 w = (fc*u(1,:).^2)';
 w = w(j)';

27

 w = 0.5*(b - a)*w;
 x = 0.5*((b - a)*x + a + b);
else
 x = cos((2*(1:n) - (2*n + 1))*pi/(2*n))';
 w(1:n) = pi/n;
end
f = feval(fun,x,varargin{:});
s = w*f(:);
w = w';

In this example we will approximate the error function Erf(1) using Gauss-Legendre formulas
with n = 2, 3, … , 8.

approx_v = [];

for n=2:8
 approx_v = [approx_v; (2/sqrt(pi))*Gquad1('exp2', 0, 1, n, 'L')];
end

approx_v

approx_v =
 0.84244189252255
 0.84269001848451
 0.84270117131620
 0.84270078612733
 0.84270079303742
 0.84270079294882
 0.84270079294972

Recall that using MATLAB's function erf we have already found that

exact_v = erf(1)

exact_v =
 0.84270079294971

If the interval of integration is either semi-infinite or bi-infinite then one may use function
Gquad2. Details of a method used in this function are discussed in [3], pp. 93 – 94.

function [s, w, x] = Gquad2(fun, n, type, varargin)

% Numerical integration using either the Gauss-Laguerre
% (type = 'L') or the Gauss-Hermite (type = 'H') with n (n > 0) nodes.
% fun is a string containing the name of the function that is
% integrated.
% The output parameters s, w, and x hold the computed approximation
% of the integral, list of weights, and the list of nodes,
% respectively.

if type == 'L'
 d = -(1:n-1);

28

 f = 1:2:2*n-1;
 fc = 1;
else
 d = sqrt(.5*(1:n-1));
 f = zeros(1,n);
 fc = sqrt(pi);
end
J = diag(d,-1) + diag (f) + diag(d,1);
[u,v] = eig(J);
[x,j] = sort(diag(v));
w = (fc*u(1,:).^2)';
w = w(j);
f = feval(fun,x,varargin{:});
s = w'*f(:);

The Euler's gamma function

dxxe)t(1t

0

x −
∞

−∫=Γ (t > -1)

can be approximated using function Gquad2 with type being set to 'L' (Gauss-Laguerre
quadratures). Let us recall that Γ (n) = (n - 1)! for n = 1, 2, … . Function mygamma is designed
for computing numerical approximation of the gamma function using Gauss-Laguerre
quadratures.

function y = mygamma(t)

% Value(s) y of the Euler's gamma function evaluated at t (t > -1).

td = t - fix(t);
if td == 0
 n = ceil(t/2);
else
 n = ceil(abs(t)) + 10;
end
y = Gquad2('pow' ,n, 'L' ,t-1);

The following function

function z = pow(x, e)

% Power function z = x^e

z = x.^e;

is called from within function mygamma.

In this example we will approximate the gamma function for t = 1, 1.1, … , 2 and compare the
results with those obtained by using MATLAB's function gamma. A script file testmyg
computes approximate values of the gamma function using two functions mygamma and gamma

29

% Script testmyg.m

format long
disp(' t mygamma gamma')
disp(sprintf('\n
___'))

for t=1:.1:2
 s1 = mygamma(t);
 s2 = gamma(t);
 disp(sprintf('%1.14f %1.14f %1.14f' ,t,s1,s2))
end

testmyg

 t mygamma gamma

1.00000000000000 1.00000000000000 1.00000000000000
1.10000000000000 0.95470549811706 0.95135076986687
1.20000000000000 0.92244757458893 0.91816874239976
1.30000000000000 0.90150911731168 0.89747069630628
1.40000000000000 0.89058495940663 0.88726381750308
1.50000000000000 0.88871435840715 0.88622692545276
1.60000000000000 0.89522845323377 0.89351534928769
1.70000000000000 0.90971011289336 0.90863873285329
1.80000000000000 0.93196414951082 0.93138377098024
1.90000000000000 0.96199632935381 0.96176583190739
2.00000000000000 1.00000000000000 1.00000000000000

5.4.4 Romberg's method

Two functions, namely quad and qauad8, discussed earlier in this tutorial are based on the
adaptive methods. Romberg (see, e.g., [2]), proposed another method, which does not belong to
this class of methods. This method is the two-phase method. Phase one generates a sequence of
approximations using the composite trapezoidal rule. Phase two improves approximations found
in phase one using Richardson's extrapolation. This process is a recursive one and the number of
performed iterations depends on the value of the integral parameter n. In many cases a modest
value for n suffices to obtain a satisfactory approximation.

Function Romberg(fun, a, b, n, varargin) implements Romberg's algorithm

function [rn, r1] = Romberg(fun, a, b, n, varargin)

% Numerical approximation rn of the definite integral from a to b
% that is obtained with the aid of Romberg's method with n rows
% and n columns. fun is a string that names the integrand.
% If integrand depends on parameters, say p1, p2, ... , then

30

% they should be supplied just after the parameter n.
% Second output parameter r1 holds approximate values of the
% computed integral obtained with the aid of the composite
% trapezoidal rule using 1, 2, ... ,n subintervals.

h = b - a;
d = 1;
r = zeros(n,1);
r(1) = .5*h*sum(feval(fun,[a b],varargin{:}));
for i=2:n
 h = .5*h;
 d = 2*d;
 t = a + h*(1:2:d);
 s = feval(fun, t, varargin{:});
 r(i) = .5*r(i-1) + h*sum(s);
end
r1 = r;
d = 4;
for j=2:n
 s = zeros(n-j+1,1);
 s = r(j:n) + diff(r(j-1:n))/(d - 1);
 r(j:n) = s;
 d = 4*d;
end
rn = r(n);

We will test function Romberg integrating the rational function introduced earlier in this tutorial
(see the m-file rfun). The interval of integration is [a, b] = [0, 1], n= 10, and the values of the
parameters a, b, and c are set to 1, 2, and 1, respectively.

[rn, r1] = Romberg('rfun', 0 , 1, 10, 1, 2, 1)

rn =
 1.47854534395739
r1 =
 1.25000000000000
 1.42500000000000
 1.46544117647059
 1.47528502049722
 1.47773122353730
 1.47834187356141
 1.47849448008531
 1.47853262822223
 1.47854216503816
 1.47854454922849

The absolute and relative errors in rn are

[abs(exact - rn); abs(rn - exact)/exact]

ans =
 0

31

5.4.4 Numerical integration of the bivariate functions using MATLAB function
dblquad

Function dblquad computes a numerical approximation of the double integral

 ∫∫
D

dxdy)y,x(f

where D = {(x, y): a � x � b, c � y � d} is the domain of integration. Syntax of the function
dblquad is dblquad (fun, a, b, c, d, tol), where the parameter tol has the same meaning as in the
function quad.

Let f(x, y) =)xysin(e xy− , -1 � x � 1, 0 � y � 1. The m-file esin is used to evaluate function f

function z = esin(x,y);

z = exp(-x*y).*sin(x*y);

Integrating function f , with the aid of the function dblquad, over the indicated domain we obtain

result = dblquad('esin', -1, 1, 0, 1)

result =
 -0.22176646183245

5.4.5 Numerical differentiation

Problem discussed in this section is formulated as follows. Given a univariate function f(x) find
an approximate value of f '(x) . The algorithm presented below computes a sequence of the
approximate values to derivative in question using the following finite difference approximation
of f '(x)

f '(x)
h2

)hx(f)hx(f −−+≈

where h is the initial stepsize. Phase one of this method computes a sequence of approximations
to f'(x) using several values of h. When the next approximation is sought the previous value of h
is halved. Phase two utilizes Richardson's extrapolation. For more details the reader is referred to
[2], pp. 171 – 180.

Function numder implements the method introduced in this section.

32

function der = numder(fun, x, h, n, varargin)

% Approximation der of the first order derivative, at the point x,
% of a function named by the string fun. Parameters h and n
% are user supplied values of the initial stepsize and the number
% of performed iterations in the Richardson extrapolation.
% For fuctions that depend on parameters their values must follow
% the parameter n.

d = [];
for i=1:n
 s = (feval(fun,x+h,varargin{:})-feval(fun,x-h,varargin{:}))/(2*h);
 d = [d;s];
 h = .5*h;
end
l = 4;
for j=2:n
 s = zeros(n-j+1,1);
 s = d(j:n) + diff(d(j-1:n))/(l - 1);
 d(j:n) = s;
 l = 4*l;
end
der = d(n);

In this example numerical approximations of the first order derivative of the function
2xe)x(f −= are computed using function numder and they are compared against the exact values

of f '(x) at x = 0.1, 0.2, … , 1.0. The values of the input parameters h and n are 0.01 and 10,
respectively.

function testnder(h, n)

% Test file for the function numder. The initial stepsize is h and
% the number of iterations is n. Function to be tested is
% f(x) = exp(-x^2).

format long
disp(' x numder exact')
disp(sprintf('\n
___'))

for x=.1:.1:1
 s1 = numder('exp2' , x, h, n);
 s2 = derexp2(x);
 disp(sprintf('%1.14f %1.14f %1.14f' ,x,s1,s2))
end

function y = derexp2(x)

% First order derivative of f(x) = exp(-x^2).

y = -2*x.*exp(-x.^2);

33

The following results are obtained with the aid of function testndr

testnder(0.01, 10)

 x numder exact

0.10000000000000 -0.19800996675001 -0.19800996674983
0.20000000000000 -0.38431577566308 -0.38431577566093
0.30000000000000 -0.54835871116311 -0.54835871116274
0.40000000000000 -0.68171503117430 -0.68171503117297
0.50000000000000 -0.77880078306967 -0.77880078307140
0.60000000000000 -0.83721159128436 -0.83721159128524
0.70000000000000 -0.85767695185699 -0.85767695185818
0.80000000000000 -0.84366787846708 -0.84366787846888
0.90000000000000 -0.80074451919839 -0.80074451920129

�
			���
�����	�
��� �	���	��
	%� �����	&���
�
�����)*�������

Many problems that arise in science and engineering require a knowledge of a function y = y(t)
that satisfies the first order differential equation y' = f(t, y) and the initial condition y(a) = y0,
where a and y0 are given real numbers and f is a bivariate function that satisfies certain
smoothness conditions. A more general problem is formulated as follows. Given function f of n
variables, find a function y = y(t) that satisfies the nth order ordinary differential equation
y(n) = f(t, y, y', … , y(n – 1)) together with the initial conditions y(a) = y0, y'(a) = y0

', … ,
y(n – 1) (a) = y0

(n – 1). The latter problem is often transformed into the problem of solving a system
of the first order differential equations. To this end a term "ordinary differential equations" will
be abbreviated as ODEs.

5.5.1 Solving the initial value problems using MATLAB built-in functions

MATLAB has several functions for computing a numerical solution of the initial value problems
for the ODEs. They are listed in the following table

Function Application Method used
ode23 Nonstiff ODEs Explicit Runge-Kutta (2, 3) formula
ode45 Nonstiff ODEs Explicit Runge-Kutta (4, 5) formula
ode113 Nonstiff ODEs Adams-Bashforth-Moulton solver
ode15s Stiff ODEs Solver based on the numerical differentiation

formulas
ode23s Stiff ODEs Solver based on a modified Rosenbrock

formula of order 2

 A simplest form of the syntax for the MATLAB ODE solvers is

34

 [t, y] = solver(fun, tspan, y0], where fun is a string containing name of the ODE m-file that
describes the differential equation, tspan is the interval of integration, and y0 is the vector
holding the initial value(s). If tspan has more than two elements, then solver returns computed
values of y at these points. The output parameters t and y are the vectors holding the points of
evaluation and the computed values of y at these points.

In the following example we will seek a numerical solution y at t = 0, .25, .5, .75, 1 to the
following initial value problem y' = -2ty2, with the initial condition y(0) = 1. We will use both the
ode23 and the ode45 solvers. The exact solution to this problem is y(t) = 1/(1 + t2) (see, e.g., [6],
p.289). The ODE m-file needed in these computations is named eq1

function dy = eq1(t,y)

% The m-file for the ODE y' = -2ty^2.

dy = -2*t.*y(1).^2;

format long

tspan = [0 .25 .5 .75 1]; y0 = 1;

[t1 y1] = ode23('eq1', tspan, y0);
[t2 y2] = ode45('eq1', tspan, y0);

To compare obtained results let us create a three-column table holding the points of evaluation
and the y-values obtained with the aid of the ode23 and the ode45 solvers

[t1 y1 y2]

ans =
 0 1.00000000000000 1.00000000000000
 0.25000000000000 0.94118221525751 0.94117646765650
 0.50000000000000 0.80002280597122 0.79999999678380
 0.75000000000000 0.64001788410487 0.63999998775736
 1.00000000000000 0.49999658522366 0.50000000471194

Next example deals with the system of the first order ODEs

y1'(t) = y1(t) – 4y2(t), y2'(t) = -y1(t) + y2(t),
 y1(0) = 1; y2(0) = 0.

Instead of writing the ODE m – file for this system, we will use MATLAB inline function

dy = inline('[1 –4;-1 1]*y', 't', 'y')

dy =
 Inline function:
 dy(t,y) = [1 –4;-1 1]*y

35

The inline functions are created in the Command Window. Interval over wich numerical solution is
computed and the initial values are stored in the vectors tspan and y0, respectively

tspan = [0 1]; y0 = [1 0];

Numerical solution to this system is obtained using the ode23 function

[t,y] = ode23(dy, tspan, y0);

Graphs of y1(t) (solid line) and y2(t) (dashed line) are shown below

plot(t,y(:,1),t,y(:,2),'--'), legend('y1','y2'), xlabel('t'),
ylabel('y(t)'), title('Numerical solutions y_1(t) and y_2(t)')

0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6

8

10

12

t

y(
t)

Numerical solutions y1(t) and y2(t)

y1
y2

The exact solution (y1(t), y2(t)) to this system is

y1, y2

y1 =
1/2*exp(-t)+1/2*exp(3*t)
y2 =
-1/4*exp(3*t)+1/4*exp(-t)

Functions y1 and y2 were found using command dsolve which is available in the Symbolic Math
Toolbox.

Last example in this section deals with the stiff ODE. Consider

36

y'(t) = -1000(y – log(1 + t)) +
t1

1
+

,

 y(0) = 1.

dy = inline('-1000*(y – log(1 + t)) + 1/(1 + t)', 't', 'y')

dy =
 Inline function:
 dy(t,y) = -1000*(y – log(1 + t)) + 1/(1 + t)

Using the ode23s function on the interval

tspan = [0 0.5];

we obtain

[t, y] = ode23s(dy, tspan, 1);

To illustrate the effect of stiffness of the differential equation in question, let us plot the graph of
the computed solution

plot(t, y), axis([-.05 .55 -.05 1]), xlabel('t'), ylabel('y(t)'),
title('Solution to the stiff ODE')

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y(
t)

Solution to the stiff ODE

The exact solution to this problem is y(t) = log(1+t) + exp(-1000*t). Try to plot this function on
the interval [-0.05, 0.5].

37

5.5.2 The two – point boundary value problem for the second order ODE's

The purpose of this section is to discuss a numerical method for the two – point boundary value
problem for the second order ODE

y''(t) = f(t, y, y')
y(a) = ya, y(b) = yb.

A method in question is the finite difference method. Let us assume that the function f is of the
form f(t, y, y') = g0(t) + g1(t)y + g2(t)y' . Thus the function f is linear in both y and y'. Using
standard second order approximations for y' and y'' one can easily construct a linear system of
equations for computing approximate values of the function y on the set of evenly spaced points.
Function bvp2ode implements this method

function [t, y] = bvp2ode(g0, g1, g2, tspan, bc, n)

% Numerical solution y of the boundary value problem
% y'' = g0(t) + g1(t)*y + g2(t)*y', y(a) = ya, y(b) = yb,
% at n+2 evenly spaced points t in the interval tspan = [a b].
% g0, g1, and g2 are strings representing functions g0(t),
% g1(t), and g2(t), respectively. The boundary values
% ya and yb are stored in the vector bc = [ya yb].

a = tspan(1);
b = tspan(2);
t = linspace(a,b,n+2);
t1 = t(2:n+1);
u = feval(g0, t1);
v = feval(g1, t1);
w = feval(g2, t1);
h = (b-a)/(n+1);
d1 = 1+.5*h*w(1:n-1);
d2 = -(2+v(1:n)*h^2);
d3 = 1-.5*h*w(2:n);
A = diag(d1,-1) + diag(d2) + diag(d3,1);
f = zeros(n,1);
f(1) = h^2*u(1) - (1+.5*h*w(1))*bc(1);
f(n) = h^2*u(n) - (1-.5*h*w(n))*bc(2);
f(2:n-1) = h^2*u(2:n-1)';
s = A\f;
y = [bc(1);s;bc(2)];
t = t';

In this example we will deal with the two-point boundary value problem

y''(t) = 1 +sin(t)y + cos(t)y'
 y(0) = y(1) = 1.

We define three inline functions

38

g0 = inline('ones(1, length(t))', 't'), g1 = inline('sin(t)', 't'), g2
= inline('cos(t)', 't')

g0 =
 Inline function:
 g0(t) = ones(1, length(t))
g1 =
 Inline function:
 g1(t) = sin(t)
g2 =
 Inline function:
 g2(t) = cos(t)

and next run function bvp2ode to obtain

[t, y] = bvp2ode(g0, g1, g2, [0 1],[1 1],100);

Graph of a function generated by bvp2ode is shown below

plot(t, y), axis([0 1 0.85 1]), title('Solution to the boundary value
problem'), xlabel('t'), ylabel('y(t)')

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1
Solution to the boundary value problem

t

y(
t)

39

"
�
�
��
�

[1] B.C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.

[2] W. Cheney and D. Kincaid, Numerical Mathematics and Computing, Fourth edition,
 Brooks/Cole Publishing Company, Pacific Grove, 1999.

[3] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New
 York, 1975.

[4] L.V. Fausett, Applied Numerical Analysis Using MATLAB, Prentice Hall, Upper Saddle
 River, NJ, 1999.

[4] D. Hanselman and B. Littlefield, Mastering MATLAB 5. A Comprehensive
 Tutorial and Reference, Prentice Hall, Upper Saddle River, NJ, 1998.

[6] M.T. Heath, Scientific Computing: An Introductory Survey, McGraw-Hill, Boston,
 MA, 1997.

[7] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
 Philadelphia, PA, 1996.

[8] G. Lindfield and J. Penny, Numerical Methods Using MATLAB, Ellis Horwood,
 New York, 1995.

[9] J.H. Mathews and K.D. Fink, Numerical Methods Using MATLAB, Third edition,
 Prentice Hall, Upper Saddle River, NJ, 1999.

[10] MATLAB, The Language of Technical Computing. Using MATLAB, Version 5,
 The MathWorks, Inc., 1997.

[11] J.C. Polking, Ordinary Differential Equations using MATLAB, Prentice Hall,
 Upper Saddle River, NJ, 1995.

[12] Ch.F. Van Loan, Introduction to Scientific Computing. A Matrix-Vector Approach
 Using MATLAB, Prentice Hall, Upper Saddle River, NJ, 1997.

[13] H.B. Wilson and L.H. Turcotte, Advanced Mathematics and Mechanics Applications Using
 MATLAB, Second edition, CRC Press, Boca Raton, 1997.

40

+��,�
��

1. Give an example of a polynomial of degree n � 3 with real roots only for which function
roots fails to compute a correct type of its roots.

2. All roots of the polynomial p(x) = a0 + a1x + … + an-1x
n-1 + xn , with real coefficients

 ak (k = 0, 1, … n - 1), are the eigenvalues of the companion matrix

A =



















−−−− −1n210 a...aaa

.....

0...100

00...10

 Write MATLAB function r = polroots(a) that takes a one-dimensional array a of the
 coefficients of the polynomial p(x) in the descending order of powers and returns its roots in
 the array r .
 Organize your work as follows:

(i) Create a matrix A. You may wish to use MATLAB's built-in function diag to avoid
using loops. Function diag takes a second argument that can be used to put a
superdiagonal in the desired position.

(ii) Use MATLAB's function eig to compute all eigenvalues of the companion matrix A.
See Tutorial 4 for more details about the matrix eigenvalue problem.

3. Write MATLAB function [r, niter] = fpiter(g, x0, maxiter) that computes a zero r of
 x = g(x) using the fixed-point iteration xn + 1 = g(xn), n = 0, 1, … with a given initial
 approximation x0 of r . The input parameter maxiter is the maximum number of
 allowed iterations while the output parameter niter stands for the number of iterations
 performed. Use an appropriate stopping criterion to interrupt computations when
 current approximation satisfies the exit condition of your choice.

4. In this exercise you are to test function fpiter of Problem 3.
 Recall that a convergent sequence {x(k)}, with the limit r , has the order of
 convergence � if

|x(k+1) – r| � C|x(k) – r|�, for some C > 0.

 If � = 1, then C < 1.

(i) Construct at least one equation of the form x = g(x), with at least one real zero, for
which function fpiter computes a sequence of approximations {xn} that converges
to the zero of your function. Print out consecutive approximations of the zero r and
determine the order of convergence.

(ii) Repeat previous part where this time a sequence of approximations generated by
the function fpiter does not converge to the zero r . Explain why a computed
sequence diverges.

41

5. Derive Newton's iteration for a problem of computing the reciprocal of a nonzero
 number a.

(i) Does your iteration always converge for any value of the initial guess x0?
(ii) Write MATLAB function r = recp(a, x0) that computes the reciprocal of a using

Newton's method with the initial guess x0.
(iii) Run function recp for the following following values of (a, x0) : (2, 0.3) and
 (10, 0.15) and print out consecutive approximations generated by the function recp
 and determine the order of convergence.

6. In this exercise you are to write MATLAB function
 [r, niter] = Sch(f, derf, x0, m, tol) to compute a multiple root r of the function f(x).
 Recall that r is a root of multiplicity m of f(x) if f(x) = (x – r)mg(x), for some
 function g(x). Schroder (see [8]) has proposed the following iterative scheme for
 computing a multiple root r of f(x)

xk+1 = xk – mf(xk)/f '(xk), k = 0, 1, … .

 When m = 1, this method becomes the Newton – Raphson method.
 The input parameters: f is the function with a multiple root r , derf is the first
 derivative of f, x0 is the initial guess, m stands for the multiplicity of r and tol is the
 assumed tolerance for the computed root.
 The output parameters: r is the computed root and niter is the number of performed
 iterations.

7. In this exercise you are to test function Sch of Problem 6.

(i) Use function f2 defined in Section 5.2 and write function derf2 to compute the first
order derivative of a function in file f2.

(ii) Use unexpanded form for the derivative. Run function Sch with m = 5 then repeat
this experiment letting m = 1. In each case choose x0 = 0. Compare number of
iterations performed in each case.

(iii) Repeat the above experiment using function f3. You will need a function derf3 to
evaluate the first derivative in the expanded form.

8. Let p(x) be a cubic polynomial with three distinct real roots r k , k = 1, 2, 3. Suppose
 that the exact values of r 1 and r 2 are available. To compute the root r 3 one wants to use
 function Sch of Problem 6 with m = 1 and x0 = (r1 + r2)/2. How many iterations are needed
 to compute r 3?

9. Based on your observations made during the numerical experiments performed when
solving Problem 8 prove that only one step of the Newton-Raphson method is needed to
compute the third root of p(x).

10. Given a system of nonlinear equations

x2/16 + y2/4 = 1
x2 – y2 = 1

Use function NR to compute all the zeros of this system. Compare your results with the exact
values x = 	2 and y = 	
3. Evaluate function f at the computed zeros and print your results
using format long.

42

11. Using function NR find all the zeros of the system of nonlinear equations

x2/16 + y2/4 = 1
x2 – x – y – 8 = 0

 The following graph should help you to choose the initial approximations to the
 zeros of this system

-4 -3 -2 -1 0 1 2 3 4
-10

-5

0

5

10

15

x

y
Graphs of x2/16 + y2/4 = 1 and y = x2 - x - 8

 Evaluate function f at the computed zeros and print out your results using format long.

12. Another method for computing zeros of the scalar equation f(x) = 0 is the secant
method. Given two initial approximations x0 and x1 of the zero r this method generates a
sequence {xk} using the iterative scheme

xk+1 = xk – f(xk)
)f(x)f(x

xx

1kk

1kk

−

−

−
−

, k = 1, 2, … .

Write MATLAB function [r, niter] = secm(f, x0, x1, tol, maxiter) that computes the zero r
of f(x) = 0. The input parameters: f is the name of a function whose zero is computed, x0 and
x1 are the initial approximations of r , tol is the prescribed tolerance and maxiter is the
maximum number of the allowed iterations. The output parameters: r is the computed zero of
f(x) and niter is the number of the performed iterations.

13. Use the function secm of Problem 12 to find the smallest positive zero of f(x).

(i) f(x) = sin(tan(x)) – x
(ii) f(x) = sin(x) + 1/(1 + e-x) – 1
(iii) f(x) = cos(x) – e-sin(x)

43

 Evaluate each function f at the computed zero and print out results using format long.

14. Another form of the interpolating polynomial is due to Lagrange and uses as the basis
 function the so–called fundamental polynomials Lk(x), 0 � k � n. The kth fundamental
 polynomial Lk is defined as follows: Lk(xk) = 1, Lk(xm) = 0 for k � m, and deg(Lk) � n.
 Write MATLAB function yi = fundpol(k, x, xi) which evaluates the kth Lagrange
 fundamental polynomial at points stored in the array xi.

15. The Lagrange form of the interpolating polynomial pn(x) of degree at most n which
interpolates the data (xk , yk), 0 � k � n, is

pn(x) = y0L0(x) + y1L1(x) + … + ynLn(x)

Write MATLAB function yi = Lagrpol(x, y, xi) that evaluates polynomial pn at points stored
in the array xi. You may wish to use function fundpol of Problem 14.

16. In this exercise you are to interpolate function g(x), a � x � b, using functions Newtonpol
(see Section 5.3) and Lagrpol (see Problem 15). Arrays x, y, and xi are defined as follows

 xk = a + k(b - a)/10, yk = g(xk), k = 0, 1, … , 10, and xi = linspace(a, b). Run both
 functions using the following functions g(x) and the associated intervals [a, b]

(i) g(x) = sin(4�x), [a, b] = [0, 1]

(ii) g(x) = J0(x), [a, b] = [2, 3],

where J0 stands for the Bessel function of the first kind of order zero. In MATLAB Bessel
function J0(x) can be evaluated using command besselj(0, x).
In each case find the values yi of the interpolating polynomial at xi and compute the error

 maximum err = norm(abs(yi - g(xi)), 'inf ') . Compare efficiency of two methods used to
 interpolate function g(x). Which method is more efficient? Explain why.

17. Continuation of Problem 16. Using MATLAB's function interp1, with options 'cubic' and
'spline', interpolate both functions g(x) of Problem 16 and answer the same questions as
stated in this problem. Among four method if interpolation you have used to interpolate
functions g(x) which method is the the best one as long as

(i) efficiency is considered?

(ii) accuracy is considered?

18. The Lebesgue function �(x) of the interpolating operator is defined as follows

�(x) = |Lo(x)| + |L1(x)| + … +|Ln(x)|,

 where Lk stands for the kth fundamental polynomial introduced in Problem 14. This function
 was investigated in depth by numerous researchers. It's global maximum over the interval of
 interpolation provides a useful information about the error of interpolation.
 In this exercise you are to graph function �(x) for various sets of the interpolating abscissa
 {xk}. We will assume that the points of interpolation are symmetric with respect to the
 origin, i.e., -xk = xn - k, for k = 0, 1, … , n. Without loss of generality, we may also assume

44

 that -x0 = xn = 1. Plot the graph of the Lebesgue function �(x) for the following choices of
 the points xk

 (i) xk = -1 +2k/n, k = 0, 1, … , n

 (ii) xk = -cos(k�/n), k = 0, 1, … , n

 In each case put n = 1, 2, 3 and estimate the global maximum of �(x). Which set
 of the interpolating abscissa provides a smaller value of Max{�(x) : x0 � x � xn}?

19. MATLAB's function polyder computes the first order derivative of an algebraic polynomial
that is represented by its coefficients in the descending order of powers. In this exercise you
are to write MATLAB function B = pold(A, k) that computes the kth order derivative of
several polynomials of the same degree whose coefficients are stored in the consecutive rows
of the matrix A. This utility function is useful in manipulations with splines that are
represented as the piecewise polynomial functions.
Hint : You may wish to use function polyder.

20. The Hermite cubic spline interpolant s(x) with the breakpoints � = {xx < x2 < … < xm} is a
member of Sp(3, 1, �) that is uniquely determined by the interpolatory conditions

(i) s(xl) = yl, l = 1, 2, … , m

 (ii) s'(xl) = pl, l = 1, 2, … , m

 On the subinterval [xl , xl+1] , l = 1, 2, … , m – 1, s(x) is represented as follows

s(x) = (1 + 2t)(1 – t)2yl + (3 – 2t)t2yl+1 + hl[t(1 – t)2pl + t2(t – 1)pl+1],

 where t = (x – xl)/(xl+1 – xl) and hl = xl+1 – xl.
 Prove that the Hermite cubic spline interpolant s(x) is convex on the interval [x1, xm] if and
 only if the following inequalities

3

p2p

h

ss

3

pp2 1ll

l

l1l1ll +++ +
≤

−
≤

+

 are satisfied for all l = 1, 2, … , m - 1.

21. Write MATLAB function [pts, yi] = Hermspl(x, y, p) that computes coefficients of the
Hermite cubic spline interpolant s(x) described in Problem 20 and evaluates spline interpolant
at points stored in the array xi. Parameters x, y, and p stand for the breakpoints, values of
s(x), and values of s'(x) at the breakpoints of s(x), respectively. The output parameter yi is the
array of values of s(x) at points stored in the array pts which is defined as the union of the
arrays linspace(x(k), x(k+1)), k = 1, 2, … , n – 1, where n = length(x).

 Hint: You may wish to use function Hermpol discussed in Section 5.3.

22. The nodes {xk} of the Newton – Cotes formulas of the open type are defined as follows
 xk = a + (k – 1/2)h, k = 1, 2, … , n – 1, where h = (b – a)/(n – 1). Write MATLAB
 function [s, w, x] = oNCqf(fun, a, b, n, varargin) that computes an approximate value s of

45

 the integral of the function that is represented by the string fun. Interval of integration is
 [a, b] and the method used is the n-point open formula whose weights and nodes are
 are stored in the arrays w and x, respectively.

23. The Fresnel integral

f(x) = dt)
2
ti

exp(
x

0

2

∫ π

is of interest in several areas of applied mathematics. Write MATLAB function [fr1, fr2] =
Fresnel(x, tol, n) which takes a real array x, a two dimensional vector tol holding the relative
and absolute tolerance for the error of the computed integral (see MATLAB help file for the
function quad8), and a positive integer n used in the function Romberg and returns numerical
approximations fr1 and fr2 of the Fresnel integral using each of the following methods

(i) quad8 with tolerance tol = [1e-8 1e-8]
(ii) Romberg with n = 10

 Compute Fresnel integrals for the following values of x = 0: 0.1:1.To compare the

approximations fr1 and fr2 calculate the number of decimal places of accuracy
 dpa = –log10(norm(fr1 – fr2, 'inf ')). For what choices of the input parameters tol and n the

number dpa is greater than or equal to 13? The last inequality must be satisfied for all values
x as defined earlier.

24. Let us assume that the real-valued function f(x) has a convergent integral

∫
∞

0

dx)x(f .

 Explain how would you compute an approximate value of this integral using function
 Gquad2 developed earlier in this chapter? Extend your idea to convergent integrals of the
 form

∫
∞

∞−

.dx)x(f

25. The following integral is discussed in [3], p. 317

J = ∫
− ++

1

1
24 9.0xx

dx
.

 To compute an approximate value of the integral J use

(i) MATLAB functions quad and quad8 with tolerance tol = [1e-8 1e-8]
(ii) functions Romberg and Gquad1 with n = 8.

Print out numerical results using format long. Which method should be recommended for
numerical integration of the integral J? Justify your answer.

46

26. The arc length s of the ellipse

1
b

y

a

x
2

2

2

2

=+

 from (a, 0) to (x, y) in quadrant one is equal to

s = b dttsink1
0

22∫ −
θ

 where k2 = 1 – (a/b)2 , a ≤ b, and).b/yarcsin()a/xarccos(==θ
 In this exercise you are to write MATLAB function [sR, sq8] = arcell(a, b, x, n, tol) that
 takes as the input parameters the semiaxes a and b and the x – coordinate of the point on the
 ellipse in quadrant one and returns an approximate value of the arc of ellipse from (a, 0) to
 (x, y) using functions Romberg, described in this chapter, and the MATLAB function
 quad8. The fourth input parameter n will be used by the function Romberg. The fifth input
 parameter tol is optional and it holds the user supplied tolerances for the relative and absolute
 errors in the computed approximation sq8. If tol is not supplied, the default values for
 tolerances should be assigned. For more details about using this parameter, type help quad8
 in the Command Window. Your program should also work for ellipses whose semiaxes are
 not restricted to those in the definition of the parameter k2. Test your function for the
 following values of the input parameters

 (i) a = 1, b = 2, x = 1: -0.1: 0, n = 10, tol = []
 (ii) a = 2, b = 1, x = 2: -0.2: 0, n = 10, tol = []
 (iii) a = 2, b = 1, x = 0: -0.2: -2, n = 10, tol = []

 Note that the terminal points (x, y) of the third ellipse lie in quadrant two.

27. Many of the most important special functions can be represented as the Dirichlet average F
of a continuous function f (see [1])

F(b1, b2 ; a, b) = ,dt]b)t1(ta[f)t1(t
)b,b(B

1 1b
1

0

1b

21

21 −+− −−∫

 where B(b1, b2), (b1, b2 > 0) stands for the beta function. Of special interest are the Dirichlet
 averages of elementary functions f(t) = t -c and f(t) = et. Former gives raise to the
 hypergeometric functions such as a celebrated Gauss hypergeometric function 2F1 while the
 latter is used to represent the confluent hypergeometric functions.
 In this exercise you are to implement a method for approximating the Dirichlet integral
 defined above using f(t) = t -c. Write MATLAB function y = dav(c, b1, b2, a, b) which
 computes a numerical approximation of the Dirichlet average of f. Use a method of your
 choice to integrate numerically the Dirichlet integral. MATLAB has a function named beta
 designed for evaluating the beta function. Test your function for the following values of the
 parameter c:

 c = 0 (exact value of the Dirichlet average F is equal to 1)

47

 c = b1 + b2 (exact value of the Dirichlet average is equal to 1/(ab
1 b

b
2).

28. Gauss hypergeometric function 2F1(a, b; c; x) is defined by the infinite power series as
follows

2F1(a, b; c; x) = n

0n

x
!n)n,c(

)n,b)(n,a(∑
∞

=

, |x| ≤ 1,

 where (a, n) = a(a + 1) … (a + n – 1) is the Appel symbol. Gauss hypergeometric function
 can be represented as the Dirichlet average of the power function f(t) = t -a

2F1(a, b; c; x) = F(b, c – b; 1 – x, 1) (c > b > 0, |x| < 1).

 Many of the important elementary functions are special cases of this function. For
 instance for |x| < 1, the following formulas

arcsin x = 2F1(0.5, 0.5; 1.5; x2)
ln(1 + x) = x2F1(1, 1; 1.5; x2)

arctanh x = x2F1(0.5, 1; 1.5; x2)

 hold true. In this exercise you are to use function dav of Problem 27 to evaluate three
 functions listed above for x = -0.9 : 0.1 : 0.9. Compare obtained approximate values with
 those obtained by using MATLAB functions asin, log, and atanh.

29 Let a and b be positive numbers. In this exercise you will deal with the four formulas for
computing the mean value of a and b. Among the well – known means the arithmetic mean

A(a, b) = (a + b)/2 and the geometric mean G(a, b) = ab are the most frequently used
ones. Two less known means are the logarithmic mean L and the identric mean I

L(a, b) =
blnaln

ba
−
−

I(a, b) = e-1(aa/bb)1/(a – b)

 The logarithmic and identric means are of interest in some problems that arise in
 economics, electrostatics, to mention a few areas only. All four means described in this
 problem can be represented as the Dirichlet averages of some elementary functions. For the
 means under discussion their b – parameters are both equal to one. Let M(a, b) stand for any
 of these means. Then

M(a, b) = f -1(F(1, 1; a, b))

 where f -1 stands for the inverse function of f and F is the Dirichlet average of f.
 In this exercise you will deal with the means described earlier in this problem.

48

(i) Prove that the arithmetic, geometric, logarithmic and identric means can be
represented as the inverse function of the Dirichlet average of the following
functions f(t) = t , f(t) = t -2, f(t) = t -1 and f(t) = ln t , respectively.

(ii) The logarithmic mean can also be represented as

.dtba)b,a(L t1
1

0

t −∫=

 Establish this formula.
(iii) Use the integral representations you found in the previous part together with the

midpoint and the trapezoidal quadrature formulas (with the error terms) to establish
the following inequalities: G ≤ L ≤ A and G ≤ I ≤ A. For the sake of brevity the
arguments a and b are omitted in these inequalities.

30. A second order approximation of the second derivative of the function f(x) is

f ''(x) =)h(O
h

)hx(f)x(f2)hx(f 2
2 +−+−+

.

 Write MATLAB function der2 = numder2(fun, x, h, n, varargin) that computes an
 approximate value of the second order derivative of a function named by the string fun at the
 point x. Parameters h and n are user-supplied values of the initial step size and the number
 of performed iterations in the Richardson extrapolation. For functions that depend on
 parameters their values must follow the parameter n.
 Test your function for f(x) = tan x with x = �/4 and h = 0.01. Experiment with different
 values for n and compare your results with the exact value f ''(�/4) = 4.

31. Consider the following initial – value problem

y1'''(t) = - y 1(t)y1''(t), y 1(0) = 1, y1'(0) = -1, y1''(0) = 1.

(i) Replace the differential equation by the system of three differential equations of
order one.

(ii) Write a MATLAB function dy = order3(t, y) that evaluates the right – hand sides of
the equations you found in the previous part.

(iii) Write a script file Problem31 to solve the resulting initial – value problem using
MATLAB solver ode45 on the interval [0 1].

(iv) Plot in the same window graphs of function y1(t) together with its derivatives up to
order two. Add a legend to your graph that clearly describes curves you are plotting.

32. In this exercise you are to deal with the following initial – value problem

x '(t) = -x(t) – y(t), y '(t) = -20x(t) – 2y(t), x(0) = 2, y(0) = 0.

(i) Determine whether or not this system is stiff.
(ii) If it is, use an appropriate MATLAB solver to find a numerical solution on the

interval [0 1].
(iii) Plot the graphs of functions x(t) and y(t) in the same window.

49

33. The Lotka – Volterra equations describe populations of two species

y1'(t) = y1(t) – y1(t)y2(t), y2'(t) = -15y2(t) + y1(t)y2(t).

 Write MATLAB function LV(y10, y20, tspan) that takes the initial values y10 = y1(0)
 and y20 = y2(0) and plots graphs of the numerical solutions y1 and y2 over the interval
 tspan.

34. Numerical evaluation of a definite integral

∫
b

a

dt)t(f

 can be accomplished by solving the ODE y'(t) = f(t) with the initial condition y(a) = 0. Then
 the integral in question is equal to y(b). Write MATLAB function yb = integral(a, b, fun)
 which implements this method. The input parameter fun is the string holding the name of the
 integrand f(t) and a and b are the limits of integration. To find a numerical solution of the
 ODE use the MATLAB solver ode45. Test your function on integrals of your choice.

35. Given the two – point boundary value problem

y'' = -t + t 2 + et – ty + ty' , y(0) = 1, y(1) = 1 + e.

(i) Use function bvp2ode included in this tutorial to find the approximate values of the
function y for the following values of n = 8, 18.

(ii) Plot, in the same window, graphs of functions you found in the previous part of the
problem. Also, plot the graph of function y(t) = t + et which is the exact solution to
the boundary value problem in question.

36. Another method for solving the two – point boundary value problem is the collocation
method. Let

y'' = f(t, y, y') , y(a) = ya, y(b) = yb.

This method computes a polynomial p(t) that approximates a solution y(t) using the
following conditions

p(a) = ya, p(b) = yb, p'' (tk) = f(tk, p(tk), p'(tk))

where k = 2, 3, … , n – 1 and a = t1 < t2 < … < tn = b are the collocation points that are
evenly spaced in the given interval.
In this exercise function f is assumed to be of the form f(t, y, y') = g0(t) + g1(t)y + g2(t)y' .

(i) Set up a system of linear equations that follows from the collocation conditions.
(ii) Write MATLAB function p = colloc(g0, g1, g2, a, b, ya, yb, n) which computes

coefficients p of the approximating polynomial. They should be stored in the array p
in the descending order of powers. Note that the approximating polynomial is of
degree n – 1 or less.

37. Test the function colloc of Problem 36 using the two – point boundary value problem of
Problem 35 and plot the graph of the approximating polynomial.

50

