Tutorial 5
Numerical Analysis with MATLAB

Math 475/CS 475

MATLAB has many tools that make this package well suited for numerical computations. This
tutorial deals with the rootfinding, interpolation, numerical differentiation and integration and
numerical solutions of the ordinary differential equations. Numerical methods of linear algebra
are discussed in Tutorial 4.

5.1 MATLAB functions used in Tutorial 5

Function Description
abs Absolute value
dblguad Numerically evaluate double integral
erf Error function
feval Execute function specified by string
fzero Scalar nonlinear zero finding
gamma Gamma function
inline Construct INLINE object
interpl One-dimensional interpolation
interp2 Two-dimensional interpolation
linspace Evenly spaced vector
meshgrid X and Y arrays for 3-D plots
norm Matrix or vector norm
ode23 Solve non-stiff differential equations
ode45 Solve non-stiff differential equations
odell3 Solve non-stiff differential equations
odel5s Solve stiff differential equations
ode23s Solve stiff differential equations
poly Convert roots to polynomial
polyval Evaluate polynomial
ppval Evaluate piecewise polynomial
quad Numerically evaluate integral, low order method
quad8 Numerically evaluate integral, higher order method
rcond Reciprocal condition estimator
roots Find polynomial roots
spline Cubic spline data interpolation
surf 3-D colored surface
unmkpp Supply details about piecewise polynomial




5.2 Rootfinding

A central problem discussed in this section is formulated as follows. Given a real-valued function
f. R" = R", n = 1, find a vector so thatf(r) = 0. Vectorr is called theoot or zeroof f.

5.2.1 Computing roots of the univariate polynomials

Polynomials are represented in MATLAB by their coefficients in the descending order of powers.
For instance, the cubic polynomjz(lx) = 3X’ + 2 - 1is represented as

p=[3201];

Its roots can be found using functioyots
format long

r = roots(p)

r=

-1.00000000000000

0.16666666666667 + 0.55277079839257i
0.16666666666667 - 0.55277079839257i

To check correctness of this result we evalpgté atr using functiorpolyval

err = polyval(p, r)

err =
1.0e-014 *
0.22204460492503
0+ 0.01110223024625i
0-0.01110223024625i

To reconstruct a polynomial from its roots one can use funpbon Using the roots computed
earlier we obtain

poly(r)

ans =
1.00000000000000 0.66666666666667 0.00000000000000
0.33333333333333

Let us note that these are the coefficients(gj all divided by 3. The coefficients pfx) can be
recovered easily

3*ans
ans =

3.00000000000000 2.00000000000000 0.00000000000000
1.00000000000000



Numerical computation of roots of a polynomial is ilkeonditionedproblem. Consider the fifth
degree polynomigh(x) = x° — 10X + 40% — 80X + 80x — 32 Let us note that(x) = (x —2.
Using functionroots we find
format short
p = [1 —10 40 —80 80 —32];
X = roots(p)
X =
2.0017
2.0005 + 0.0016i
2.0005 - 0.0016i

1.9987 + 0.0010i
1.9987 - 0.0010i

These results are not satisfactory. We will return to the problem of finding the rqdts of the
next section.

5.2.2  Finding zeros of the univariate functions using MATLAB function fzero

Let nowf be a transcendental function frdto R. MATLAB function fzero computes a zero of
the functionf using user supplied initial guess of a zero sought.

In the following example leix) = cos(x) — x First we define a function = f1(x)

function y = f1(x)
% A univariate function with a simple zero.

y = cos(X) - X;

To compute its zero we use MATLAB functifrero
r = fzero('f1', 0.5)

r=
0.73908513321516

Name of the function whose zero is computed is entered as a string. Second argument of function
fzero is the initial approximation af. One can check last result using functienal

err = feval('f1', r)

err =
0

In the case when a zero of function is bracketed a user can enter a two-element vector that
designates a starting interval. In our example we chiodgé as a starting interval to obtain



r = fzero('f1', [0 1])

r=
0.73908513321516

However, this choice of the designated interval
fzero('f1', [1 2])

“??7? Error using ==> fzero
The function values at the interval endpoints must differ in sign.

generates the error message.

By adding the third input parametei you can force MATLAB to compute the zero of a
function with the relative error toleranag®. In our example we lebl = 10° to obtain

rt = fzero('f1', .5, 1e-3)

re=
0.73886572291538

A relative error in the computed zetois
rel_err = abs(rt-r)/r

rel_err =
2.969162630892787e-004

Functionfzero takes fourth optional parameter. If it is set up to 1, then the iteration information is
displayed. Using functiofi, with x0 = 0.5 we obtain

format short
rt = fzero('f1', .5, eps, 1)

Func evals X f(x) Procedure
1 0.5 0.377583 initial
2 0.485858  0.398417 search
3 0.514142 0.356573 search
4 0.48 0.406995 search
5 0.52 0.347819 search
6 0.471716  0.419074 search
7 0.528284  0.335389 search
8 0.46 0.436052 search
9 0.54 0.317709 search
10 0.443431 0.459853 search
11 0.556569  0.292504 search
12 0.42 0.493089 search
13 0.58 0.256463 search
14 0.386863 0.539234 search
15 0.613137 0.20471 search
16 0.34 0.602755 search
17 0.66 0.129992 search
18 0.273726 0.689045 search



19 0.726274 0.0213797 search
20 0.18 0.803844 search
21 0.82 -0.137779 search
Looking for a zero in the interval [0.18, 0.82]
22 0.726355 0.0212455 interpolation
23 0.738866 0.00036719 interpolation
24 0.739085 -6.04288e-008 interpolation
25 0.739085 2.92788e-012 interpolation
26 0.739085 0 interpolation

=
0.7391

We have already seen that MATLAB functimots had faild to produce satisfactory results
when computing roots of the polynomjak) = (x — 2¥. This time we will use functiofzero to
find a multiple root of(x). We define a new function namé&d

function y = f2(x)
y = (X - 2)"5;
and next change format to

format long

Running functiorfzero we obtain
rt = fzero('f2', 1.5)

rt=
2.00000000000000

This time the result is as expected.

Finally, we will apply functiorfzero to compute the multiple root pfx) using an expanded
form of the polynomiap(x)

function y = f3(x)
y = x5 - 10*x™M + 40*x"3 -80*x"2 + 80*x - 32;
rt = fzero('f3', 1.5)

rt=
1.99845515925755

Again, the computed approximation of the roop©f) has a few correct digits only.



5.2.3 The Newton-Raphson method for systems of nonlinear equations

This section deals with the problem of computing zeros of the vector-valued function

f: R" = R", n = 1 Assume that the first order partial derivative$ afe continuous on an open
domain holding all zeros of A method discussed below is called M@wvton-Raphson method

To present details of this method let us introduce more notation. Using MATLAB's convention
for representing vectors we writ@s a column vectdr= [f,; ...;f,], where eacli is a function
fromR" toR. Given an initial approximatior® e R" of r this method generates a sequence of
vectors{x“} using the iteration

XD = 0 _ 3 (X(k))-l f(x(k)), k=01, ....

HereJ; stands for thdacobian matrixof f, i.e.,J; (x) = [0fi(x)/dx], 1 < i, ] < n. For more details
the reader is referred to [6] and [9].

FunctionNR computes a zero of the system of nonlinear equations.
function [r, niter] = NR(f, J, X0, tol, rerror, maxiter)

% Zero r of the nonlinear system of equations f(x) = 0.

% Here J is the Jacobian matrix of f and x0 is the initial

% approximation of the zero r.

% Computations are interrupted either if the norm of

% f at current approximation is less (in magnitude)

% than the number tol,or if the relative error of two

% consecutive approximations is smaller than the prescribed
% accuracy rerror, or if the number of allowed iterations

% maxiter is attained.

% The second output parameter niter stands for the number
% of performed iterations.

Jc = rcond(feval(J,x0));
if Jc<1le-10
error( "Try a new initial approximation x0' )
end
xold = x0(:);
xnew = xold - feval(J,xold)\feval(f,xold);
for k=1:maxiter
xold = xnew;
niter = k;
xnew = xold - feval(J,xold)\feval(f,xold);
if  (norm(feval(f,xnew)) < tol) |

norm(xold-xnew, ‘inf"  )/norm(xnew, 'inf ) <tol|
(niter == maxiter)
break
end
end
r = Xxnew;

The following nonlinear system

fa(X) = X + 2% - 2,
f2(X) = % + 4%’ — 4



has the exact zeros- [0 1]" andr = [2 0] (see [6], p. 166). Functiorisnl andJ1 define the
system of equations and its Jacobian, respectively

function z = funl(x)

z = zeros(2,1);

z(1) = x(2) + 2*x(2) - 2;

z(2) = x(1)"2 + 4*x(2)"2 - 4;
function s =J1(X)

s = [1 2;2*x(1) 8*x(2)];

Let
x0 =[00];
Then
[r, iter] = NR("funl', ‘31", X0, eps, eps, 10)
“??7? Error using ==> nr
Try a new initial approximation x0
Forx0 as chosen above the associated Jacobian is singular. Let's try another initial guess for
x0 =[10];
[r, niter] = NR(‘funl', 'J31', X0, eps, eps, 10)
r=
2.00000000000000
-0.00000000000000

niter =
5

Consider another nonlinear system

fl(X) =X+ X% -1
fo(X) = sin(x” + %°) — X

The m-files needed for computing its zeros are nafime? andJ2
function w = fun2(x);
w(l) =x(1) +x(2) - 1;

w(2) = sin(x(1)"2 + x(2)"2) - x(1);
w=w();



function s =J2(x)
s=[11;
2*x(1)*cos(X(1)"2 + x(2)"2)-1 2*x(2)*cos(x(1)"2 + x(2)"2)];

With the initial guess
x0 =0 1];
the zera is found to be
[r, niter] = NR('fun2', 'J2', X0, eps, eps, 10)
r=
0.48011911689839
0.51988088310161

niter =
5

while the initial guess
x0 =[11];
[r, iter] = NR('fun2', '32', X0, eps, eps, 10)

r=
-0.85359545600207
1.85359545600207
iter =
10

gives another solutioffhe value of functiofiun2 at the computed zerois
feval(‘fun2', r)
ans =

1.0e-015 *

0
-0.11102230246252

Implementation of other classical methods for computing the zeros of scalar equations, including

the fixed-point iteration, the secant method and the Schroder method are left to the reader (see
Problems 3, 6, and 12 at the end of this tutorial).

5.3 One Dimensional Interpolation

Interpolation of functions is one of the classical problems in numerical analysis. A one
dimensional interpolation problem is formulated as follows.

Given set oh+1 points{x, , Y}, 0< k < n, withxg < x < ... < X, find a functionf(x) whose
graph interpolates the data points, ife,) =y, fork=0,1,...,n



In this section we will use as the interpolating functions algebraic polynomiatphne
functions

5.3.1 MATLARB function interpl

The general form of the functionterpl isyi = interpl(x, y, xi, method), where the vectors
andy are the vectors holding the x- and the y- coordinates of points to be interpolated,
respectivelyxi is a vector holding points of evaluation, iy&.= f(xi) andmethod is an optional
string specifying an interpolation method. The following methods work with the furioteEmpl

* Nearest neighbor interpolation, methothearest'. Produces a locally piecewise constant
interpolant.

» Linear interpolation method #near' . Produces a piecewise linear interpolant.

* Cubic spline interpolation, methodspline'. Produces a cubic spline interpolant.

e Cubic interpolation, method 'subic'. Produces a piecewise cubic polynomial.

In this example, the following poin{gy, v«) = (kx/5, sin(2x)), k=0,1,...,5
x = 0:pi/5:pi;
y = sin(2.*x);

are interpolated using two methods of interpolatimarest’ and'cubic' . The interpolant is
evaluated at the following points

xi = 0:pi/100:pi;
yi = interpl(x, y, Xi, 'nearest’);
Points of interpolation together with the resulting interpolant are displayed below

plot(x, y, '0', xi, yi), title('Piecewise constant interpolant of y =
sin(2x)")



yi = interp1(x, v, xi, 'cubic');

plot(x, y, ‘0", xi, yi), title('Cubic interpolant of y = sin(2x)")
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5.3.2 Interpolation by algebraic polynomials

Assume now that the interpolating function is an algebraic polynaniigl of degree at most,

wheren = number of points of interpolation — 1. It is well known that the interpolating
polynomialp, always exists and is unique (see e.g., [6], [9]). To determine the polynomial
interpolant one can use either the Vandermonde's method or Lagrange form or Newton's form or
Aitken's method. We shall describe briefly the Newton's method.

We begin writingp(x) as
(5:3.1) pa(X) = @+ &u(X —X) + &(X —X0)(X = X1) + ... + &X = X)X = %) ... (X =%.)

Coefficientsay, ay, ... , a, are called théivided differenceand they can be computed
recursively. Representation (5.3.1)qfX) is called theNewton's fornof the interpolating
polynomial. The k-th order divided difference based on paigfs.. x«, denoted byxo, ... , %I,
is defined recursively as

Xm] =ym ifk=0
[Xo, ooy X = ([X1s wev s %] = [Xoy oov s %ea])/(Xk — %) if k> 0.

Coefficients{a,} in representation (5.3.1) and the divided differences are related in the following
way
a = [Xo, v X

FunctionNewtonpol evaluates an interpolating polynomial at the user supplied points.

function [yi, a] = Newtonpol(x, y, xi)

% Values yi of the interpolating polynomial at the points xi.

% Coordinates of the points of interpolation are stored in

% vectors x and y. Horner's method is used to evaluate

% a polynomial. Second output parameter a holds coeeficients
% of the interpolating polynomial in Newton's form.

a = divdiff(x, y);
n = length(a);
val = a(n);
for m=n-1:-1:1
val = (xi - x(m)).*val + a(m);
end
yi = val(:);

function a = divdiff(x, y)

% Divided differences based on points stored in arrays x and y.

n = length(x);
for k=1:n-1



y(k+1:n) = (y(k+1:n) - y(k))./(x(k+1:n) - x(K));
end
a=y();
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For the data of the last example, we will evaluate Newton's interpolating polynomial of degree at
most five, using functiohlewtonpol. Also its graph together with the points of interpolation will

be plotted.

[yi, a] = Newtonpol(x, y, xi);

plot(x, y, '0', xi, yi), title('Quintic interpolant of y = sin(2x)")
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Quintic interpolant of y = sin(2x)

0.5

Al
/N
/ \

/
\
\

05+

0 9/ \\\

-15 I I I

3.5

Interpolation process not always produces a sequence of polynomials that converge uniformly to
the interpolated function as degree of the interpolating polynomial tends to infinity. A famous
example of divergence, due to Runge, illustrates this phenomenar(xL.et1/(1 + X),

-5 < x < 5, be the function that is interpolatednat 1evenly spaced points = -5 + 10k/n

k=0,1,...,n

Script file showint creates graphs of both, the functip) ant its interpolating polynomial.(x).

% Script showint.m
% Plot of the function 1/(1 + x"2) and its
% interpolating polynomial of degree n.

m = input(  'Enter number of interpolating polynomials '



for k=1:m

n = input( ‘Enter degree of the interpolating polynomial '

hold on
x = linspace(-5,5,n+1);
y = 1./(1 + xX.*X);
z = linspace(-5.5,5.5);
t=21./(1+z"2);
h1l_line = plot(z.t, =)
set(hl_line, 'LineWidth' ,1.25)
t = Newtonpol(x,y,z);
h2_line = plot(z.t, o),
set(h2_line, ‘LineWidth' ,1.3, 'Color' ,[000])
axis([-5.55.5-.51))
title(sprintf( 'Example of divergence (n = %2.0f)'
xlabel( X' )
ylabel( Y )
legend( y=1
hold off
end

[(1+x"2)' , 'interpolant’ )
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)

Typing showint in the Command Window you will be prompted to enter value for the parameter
m = number of interpolating polynomials you wish to generate and also you have to enter
value(s) of the degree of the interpolating polynomial(s). In the following examplé and

n=9

Eeample of grergenis in= )

Divergence occurs at points that are close enough to the endpoints of the interval of interpolation

[-5, 5].

We close this section with tho-point Hermite interpolaioproblem by cubic polynomials.
Assume that a functioyr g(x) is differentiable on the intervah, b]. We seek a cubic
polynomialps(x) that satisfies the following interpolatory conditions



(5.3.2) ps(@) =g(@), p(b) =g(b), (@) =9g@),. B (b)=g(b)
Interpolating polynomiap;(x) always exists and is represented as follows

(5.3.3) pa(x) = (1 + 2)(1 - tfg(a) + (3 - 2t)fg(b) + h[t(L - ty’g'(a) + £t - 1)g'(b)] ,
wheret = (x - a)/(b - a)andh=b —-a

FunctionHermpol evaluates the Hermite interpolant at the points stored in the wéctor

function yi = Hermpol(ga, gb, dga, dgb, a, b, xi)

% Two-point cubic Hermite interpolant. Points of interpolation
% are a and b. Values of the interpolant and its first order

% derivatives at a and b are equal to ga, gb, dga and dgb,

% respectively.

% Vector yi holds values of the interpolant at the points xi.

h=b-a;

t=(xi-a)./h;

t1=1-t;

t2 = t1.*t1;

yi = (1 + 2*t).*t2*ga + (3 - 2*t).*(t.*t)*gb +...
h.*(t.*t2*dga + t.22.**(t - 1)*dgb);

In this example we will interpolate functigrix) = sin(x)using a two-point cubic Hermite
interpolant witha = Oandb = 7/2

xi = linspace(0, pi/2);
yi = Hermpol(0, 1, 1, 0, O, pi/2, xi);
zi = yi — sin(xi);

plot(xi, zi), titte('Error in interpolation of sin(x) by a two-point
cubic Hermite polynomial’)
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Error in interpolation of sin(x) by a two-point cubic Hermite polynomial
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5.3.3 Interpolation by splines

In this section we will deal with interpolation by polynomial splines. In recent decades splines
have attracted attention of both researchers and users who need a versatile approximation tools.
We begin with the definition of the polynomial spline functions and the spline space.

Given an intervala, b]. A partition A of the intervala, b] with thebreakpointsx;}," is defined
asA ={a=x <X <...<Xx,=Db}, wherem > 1 Further, lek andn, k < n, be nonnegative
integers. Functios(x) is said to be apline function of degreewith smoothness if the
following conditions are satisfied:

0] On each subintervak,, x.1] s(x) coincides with an algebraic polynomial of degree at
mostn.
(ii) s(x) and its derivatives up to orderare all continuous on the interJal b]

Throughout the sequel the symisg(n, k, A) will stand for thespace of the polynomial splines
of degreen with smoothnesk , and the breakpoints. It is well known that Sp(n, k4) is a
linear subspace of dimensigm+ 1)(m — 1) — (k + 1)(m — 2)In the case whelkn=n — 1, we will
write Sp(n, A) instead ofSp(n, n — 1 A).

MATLAB function spline is designed for computations with the cubic splimes @) that are
twice continuously differentiabléc & 2) on the intervalx,, X,]. Clearly

dim Sp(3,A) = m + 2 The spline interpolar#(x) is determined uniquely by the interpolatory
conditionss(x) =y, | =1, 2, ..., mand two additional boundary conditions, namely thagx)
is continuous at = X, andx = X,.;. These conditions are commonly referred to anttea-knot
end conditions.
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MATLAB's commandyi = spline(x, y, xi) evaluates cubic splir&Xx) at points stored in the array
xi. Vectorsx andy hold coordinates of the points to be interpolated. To obtain the piecewise
polynomial representation of the spline interpolant one can execute the command

pp = spline(x, y) Commandzi = ppval(pp, xi) evaluates the piecewise polynomial form of the
spline interpolant. Points of evaluation are stored in the arrdfya spline interpolant has to be
evaluated for several vectoris then the use of functigopval is strongly recommended.

In this example we will interpolate Runge's functigir) = 1/(1 + X) on the interval0, 5] using
six evenly spaced breakpoints

x = 0:5;

y =1./(1 + x."2);

xi = linspace(0, 5);

yi = spline(x, y, xi);

plot(x, y, '0', xi, yi), title('Cubic spline interpolant’)

Cubic spline interpolant
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The maximum error on the setin approximating Runge's function by the cubic spline we found
is
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err = norm(abs(yi-1./(1+xi.*2)),"Iinf")

err =
0.0859

Detailed information about the piecewise polynomial representation of the spline interpolant can
be obtained running functiapline with two input parametersandy

pp = spline(x, y);
and next executing commandmkpp
[brpts, coeffs, npol, ncoeff] = unmkpp(pp)

brpts =

0O 1 2 3 4 5
coeffs =

0.0074 0.0777 -0.5852 1.0000
0.0074 0.1000 -0.4074 0.5000
-0.0371 0.1223 -0.1852 0.2000
-0.0002 0.0110 -0.0519 0.1000
-0.0002 0.0104 -0.0306 0.0588
npol =

5
ncoeff =

4

The output parametelspts, coeffs npol, andncoeffrepresent the breakpoints of the spline
interpolant, coefficients af(x) on successive subintervals, number of polynomial pieces that
constitute spline function and number of coefficients that represent each polynomial piece,
respectively. On the subinteral, x.1] the spline interpolant is represented as

S(X) = Gu(X = %)° + G2(X — X)? + Ga(X — X) + Gy

where[c, G2 Gz G4] IS the Ith row of the matrigoeffs This form is called thpiecewise
polynomial form(pp—form) of the spline function.

Differentiation of the spline functior(>§ can be accomplished running functigider. In order
for this function to work properly another functipold (see Problem 19) must be in MATLAB's
search path.

function p = splder(k, pp, x)
% Piecewise polynomial representation of the derivative

% of order k (0 <= k <= 3) of a cubic spline function in the
% pp form with the breakpoints stored in the vector x.

m = pp(3);
Ix4 = length(x) + 4;
n = pp(Ix4);

¢ = pp(1 + Ix4:length(pp))’;
¢ = reshape(c, m, n);

b = pold(c, k);

b =b();
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p = pp(L:1x4);
p(x4) = n - k;
p=[pb];

The third order derivative of the spline function of the last example is shown below
p = splder(3, pp, X);

yi = ppval(p, xi);

plot(xi, yi), title('Third order derivative of s(x)")

Third order derivative of s(x)
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Note thats™'(x) is continuous at the breakpoints= 1 andxs = 4. This is due to the fact that the
not-a-knot boundary conditions were imposed on the spline interpolant.

Functionevalppfis the utility tool for evaluating the piecewise polynomial funci@x at the
points stored in the vectar. The breakpoints = {x; < x, < ... < X,} of s(x) and the points of
evaluationxi must be such that = xi, andx, = xi,, wherep is the index of the largest number in
xi. Coefficients of the polynomial piecesaik) are stored in rows of the matuixin the
descending order of powers.

function [pts, yi] = evalppf(x, xi, A)

% Values yi of the piecewise polynomial function (pp-function)
% evaluated at the points xi. Vector x holds the breakpoints
% of the pp-function and matrix A holds the coefficients of the
% pp-function. They are stored in the consecutive rows in



% the descending order of powers.The output parameter pts holds
% the points of the union of two sets x and xi.

n = length(x);
[p, q] = size(A);
if nl-~=p
error( 'Vector t and matrix A must be "compatible™
end
yi=[J;
pts = union(x, xi);
for m=1:p
| = find(pts == x(m));
r = find(pts == x(m+1));
if m<n-1
yi = [yi polyval(A(m,:), pts(l:r-1))];
else
yi = [yi polyval(A(m,:), pts(l:)];
end
end

In this example we will evaluate and plot the graph of the piecewise linear fuatt)dhat is

defined as follows

s(x) =0, it Ix|=1
s(x)=1+x, if -1sx<O0
s(x)=1-x, if Osx<l1

Let

X =-2:2,

xi = linspace(-2, 2);
A=[00:11;1-1;00];
[pts, yi] = evalppf(x, xi, A);

plot(pts, yi), title('Graph of s(x)"), axis([-2 2 -.25 1.25])
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Graph of s(x)
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5.3.4 Two Dimensional Interpolation
The interpolation problem discussed in this section is formulated as follows.

Given a rectangular grigky, yi} and the associated set of numbgrsl< k<m, 1<|<n, find
a bivariate functionz = f(x, y) that interpolates the data, i.&xy. y|) = z for all values ok andl.
The grid points must be sorted monotonically,:e< % < ... < X, with a similar ordering of the
y-ordinates.

MATLAB's built-in functionzi = interp2(x, vy, z, xi, yi, 'method’) generates a bivariate
interpolant on the rectangular grids and evaluates it in the points specified in theiaarads.
Sixth input parametémethod' is optional and specifies a method of interpolation. Available
methods are:

* 'nearest' - nearest neighbor interpolation
e linear' - bilinear interpolation

e 'cubic' - bicubic interpolation

« 'spline' - spline interpolation

In the following example a bivariate functian- sin(X + y°) is interpolated on the square
—-1<x<1,-1<y< 1lusingthe 'linear' and the ‘cubic' methods.

[X, y] = meshgrid(-1:.25:1);
z = sin(x."2 +y.n2),

[xi, yi] = meshgrid(-1:.05:1);
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zi = interp2(x, vy, z, Xi, yi, 'linear");

surf(xi, yi, zi), title('Bilinear interpolant to sin(x"2 + y*2)")

Bilinear interpolant to 5inn[><2 + vz)
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The bicubic interpolant is obtained in a similar fashion

zi = interp2(x, Y, z, Xi, yi, ‘cubic");
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Eicubic interpolant to 5inn[><2 + vz)
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5.4 Numerical Integration and Differentiation

A classical problem of the numerical integration is formulated as follows.

Given a continuous functidifx), a < x < b, find the coefficient$w,} and the nodeg,},
1 < k < n, so that thguadrature formula

b n
(5.4.1) J’f (x)dx = Zka(Xk)

is exact for polynomials of a highest possible degree.

For the evenly spaced nodgs} the resulting family of the quadrature formulas is called the
Newton-Cotes formula# the coefficientdw,} are assumed to be all equal, then the quadrature
formulas are called théhebyshev quadrature formuldgboth, the coefficientfw,} and the
nodes(x,} are determined by requiring that the formula (5.4.1) is exact for polynomials of the
highest possible degree, then the resulting formulas are call€ahtiss quadrature formulas
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54.1 Numerical integration using MATLAB functions quad and quad8

Two MATLAB functionsquad('f ', a, b, tol, trace, p1, p2, ...)and

quad8('f', a, b, tol, trace, p1, p2, ...)are designed for numerical integration of the univariate
functions. The input parametéris a string containing the name of the function to be integrated
from a to b. The fourth input parameteésl is optional and specifies user's chosen relative error in
the computed integral. Parametiglrcan hold both the relative and the absolute errors supplied by
the user. In this case a two-dimensional vectorfokl_tol, abs_tol] must be included.
Parametetrace is optional and traces the function evaluations with a point plot of the integrand.
To use default values fool or trace one may pass in the empty matrix Parameterpl, p2, ...

are also optional and they are supplied only if the integrand depepds) ... .

In this example a simple rational function

(x) = a+ bx

1+cx?

function y =rfun(x, a, b, c)

% A simple rational function that depends on three
% parameters a, b and c.

y = (a + b.*x)./(1 + c.*x."2);
Y=Y,

is integrated numerically fromto 1 using both functionguad andquad8. The assumed relative
and absolute errors are stored in the veictor

tol = [1e-5 1le-3];
format long
[g, nfev] = quad('rfun’, 0, 1, tol, [], 1, 2, 1)

q =
1.47856630183943
nfev =
9

Using functionquad8 we obtain
[98,nfev] = quad8('rfun’, 0, 1, tol, ], 1, 2, 1)

g8 =
1.47854534395683
nfev =
33

Second output parametefiev gives an information about the number of function evaluations
needed in the course of computation of the integral.
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The exact value of the integral in question is
exact = log(2) + pi/4

exact =
1.47854534395739

The relative errors in the computed approximatipasdq8 are
rel_errors = [abs(q — exact)/exact; abs(g8 — exact)/exact]

rel_errors =
1.0e-004 *
0.14174663036002
0.00000000380400

5.4.2 Newton — Cotes quadrature formulas

One of the oldest method for computing the approximate value of the definite integral over the
interval[a, b] was proposed by Newton and Cotes. The nodes of the Newton — Cotes formulas
are chosen to be evenly spaced in the interval of integration. There are two types of the Newton —
Cotes formulas the closed and the open formulas. In the first case the endpoints of the interval of
integration are included in the sets of nodes whereas in the open formulas they are not. The
weights{w,} are determined by requiring that the quadrature formula is exact for polynomials of

a highest possible degree.

Let us discuss briefly the Newton — Cotes formulas of the closed type. The nodes of the n — point
formula are defined as followg =a + (k—1)h k=1,2,...,npwhereh =(b—-a)/(n—-1)

n > 1. The weights of the quadrature formula are determined from the conditions that the
following equations are satisfied for the monomféats =1, x, ... X *

b n
J’f (x)dx = ;ka(xk)

function [s, w, X] = cNC(df(fun, a, b, n, varargin)

% Numerical approximation s of the definite integral of

% f(x). fun is a string containing the name of the integrand f(x).
% Integration is over the interval [a, b].

% Method used:

% n-point closed Newton-Cotes quadrature formula.

% The weights and the nodes of the quadrature formula

% are stored in vectors w and x, respectively.

if n<2

error( " Number of nodes must be greater than 1' )
end
X = (0:n-1)/(n-1);
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f=1./(1:n);

V = Vander(x);

V = rot90(V);

w = W\

w = (b-a)*w;

x =a+ (b-a)*x;

X =X,

s = feval(fun,x,varargin{:});
S = Ww's;

In this example therror functionErf(x) , where

Erf(x) = % J’e‘tzdt
0

will be approximated at = 1 using the closed Newton — Cotes quadrature formulas wi
(Trapezoidal Rule); = 3 (Simpson's Rule), and= 4 (Boole's Rule). The integrand of the last
integral is evaluated using functiemnp2

function w = exp2(x)
% The weight function w of the Gauss-Hermite quadrarure formula.

w = exp(-x."2);

approx_v =J;

forn =2:4
approx_v = [approx_v; (2/sqrt(pi))*cNCqf(‘'exp2', 0, 1, n)];
end

approx_v
approx_v =
0.77174333225805

0.84310283004298
0.84289057143172

For comparison, using MATLAB's built - in functienf we obtain the following approximate
value of the error function at= 1

exact_v = erf(1)

exact_v =
0.84270079294971
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5.4.3 Gauss quadature formulas

This class of numerical integration formulas is constructed by requiring that the formulas are
exact for polynomials of the highest possible degree. The Gauss formulas are of the type

b n
J'p(X)f (x)dx = Zka(Xk)

where p(x) denotes thveeight function Typical choices of the weight functions together with the
associated intervals of integration are listed below

Weight p(x) | Interval [a, b] | Quadrature name
1 [-1, 1] Gauss-Legendre
1/W [-1, 1] Gauss-Chebyshev
g [0,0) Gauss-Laguerre
o (—00,00) Gauss-Hermite

It is well known that the weights of the Gauss formulas are all positive and the nodes are the roots
of the class of polynomials that are orthogonal, with respect to the given weight furigdioon
the associated interval.

Two functions included belowsquadlandGquad?2 are designed for numerical computation of
the definite integrals using Gauss quadrature formulas. A method used here is described in [3],
pp. 93 — 94,

function [s, w, X] = Gquadl1(fun, a, b, n, type, varargin)

% Numerical integration using either the Gauss-Legendre (type = 'L")

% or the Gauss-Chebyshev (type = 'C'") quadrature with n (n > 0) nodes.
% fun is a string representing the name of the function that is

% integrated from a to b. For the Gauss - Chebyshev quadrature

% it is assumed thata = -1 and b = 1.

% The output parameters s, w, and x hold the computed approximation
% of the integral, list of weights, and the list of nodes,

% respectively.

d = zeros(1,n-1);
if type== 'L
k=1:mn-1;
d = k./(2*k - 1).*sqrt((2*k - 1)./(2*k + 1));
fc = 2;
J = diag(d,-1) + diag(d,1);
[u,v] = eig(J);
[x.j] = sort(diag(v));
w = (fc*u(1,:).”2)"
w = w();
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w = 0.5%(b - a)*w;
x=0.5%((b-a)*x + a + b);
else
X = cos((2*(1:n) - (2*n + 1))*pi/(2*n))";
w(1:n) = pi/n;
end
f = feval(fun,x,varargin{:});
s = w*f(2);
W =W,

In this example we will approximate the error functiefi(1) using Gauss-Legendre formulas
withn=2,3,...,8

approx_v =J;

for n=2:8
approx_v = [approx_v; (2/sqrt(pi))*Gquadl(‘'exp2', 0, 1, n, 'L"];
end

approx_v

approx_v =
0.84244189252255
0.84269001848451
0.84270117131620
0.84270078612733
0.84270079303742
0.84270079294882
0.84270079294972

Recall that using MATLAB's functioarf we have already found that
exact_v = erf(1)

exact_v =
0.84270079294971

If the interval of integration is either semi-infinite or bi-infinite then one may use function
Gquad2. Details of a method used in this function are discussed in [3], pp. 93 — 94.

function [s, w, X] = Gquad2(fun, n, type, varargin)

% Numerical integration using either the Gauss-Laguerre

% (type ='L") or the Gauss-Hermite (type = 'H') with n (n > 0) nodes.

% fun is a string containing the name of the function that is

% integrated.

% The output parameters s, w, and x hold the computed approximation
% of the integral, list of weights, and the list of nodes,

% respectively.

if type== 'L
d =-(1:n-1);



f=1:2:2*n-1;
fc=1;
else

d = sqrt(.5*(1:n-1));
f = zeros(1,n);
fc = sart(pi);
end

J = diag(d,-1) + diag (f) + diag(d,1);

[u,v] = eig(J);

[x.j] = sort(diag(v));

w = (fc*u(1,:).”2)"

w = w(j);

f = feval(fun,x,varargin{:});
s = wW*f(2);

The Euler's gamma function

r(t) =J'e'xxt'1dx (t>-1)
0

can be approximated using functiGiguad2 with type being set ta.' (Gauss-Laguerre
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quadratures). Let us recall that (n) = (n - 1)! forn =1, 2, .... Functionmygammais designed

for computing numerical approximation of the gamma function using Gauss-Laguerre

gquadratures.

function y = mygammayt)

% Value(s) y of the Euler's gamma function evaluated at t (t > -1).

td =t - fix(t);
if td==0
n = ceil(t/2);
else
n = ceil(abs(t)) + 10;
end
y = Gquad2( ‘'‘pow' ,n, ‘L' ,t-1);

The following function
function z = pow(x, €e)

% Power function z = x"e

z =Xx.ne;

is called from within functioomygamma.

In this example we will approximate the gamma functiori fod, 1.1, ... , Zand compare the

results with those obtained by using MATLAB's functgmmmma A script filetestmyg

computes approximate values of the gamma function using two funotigremmaandgamma
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% Script testmyg.m
format long

disp( ' t
disp(sprintf( \n

mygamma gamma' )

)

for t=1:.1:2
sl = mygammalf(t);
s2 = gammal(t);
disp(sprintf(

end

'%1.14f %1.14f %1.14f t,51,52))

testmyg

t mygamma gamma

1.00000000000000
1.10000000000000
1.20000000000000
1.30000000000000
1.40000000000000
1.50000000000000
1.60000000000000
1.70000000000000
1.80000000000000
1.90000000000000
2.00000000000000

1.00000000000000
0.95470549811706
0.92244757458893
0.90150911731168
0.89058495940663
0.88871435840715
0.89522845323377
0.90971011289336
0.93196414951082
0.96199632935381
1.00000000000000

5.4.4 Romberg's method

1.00000000000000
0.95135076986687
0.91816874239976
0.89747069630628
0.88726381750308
0.88622692545276
0.89351534928769
0.90863873285329
0.93138377098024
0.96176583190739
1.00000000000000

Two functions, namelguad andgauad8, discussed earlier in this tutorial are based on the

adaptive methods. Romberg (see, e.g., [2] ), proposed another method, which does not belong to
this class of methods. This method is the two-phase method. Phase one generates a sequence of
approximations using th@mposite trapezoidal rul€hase two improves approximations found

in phase one usinBichardson's extrapolatio his process is a recursive one and the number of
performed iterations depends on the value of the integral paramétemany cases a modest

value forn suffices to obtain a satisfactory approximation.

FunctionRomberg(fun, a, b, n, varargin)implements Romberg's algorithm

function [rn, r1] = Romberg(fun, a, b, n, varargin)

% Numerical approximation rn of the definite integral from ato b
% that is obtained with the aid of Romberg's method with n rows
% and n columns. fun is a string that names the integrand.

% If integrand depends on parameters, say pl, p2, ..., then
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% they should be supplied just after the parameter n.

% Second output parameter r1 holds approximate values of the
% computed integral obtained with the aid of the composite

% trapezoidal rule using 1, 2, ... ,n subintervals.

h=b-a;
d=1,;
r = zeros(n,1);
r(1) = .5*h*sum(feval(fun,[a b],varargin{:}));
for i=2:n
h = .5*h;
d = 2*d;

t =a + h*(1:2:d);
s = feval(fun, t, varargin{:});
r(i) = .5*r(i-1) + h*sum(s);
end
ri=r;
d=4;
for j=2:n
s = zeros(n-j+1,1);
s = r(j:n) + diff(r(-1:n))/(d - 1);
r(j:n) = s;
d = 4*d;
end
rn = r(n);

We will test functionrRomberg integrating the rational function introduced earlier in this tutorial
(see the m-filefun). The interval of integration ig, b] = [0, 1], n= 10, and the values of the
parameters, b, andc are set td, 2, andl, respectively.

[rn, r1] = Romberg('rfun', 0, 1, 10, 1, 2, 1)

rn=
1.47854534395739
rl=
1.25000000000000
1.42500000000000
1.46544117647059
1.47528502049722
1.47773122353730
1.47834187356141
1.47849448008531
1.47853262822223
1.47854216503816
1.47854454922849

The absolute and relative errorsimare
[abs(exact - rn); abs(rn - exact)/exact]

ans =
0
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5.4.4 Numerical integration of the bivariate functions using MATLAB function
dblquad

Functiondblguad computes a numerical approximation of the double integral

J'Jf (x,y)dxdy

whereD = {(x, y): a< x< b, c<y<d}isthe domain of integration. Syntax of the function
dblquad isdblquad (fun, a, b, c, d, tol) where the paramet&sl has the same meaning as in the
functionquad.

Letf(x, y) = e sin(xy),-1<x< 1, 0<y < 1 The m-fileesinis used to evaluate functién

function z = esin(x,y);

Z = exp(-x*y).*sin(x*y);

Integrating functiorf , with the aid of the functiodblquad, over the indicated domain we obtain
result = dblquad('esin’, -1, 1, 0, 1)

result =
-0.22176646183245

545 Numerical differentiation

Problem discussed in this section is formulated as follows. Given a univariate futgtiomd

an approximate value 6f(x). The algorithm presented below computes a sequence of the
approximate values to derivative in question using the following finite difference approximation
of f'(x)

_f(x+h)=f(x-h)

f'(x) oh

whereh is the initial stepsize. Phase one of this method computes a sequence of approximations
to f'(x) using several values bf When the next approximation is sought the previous valtie of

is halved. Phase two utilizes Richardson's extrapolation. For more details the reader is referred to
[2], pp. 171 — 180.

Functionnumder implements the method introduced in this section.
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function der = numder(fun, x, h, n, varargin)

% Approximation der of the first order derivative, at the point X,

% of a function named by the string fun. Parameters h and n

% are user supplied values of the initial stepsize and the number
% of performed iterations in the Richardson extrapolation.

% For fuctions that depend on parameters their values must follow
% the parameter n.

d=1I;

for i=1l:n
s = (feval(fun,x+h,varargin{:})-feval(fun,x-h,varargin{:}))/(2*h);
d =[d;s];
h = .5*h;

end

| =4,

for j=2:n

s = zeros(n-j+1,1);
s = d(j:n) + diff(d(-1:n))/(l - 1);
d(:n) =s;
| = 4*;
end
der = d(n);

In this example numerical approximations of the first order derivative of the function

f(x) = e are computed using functioumder and they are compared against the exact values

of f'(x) atx = 0.1, 0.2, ..., 1.0The values of the input parametierandn are0.01and10,
respectively.

function  testnder(h, n)

% Test file for the function numder. The initial stepsize is h and
% the number of iterations is n. Function to be tested is
% f(x) = exp(-x"2).

format long
disp( ' X numder exact' )
disp(sprintf( \n

for x=.1:.1:1

s1 = numder( 'exp2' , X, h, n);

s2 = derexp2(x);

disp(sprintf( '%1.14f %1.14f %1.14f ,X,81,52))
end

function y = derexp2(x)
% First order derivative of f(x) = exp(-x"2).

y = -2*x.*exp(-x.2);



The following results are obtained with the aid of functiestndr

testnder(0.01, 10)

X numder exact

0.10000000000000
0.20000000000000
0.30000000000000
0.40000000000000
0.50000000000000
0.60000000000000
0.70000000000000
0.80000000000000
0.90000000000000

-0.19800996675001
-0.38431577566308
-0.54835871116311
-0.68171503117430
-0.77880078306967
-0.83721159128436
-0.85767695185699
-0.84366787846708
-0.80074451919839

-0.19800996674983
-0.38431577566093
-0.54835871116274
-0.68171503117297
-0.77880078307140
-0.83721159128524
-0.85767695185818
-0.84366787846888
-0.80074451920129
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5.5 Numerical Methods for the Ordinary Differential Equations

Many problems that arise in science and engineering require a knowledge of a furctiin

that satisfies thérst order differential equatiory' = f(t, y) and thanitial conditiony(a) = ys,

wherea andy, are given real numbers ahi a bivariate function that satisfies certain
smoothness conditions. A more general problem is formulated as follows. Given fiiraftion
variables, find a functiory = y(t) that satisfies thath orderordinary differential equation

v =f(t, y, v, ..., YY) together with the initial conditionga) = o, y'(@) = Vo, ... ,

y("“Y(@) = w "~ Y. The latter problem is often transformed into the problem of solving a system
of the first order differential equations. To this end a term "ordinary differential equations” will
be abbreviated as ODEs.

5.5.1 Solving the initial value problems using MATLAB built-in functions

MATLAB has several functions for computing a numerical solution of the initial value problems
for the ODESs. They are listed in the following table

Function Application Method used

ode23 Nonstiff ODEs Explicit Runge-Kutta (2, 3) formula

ode45 Nonstiff ODEs Explicit Runge-Kutta (4, 5) formula

odel13 Nonstiff ODEs Adams-Bashforth-Moulton solver

odel5s Stiff ODEs Solver based on the numerical differentiatjon
formulas

ode23s Stiff ODEs Solver based on a modified Rosenbrock
formula of order 2

A simplest form of the syntax for the MATLAB ODE solvers is
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[t, y] = solve(fun, tspan, y0} wherefun is a string containing name of the ODE m-file that
describes the differential equatiagpan is the interval of integration, and is the vector

holding the initial value(s). lfspan has more than two elements, then solver returns computed
values ofy at these points. The output parametexsdy are the vectors holding the points of
evaluation and the computed valuey att these points.

In the following example we will seek a numerical solutjaatt = 0, .25, .5, .75, 10 the
following initial value probleny' = -2ty?, with the initial conditiony(0) = 1 We will use both the
ode23and theode45solvers. The exact solution to this problem(ig = 1/(1 + £) (see, e.g., [6],
p.289). The ODE m-file needed in these computations is namied

function  dy = eql(t,y)

% The m-file for the ODE y' = -2ty"2.

dy = -2*t.*y(1)."2;

format long
tspan =[0.25.5.75 1]; y0 =1,

[t1 y1] = ode23('eql’, tspan, y0);
[t2 y2] = oded5('eql’, tspan, y0);

To compare obtained results let us create a three-column table holding the points of evaluation
and the y-values obtained with the aid of thie23and theode45solvers

[t1 y1y2]

ans =

0 1.00000000000000 1.00000000000000
0.25000000000000 0.94118221525751 0.94117646765650
0.50000000000000 0.80002280597122 0.79999999678380
0.75000000000000 0.64001788410487 0.63999998775736
1.00000000000000 0.49999658522366 0.50000000471194

Next example deals with the system of fingt order ODEs

y1'(t) = ya(t) — 4ya(t), y2' () = -ya(t) + ya(1),
y1(0) = 1, y»(0) = Q

Instead of writing the ODE m — file for this system, we will use MATL#ABne function

dy = inline('[1 —4;-1 1]*y", 't 'y")

dy =
Inline function:
dy(ty) = [1 -4;-1 1]*y
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The inline functions are created in the Command Windoterval over wich numerical solution is
computed and the initial values are stored in the vettpesr andy0, respectively

tspan =[0 1]; yO =[1 O];

Numerical solution to this system is obtained usingotie? 3function
[t,y] = ode23(dy, tspan, y0);

Graphs ofy,(t) (solid line) andy,(t) (dashed line) are shown below

plot(t,y(:,1),t,y(:,2),"--", legend('y1','y2"), xlabel('t"),
ylabel('y(t)", title('Numerical solutions y_1(t) and y_2(t)")

Numerical solutions yl(t) and yz(t)
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The exact solutiofy;(t), y»(t)) to this system is

yl,y2

yl=
1/2*exp(-t)+1/2*exp(3*t)
y2=
-1/4*exp(3*t)+1/4*exp(-t)

Functionsyl andy?2 were found using commarolvewhich is available in th&ymbolic Math
Toolbox.

Last example in this section deals with #hiff ODE Consider
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ey 1
y'(t) =-1000(y — log(1 + 1)) +1_+t'
y0) =1

dy = inline('-1000*(y — log(1 + t)) + /(1 + t)', 't', 'y")
dy =

Inline function:

dy(t,y) = -1000*(y — log(1 + 1)) + /(1 + t)
Using theode23sfunction on the interval
tspan = [0 0.5];
we obtain

[t, y] = ode23s(dy, tspan, 1);

To illustrate the effect of stiffness of the differential equation in question, let us plot the graph of
the computed solution

plot(t, y), axis([-.05 .55 -.05 1] ), xlabel('t"), ylabel('y(t)",
title("Solution to the stiff ODE")

Solution to the stiff ODE
1 T T T T T

The exact solution to this problemyi€) = log(1+t) + exp(-1000*t) Try to plot this function on
the interval-0.05, 0.5]
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5.5.2 The two — point boundary value problem for the second order ODE's

The purpose of this section is to discuss a humerical method for the two — point boundary value
problem for the second order ODE

y'(t) =ft, y, )
y(@ =vya, y(b) =yb.

A method in question is tHaite difference method.et us assume that the functiois of the

formf(t, y, y') = go(t) + gi(t)y + g(t)y'. Thus the functioffi is linear in bothy andy'. Using

standard second order approximationsyfaxndy" one can easily construct a linear system of
equations for computing approximate values of the function y on the set of evenly spaced points.
Functionbvp2odeimplements this method

function [t, y] = bvp20de(g0, g1, g2, tspan, bc, n)

% Numerical solution y of the boundary value problem

% y" = g0(t) + g1(t)*y + g2(1)*y", y(a) = ya, y(b) = yb,

% at n+2 evenly spaced points t in the interval tspan = [a b].
% g0, g1, and g2 are strings representing functions g0(t),

% gl1(t), and g2(t), respectively. The boundary values

% ya and yb are stored in the vector bc = [ya yb].

a = tspan(l);

b = tspan(2);

t = linspace(a,b,n+2);

t1 = t(2:n+1);

u = feval(go, t1);

v = feval(gl, t1);

w = feval(g2, t1);

h = (b-a)/(n+1);

dl = 1+.5*h*w(1:n-1);

d2 = -(2+v(1:n)*h"2);

d3 = 1-.5*h*w(2:n);

A =diag(d1,-1) + diag(d2) + diag(d3,1);
f = zeros(n,1);

f(1) = h*2*u() - (1+.5*h*w(1))*bc(1);
f(n) = h"2*u(n) - (1-.5*h*w(n))*bc(2);
f(2:n-1) = h"2*u(2:n-1)’;

s = A\f;

y = [bc(1);s;bc(2)];

t=1,

In this example we will deal with the two-point boundary value problem

y"(t) = 1 +sin(t)y + cos(t)y’'
y(0) =y()=1.

We define three inline functions



g0 = inline('ones(1, length(t))', 't'), g1 = inline('sin(t)', 't"), g2
= inline(‘cos(t)', 't

g0 =

Inline function:

g0(t) = ones(1, length(t))
gl=

Inline function:

g1(t) = sin(t)
92 =

Inline function:

g2(t) = cos(t)

and next run functiobvp2odeto obtain

[t, y] = bvp2ode(g0, g1, g2, [0 1],[1 1],100);

Graph of a function generated byp2odeis shown below

plot(t, y), axis([0 1 0.85 1]), title("Solution to the boundary value
problem’), xlabel('t"), ylabel('y(t)")

Solution to the boundary value problem

1 T T T T

0.951
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Problems

1. Give an example of a polynomial of degree 3 with real roots only for which function
roots fails to compute a correct type of its roots.

2. All roots of the polynomiap(x) = a + ax + ... + a..x"" + X", with real coefficients
a(k=0,1, .. n-1)are the eigenvalues of thempanion matrix

ao 1 .. 0O 0 O
a a
A= DO 0 1 .. 0 0
a. : . .0
o ]
O% ~—& —8 ... ~&1[

Write MATLAB functionr = polroots(a) that takes a one-dimensional areagf the
coefficients of the polynomialx) in the descending order of powers and returns its roots in
the array.

Organize your work as follows:

0] Create a matriA. You may wish to use MATLAB's built-in functiatiag to avoid
using loops. Functiodiag takes a second argument that can be used to put a
superdiagonal in the desired position.

(i) Use MATLAB's functioneig to compute all eigenvalues of the companion matrix
See Tutorial 4 for more details about the matrix eigenvalue problem.

3. Write MATLAB function [r, niter] = fpiter(g, x0, maxiter) that computes a zeroof
X = g(x)using the fixed-point iteratiox, - 1 = g(%,), n = 0, 1, ...with a given initial
approximatiox0 of r. The input parametenaxiter is the maximum number of
allowed iterations while the output parametézr stands for the number of iterations
performed. Use an appropriate stopping criterion to interrupt computations when
current approximation satisfies the exit condition of your choice.

4. In this exercise you are to test functipiter of Problem 3.
Recall that a convergent sequepc@}, with the limitr, has theorder of
convergencg if

|X(k+1) —1| < Clx(k) _ rlll, for someC > 0.
Ifu =1, thenC < 1.

® Construct at least one equation of the fermg(x), with at least one real zero, for
which functionfpiter computes a sequence of approximatipné that converges
to the zero of your function. Print out consecutive approximations of the z&
determine the order of convergence.

(ii) Repeat previous part where this time a sequence of approximations generated by
the functionfpiter does not converge to the zerdexplain why a computed
sequence diverges.
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5. Derive Newton's iteration for a problem of computing the reciprocal of a nonzero

numbee.

(1) Does your iteration always converge for any value of the initial gu@ss

(i) Write MATLAB function r = recp(a, x0)that computes the reciprocalatising
Newton's method with the initial gues3.

(i) Run functionrecp for the following following values ofa, %) : (2, 0.3) and
(10, 0.15) and print out consecutive approximations generated by the fuegiion
and determine the order of convergence.

6. In this exercise you are to write MATLAB function
[r, niter] = Sch(f, derf, x0, m, tol) to compute a multiple rootof the functionf(x).
Recall that is a root of multiplicitym of f(x) if f(x) = (x — r)"g(x), for some
functiong(x). Schroder (see [8]) has proposed the following iterative scheme for
computing a multiple rootof f(x)

Xke1 = X — MFO)/F (X)), k=0,1, ...

Whenm = 1, this method becomes the Newton — Raphson method.

The input parameterfsis the function with a multiple root derf is the first
derivative of, x0 is the initial guessn stands for the multiplicity of andtol is the
assumed tolerance for the computed root.

The output parametersis the computed root amdter is the number of performed
iterations.

7. In this exercise you are to test functi®oh of Problem 6.

(1) Use functionf2 defined in Section 5.2 and write functidarf2 to compute the first
order derivative of a function in fil.
(ii) Use unexpanded form for the derivative. Run funcBohwith m = 5then repeat

this experiment lettingh = 1. In each case choosg= 0. Compare number of
iterations performed irach case.

(i) Repeat the above experiment using functi®ryou will need a functionlerf3 to
evaluate the first derivative in the expanded form.

8. Letp(x) be a cubic polynomial with three distinct real ragtsk = 1, 2, 3 Suppose
that the exact valuesafandr, are available. To compute the rogbne wants to use
function Sch of Problem 6 withm = 1 andx, = (r, + r»)/2. How many iterations are needed
to computes?

9. Based on your observations made during the numerical experiments performed when
solving Problem 8 prove that only one step of the Newton-Raphson method is needed to
compute the third root gf(x).

10. Given a system of nonlinear equations

X216 + 4 =1
X¥—y=1

Use functiolNR to compute all the zeros of this system. Compare your results with the exact
valuesx = +2 andy = ++/3. Evaluate functior at the computed zeros and print your results
usingformat long.
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11. Using functionNR find all the zeros of the system of nonlinear equations

X116 + /4 =1

X*—Xx-y—-8=0
The following graph should help you to choose the initial approximations to the
zeros of this system

Graphs of2/16 +y?/4 = 1and y=x* - x- 8
15 T T T T T T T

-10 1 1 1 1 ! ! !

Evaluate functiohat the computed zeros and print out your results dsimgat long.

12. Another method for computing zeros of the scalar equétiorr O is thesecant
method Given two initial approximations, andx; of the zera this method generates a
sequencéx} using the iterative scheme

X =Xy
f(x ) —f(x, 1)

Write MATLAB function [r, niter] = secm(f, x0, x1, tol, maxiter)that computes the zero
of f(x) = 0. The input parametersis the name of a function whose zero is computé@nd
x1 are the initial approximations oftol is the prescribed tolerance amdxiter is the
maximum number of the allowed iterations. The output parametershe computed zero of
f(x) andniter is the number of the performed iterations.

Xir1 = X — F(Xk) k=12, ....

13. Use the functiosecmof Problem 12 to find the smallest positive zerd(»f.

() f(x)=sintan(x)) - x
(i) f(x) = sin(x) + /(1 + &) - 1
(iii) f(x) = cos(x) — "%
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Evaluate each functidnat the computed zero and print out results ugingat long.

14. Another form of the interpolating polynomial is due to Lagrange and uses as the basis

15.

16.

17.

18.

function the so—callddndamental polynomialsi(x), 0 < k < n. The kth fundamental
polynomial  is defined as followsL \(xx) = 1, Lx(Xm) = Ofor k £ m, anddeg(Ly) < n.
Write MATLAB functionyi = fundpol(k, x, xi) which evaluates the kth Lagrange
fundamental polynomial at points stored in the atray

The Lagrange form of the interpolating polynoniiglx) of degree at most which
interpolates the dafa, , yv),0< k <n, is

Pn(X) = Yol o(X) + YL a(X) + ... + oL n(X)

Write MATLAB function yi = Lagrpol(x, y, xi) that evaluates polynomig}, at points stored
in the arrayi. You may wish to use functidnndpol of Problem 14.

In this exercise you are to interpolate functigr), a < x < b, using function$\ewtonpol
(see Section 5.3) andgrpol (see Problem 15). Arrays vy, andxi are defined as follows
xk=a+k(b-a)l0 yk =9(%), k=0, 1, ..., 10and xi = linspace(a, b).Run both
functions using the following functiorg(x) and the associated intervéds b]

O g(x) =sin(4rx), [a, b]=][0, 1]
(i) g(x) =%(x), [a b]=[2, 3]

whereJ, stands for the Bessel function of the first kind of order zero. In MATLAB Bessel
functionJy(x) can be evaluated using commdredselj(0, x)

In each case find the valugisof the interpolating polynomial af and compute the error
maximumerr = norm(abs(yi - g(xi)), 'inf ). Compare efficiency of two methods used to
interpolate functiog(x). Which method is more efficient? Explain why.

Continuation of Problem 16. Using MATLAB's functianterpl, with optionscubic' and
'spline’, interpolate both functiong(x) of Problem 16 and answer the same questions as
stated in this problem. Among four method if interpolation you have used to interpolate
functions g(x) which method is the the best one as long as

(1) efficiency is considered?
(ii) accuracy is considered?
TheLebesgue function(X) of the interpolating operator is defined as follows
A(X) = [Lo(X)| + L] + ... +|La(X)],
where_ stands for the kth fundamental polynomial introduced in Problem 14. This function
was investigated in depth by numerous researchers. It's global maximum over the interval of
interpolation provides a useful information about the error of interpolation.
In this exercise you are to graph functiqm) for various sets of the interpolating abscissa

{x«}. We will assume that the points of interpolation are symmetric with respect to the
origin, i.e.,-Xx = X, ., fork =0, 1, ... , n Without loss of generality, we may also assume



19.

20.

21.
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thatx, = x, = 1. Plot the graph of the Lebesgue functiofx) for the following choices of
the points

) x=-1+2k/n, k=0,1,...,n
(i) x¢ =-cos(ke/n), k=0,1,...,n

In each case pot= 1, 2, 3and estimate the global maximum/ofx). Which set
of the interpolating abscissa provides a smaller valve&®f A(X) : Xo < X < X,}?

MATLAB's function polyder computes the first order derivative of an algebraic polynomial

that is represented by its coefficients in the descending order of powers. In this exercise you
are to write MATLAB functionB = pold(A, k) that computes the kth order derivative of

several polynomials of the same degree whose coefficients are stored in the consecutive rows
of the matrixA. This utility function is useful in manipulations with splines that are

represented as the piecewise polynomial functions.

Hint: You may wish to use functigmolyder.

The Hermite cubic spline interpolasiix) with the breakpointd = {x, <X < ... <%y} is a
member ofSp(3, 1,A) that is uniquely determined by the interpolatory conditions

() sx)=y, I=1,2,...,m

(i) s =p, 1=1,2,...,m

On the subintervak, , x.1] ,1=1, 2, ... , m = 1s(x) is represented as follows
S() = (1 + 20(1 — thyi + (3 = 20Fypa + h{K(L — ) °pr + £t — 1)pial,

wheré = (X — X)/(X+1 — X) andh; = X1 — X.

Prove that the Hermite cubic spline interpolant s(x) is convex on the intgrwal] [k and
only if the following inequalities

2D +Pug < Si+1 TS < P +2p.

3 h, 3

are satisfied forall=1,2, ... , m-1

Write MATLAB function [pts, yi] = Hermspl(x, y, p) that computes coefficients of the
Hermite cubic spline interpolar{x) described in Problem 20 and evaluates spline interpolant
at points stored in the array. Parameters, y, andp stand for the breakpoints, values of

s(x), and values of'(x) at the breakpoints @f(x), respectively. The output paramegers the
array of values of(x) at points stored in the arrays which is defined as the union of the
arrayslinspace(x(k), x(k+1)) k =1, 2, ... , n — 1wheren = length(x).

Hint: You may wish to use functioddermpol discussed in Section 5.3.

The nodesx,} of the Newton — Cotes formulas of the open type are defined as follows
xk=a+(k-12hk=1,2,...,n-1where h = (b —a)/(n — 1)Write MATLAB
function[s, w, x] = oNCqf(fun, a, b, n, varargin)that computes an approximate vafuaf
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the integral of the function that is represented by the $tnindnterval of integration is
[a, b] and the method used is the n-point open formula whose weights and nodes are
are stored in the arraysandx, respectively.

. The Fresnel integral

f(x) = J'exp(i%)dt
0

is of interest in several areas of applied mathematics. Write MATLAB funétibrfr2] =
Fresnel(x, tol, n)which takes a real array a two dimensional vectool holding the relative
and absolute tolerance for the error of the computed integral (see MATLAB help file for the
functionquad8), and a positive integer used in the functioRombergand returns numerical
approximationgrl andfr2 of the Fresnel integraising each of the following methods

0] guad8 with toleranceol = [1e-8 1e-8]
(i) Rombergwith n =10

Compute Fresnel integrals for the following values ef0: 0.1:1To compare the
approximationgrl andfr2 calculate the number diecimal places of accuracy

dpa = -log10(norm(frl — fr2, 'inf ")). For what choices of the input parametetsaandn the
numberdpa is greater than or equal to 13? The last inequality must be satisfied for all values
x as defined earlier.

Let us assume that the real-valued funct{@h has a convergent integral

J’f (x)dx .
0
Explain how would you compute an approximate value of this integral using function

Gquad?2 developed earlier in this chapter? Extend your idea to convergent integrals of the
form

}f (x)dx.

The following integral is discussed in [3], p. 317

1

dx
J=[—F7+—.
:I.lx“ +x%+0.9
To compute an approximate value of the integnase

0] MATLAB functions quad andquad8 with tolerancdol = [1e-8 1e-8]
(ii) functionsRombergandGquadl withn = 8.

Print out numerical results usifigrmat long. Which method should be recommended for
numerical integration of the integré® Justify your answer.
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26. The arc lengtls of the ellipse

N
N

IS
1
[EE

9’.\)| X

from(a, 0)to (x, y) in quadrant one is equal to
6
s= bj’\/l— k?sin®tdt
0

wherek” = 1 — (a/bf ,a < b, and@ = arccosf/a) = arcsin(y/b).

In this exercise you are to write MATLAB functifeR, sq8] = arcell(a, b, x, n, toljhat

takes as the input parameters the semmaadhb and the x — coordinate of the point on the
ellipse in quadrant one and returns an approximate value of the arc of ellipse, fopta

(%, y) using functiond)Romberg, described in this chapter, and the MATLAB function

quad8. The fourth input parameterwill be used by the functioRomberg. The fifth input
parametetol is optional and it holds the user supplied tolerances for the relative and absolute
errors in the computed approximaten® If tol is not supplied, the default values for
tolerances should be assigned. For more details about using this parameietptypad8

in theCommand Window. Your program should also work for ellipses whose semiaxes are
not restricted to those in the definition of the paraniétdrest your function for the

following values of the input parameters

H a=1, b=2 x=1:-0.1:0, n=10, tol=[]
(i) a=2, b=1 x=2:-02.0, n=10, tol =[]
(i) a=2, b=1, x=0:-0.2:-2, n=10, tol =[]

Note that the terminal poirs, y) of the third ellipse lie in quadrant two.

27. Many of the most important special functions can be represented Risithéet average-
of a continuous functioh(see [1] )

1 bty byt
F(bq, by;a, b) = —— [t (1-t)"2 f[ta+ (1—-t)b]dt,
(b1, bs; a, b) B(bl,bz).! (1-t)* " [ta+ (1—t)b]

whereB(b,, b,), (by, b, > 0)stands for théeta function Of special interest are the Dirichlet
averages of elementary functidfis = t© andf(t) = €'. Former gives raise to the

hypergeometric functiorsuch as a celebrat&huss hypergeometric functigiy, while the

latter is used to represent tdunfluent hypergeometric functions

In this exercise you are to implement a method for approximating the Dirichlet integral
defined above usirf@) = t . Write MATLAB functiony = dav(c, b1, b2, a, bwhich

computes a numerical approximation of the Dirichlet averagdJsie a method of your

choice to integrate numerically the Dirichlet integral. MATLAB has a function nasted

designed for evaluating the beta function. Test your function for the following values of the
parameter:

c=0 (exact value of the Dirichlet averdgés equal tdl)
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c=h+h, (exactvalue of the Dirichlet average is equdl/ta’; b",).

28. Gauss hypergeometric functigiiy(a, b; c; x) is defined by the infinite power series as
follows

JFi(a, b; ¢; x) = 2%%, x| < 1,

wherga, n) = a(a + 1) ... (a + n — 1is theAppel symbolGauss hypergeometric function
can be represented as the Dirichlet average of the power fuiigtiot®

oFi(a, b;c;x)=F(b,c—b; 1-x,1) (c>b>0, [x]<1)

Many of the important elementary functions are special cases of this function. For
instance fox| < 1, the following formulas

arcsin x =,F4(0.5, 0.5; 1.5; %)
In(1 + X) = %F4(1, 1; 1.5; X)
arctanh x = %F(0.5, 1; 1.5; X)

hold true. In this exercise you are to use functian of Problem 27 to evaluate three
functions listed above far=-0.9 : 0.1 : 0.9Compare obtained approximate values with
those obtained by using MATLAB functioasin, log, andatanh.

29 Leta andb be positive numbers. In this exercise you will deal with the four formulas for
computing the mean value afandb. Among the well — known means tagthmetic mean
A(a, b) = (a + b)/2and the geometric me&i(a, b) = vab are the most frequently used
ones. Two less known means areltdgarithmic mearL and thadentric meari

a-b
L@@, b)=——
@ b) Ina—Inb
I(a, b) — e—l(aa/bb)l/(a—b)

The logarithmic and identric means are of interest in some problems that arise in
economics, electrostatics, to mention a few areas only. All four means described in this
problem can be represented as the Dirichlet averages of some elementary functions. For the
means under discussion their b — parameters are both equal to @, Btstand for any

of these means. Then

M(a, b) = f *(F(1, 1; a, b))

wherd * stands for the inverse functionfoéindF is the Dirichlet average &f
In this exercise you will deal with the means described earlier in this problem.
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® Prove that the arithmetic, geometric, logarithmic and identric means can be
represented as the inverse function of the Dirichlet average of the following
functionsf(t) = t, f(t) = t2, () = t™ andf(t) = In t, respectively.

(i) The logarithmic mean can also be represented as

1
L(a,b) =J’atb1'tdt.
0

Establish this formula.

(iii) Use the integral representations you found in the previous part together with the
midpoint and the trapezoidal quadrature formulas (with the error terms) to establish
the following inequalitiesG € L £ A andG < | £ A. For the sake of brevity the
arguments andb are omitted in these inequalities.

A second order approximation of the second derivative of the furf¢tipis

_ f(x+h)=2f(x) +f(x—h)

~ +0(h?).

f(x)

Write MATLAB function der2 = numder2(fun, X, h, n, varargin)that computes an
approximate value of the second order derivative of a function named by théustritghe
pointx. Parameterl andn are user-supplied values of the initial step size and the number
of performed iterations in the Richardson extrapolation. For functions that depend on
parameters their values must follow the paranmeter
Test your function fdi(x) = tan x with x =x/4 andh = 0.01 Experiment with different
values fon and compare your results with the exact vélt(er/4) = 4

Consider the following initial — value problem

y1"(0) =-ya(Oya"(®), yi0) =1, w(0)=-1, w'(0) =1.

0] Replace the differential equation by the system of three differential equations of
order one.

(ii) Write a MATLAB functiondy = order3(t, y) that evaluates the right — hand sides of
the equations you found in the previous part.

(i) Write a script fileProblem31to solve the resulting initial — value problem using
MATLAB solver ode45on the intervalO 1].

(iv) Plot in the same window graphs of functiali) together with its derivatives up to
order two. Add a legend to your graph that clearly describes curves you are plotting.

In this exercise you are to deal with the following initial — value problem
x'(t) =-x(t) —y(®), y'(t) = -20x(t) — 2y(t), x(0) =2, y(0)=0

(1) Determine whether or not this system is stiff.

(ii) If it is, use an appropriate MATLAB solver to find a numerical solution on the
interval [0 1].

(iii) Plot the graphs of functiongt) andy(t) in the same window.
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The Lotka — Volterra equations describe populations of two species

yi'(t) = ya(t) = ya(Oy2(1), y2'(t) = -15y2(t) + ya(t)y(t).

Write MATLAB functionLV(y10, y20, tspan)that takes the initial valugsl0 = y(0)
andy20 = y(0) and plots graphs of the numerical solutighsndy?2 over the interval
tspan.

Numerical evaluation of a definite integral

b
J’f (t)dt

can be accomplished by solving the ODE = f(t) with the initial conditiory(a) = 0. Then
the integral in question is equalt®). Write MATLAB functionyb = integral(a, b, fun)
which implements this method. The input paranfeteis the string holding the name of the
integrand(t) anda andb are the limits of integration. To find a numerical solution of the
ODE use the MATLAB solverde45 Test your function on integrals of your choice.

Given the two — point boundary value problem
y'=t+t?+d—ty+ty, y(0)=1, y(1)=1+e

(1) Use functiorbvp2odeincluded in this tutorial to find the approximate values of the
functiony for the following values ofi = 8, 18.

(i) Plot, in the same window, graphs of functions you found in the previous part of the
problem. Also, plot the graph of functigit) =t + € which is the exact solution to
the boundary value problem in question.

Another method for solving the two — point boundary value problem iollaeation
method Let

y'=1ft,y,y) , y(@ =vya y(b) =yb.

This method computes a polynomit) that approximates a solutigft) using the
following conditions

p(a) =vya, p(b) =yb, p" (k) = f(tk, p(t), p'(tx))

wherek =2, 3, ..., n—-Jlanda =1 <t,<... <t, = bare the collocation points that are
evenly spaced in the given interval.
In this exercise functiohis assumed to be of the foifi, vy, y') = go(t) + 0:(t)y + gu(t)y'.

0] Set up a system of linear equations that follows from the collocation conditions.

(i) Write MATLAB functionp = colloc(g0, g1, g2, a, b, ya, yb, mhich computes
coefficientsp of the approximating polynomial. They should be stored in the grray
in the descending order of powers. Note that the approximating polynomial is of
degreen — 1or less.

37. Test the functiorrolloc of Problem 36 using the two — point boundary value problem of

Problem 35 and plot the graph of the approximating polynomial.
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