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We obtain new nonstationary soliton-like solutions for an extended version of the classical massive Thirring model which, in
nonlinear optics, describes Bragg-resonant wave propagation in a periodic Kerr medium. These solitons represent intense optical
wavetrains whose envelope travels unchanged through a distributed feedback reflection filter, in spite of the fact that the mean
wavelength of the soliton is in the center of the forbidden gap. The soliton group velocity may be anywhere between zero and the

speed of light in the medium.

In this Letter we discuss the spatiotemporal inter-
action between two counterpropagating modes of the
electromagnetic field inside a one-dimensional pe-
riodic nonlinear medium. Wave propagation in lin-
ear periodic structures has been studied for a long
time and is relevant in a variety of fields of appli-
cation, for example solid-state physics and inte-
grated optics [1]. Whenever the nonlinearity of the
material gives rise to additional light-induced grat-
ings, new physical effects have been predicted to oc-
cur. For example, in the steady state, the intensity
dependent refractive index may alter the phase
matching condition and lead to optical bistability or
“high” transmissivity for beams whose frequency lies
in the otherwise forbidden gap of the grating [2,3].
In the nonstationary case, earlier studies have indi-
cated that propagation in nonlinear distributed feed-
back structures may exhibit a host of dynamical be-
haviors such as instabilities, chaos, pulse compression
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and solitary waves [4-7], and most recently [8], a
new class of optical solitons was obtained. As we will
show, they correspond to a particular form of the two-
parameter soliton-like family presented here. This
more general class of solutions gives us, as we will
see, answers to some issues pointed out in ref. [8]
such as relation to previous work and stability prop-
erties of the solutions.

In this work we point out that the nonstationary
interaction is represented here by equations which
are a generalization (by inclusion of self-phase mod-
ulation, or SPM) of the classical massive Thirring
model (MTM) of field theory [9]. This model has
been shown to be completely integrable by means of
the inverse scattering transform [10,11]. This gen-
eralization is different from the extension consid-
ered in ref. [12] where only for a particular choice
of parameters where the equation was gauge invar-
iant to the integrable model, soliton-like solutions
were obtained using Biacklund transformations. Our
study also differs from that of the polarization do-
mains in a uniform nonlinear medium [13], where
not only there is no linear coupling, but the self-phase
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modulation effect was ignored. The approximations
made, reduced the model to an integrable system of
an anisotropic chiral field on group O(3).

Here we shall derive a family of nonstationary so-
liton-like solutions of the full problem (i.e., with
SPM) which maintain some of the general physical
properties of the MTM solitons. In particular, these
waves exhibit stability under collisions and satisfy
the integrability conditions for a Lax scheme (in the
form given by Kaup and Newell [11]) which, how-
ever, does not imply integrability of the full problem.

We write the total electric field in a waveguide as
the sum of two counterpropagating modes,

E(R,Z,T)
= [EI(Z, T)ciBZ+E2(Z, T)e—iﬂZ]ETr(R)e—in,

where @ is the mean frequency, and E+.(R) is the
common transverse (R= (X, Y)) mode field distri-
bution. Two mechanisms concur in the coupling of
the above fields. First, suppose that a matched index
grating has been written into the medium: The linear
refractive index n=ny+n,(Z) is a periodic function
of Z, with a Fourier component of spatial period 4
satisfying the Bragg condition A=n/f. Additionally,
interaction occurs between the field and the medium
which reacts back to the field through a third-order
polarizability Py =yxe,EEE*. The resulting coupled
equations read

d7rE, + V03 2E, =ikE, +i(R, |E\|1*+ R, | E;|*)E, ,

d1E, = VA3 2E, =ikE, +i(R, | E; 1>+ R, | E| |P)E,,
(1)

where V= (dp/dw)'|,=c/n is the group velocity
of light in the material (with effective refractive in-
dex n) in the absence of mode coupling, k is a linear
coupling coefficient and R, ; are nonlinearity coef-
ficients involving y and overlap integrals of the modal
distribution E {2]. In dimensionless units, egs. (1)
read
. OH

. 0H
a,€j=18—— 6,8}?:—1——

i=1,2, 2
aef’ Sej, .] bl ( )

where

H= J dz [li(etd,e, —e, 0.t —e3d,e, 1,0 €3)

+eet+ese tle|?le|*tia(le 1*+le )] .
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In the above Hamiltonian, upper and lower signs
hold for a focusing or defocusing nonlinearity, re-
spectively. Note that, by interchanging z and ¢, egs.
(2) represent the coupling between two copropa-
gating waves with different group velocity (e.g., two
orthogonal polarization modes) [14].

In the limit =0, eqs. (2) reduce to the Thirring
model; we now present a generalization of the one-
soliton solution for the general case with g0, using
three different approaches. In doing this, we intend
to highlight the similarities with the MTM solitons
and to make a connection with previous work.

Let

ei2y =0 (2y(z, t) exp[if({) ], (3)

where y,(», is-the one-soliton solution of the Thir-
ring model [10,11], « is a constant to be determined
as well as the phase 6(&) where &= (z—vt—2zy)/
(1—=v?)'/2, |y| < 1. Substitution of (3) in egs. (2)
gives two equations for 0,

do 1+v
&= (aaz—— +(a2—1)>

1—v
xsin?Q |sech(&sin Q—3iQ) |2, (4a)
do 1—-v
a—c‘ = —(Gazm + (a2—1)>
X sin?Q |sech?(&sin Q—LiQ) |2 . (4b)

The condition that the right hand side of (4a), (4b)
should be the same for them to be consistent deter-
mines the value

1—v? 1z
o= ((1—v2)+a(1+v2)> ’

Finally, upon substitution of & in (4a) or (4b) and
an integration, we are able to determine 8 and thus
e, and e,; they read

1 t—vz

= +U)l/4sinQex (‘i cos
€= =0 P\ + 7=—1—1)2

+i¢+i6(é)> sech(&sin QF $1Q) , (5)
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e;=TF c)z(lii))l/4 sin Q exp(?it_—vz cos O
1+v /1—=12
+i¢+i0(é))sech(§sin Q+1iQ), (6)
with

4 2 .
lavtl))zz arctg[ | cotg 1@Q| coth(&sin Q) 1,

0=7

0<@Q<m, and —1<v<]1.

In expressions (5), (6), upper and lower signs hold
in the case of focusing or defocusing nonlinearity,
respectively. As in the one soliton solution of the
Thirring model, the two components of the present
grating self-transparency (GST) solitons are char-
acterized by two parameters Q and v which deter-
mine the pulse width and velocity of propagation.
When Q=17 one can show that (5), (6) reduce to
the “slow Bragg solitons” obtained in ref. [8]. A sec-
ond interesting limit is when Q—0 and |v| <« 1; then
(5), (6) reduce to the NLS one-soliton solution. That
is, for slow small amplitude broad pulses, the de-
scription given in ref. [6] correctly applies. Finally,
the limit Q— & gives finite plane wave solutions of
(2). Notice that none of the last two limits can be
obtained from the solutions given in ref. [§]. A
deeper discussion of all types of solutions of (2) and
their properties will be given elsewhere [15].

Fig. 1 illustrates the group velocity dependence of
the intensity ratio between the backward and for-
ward components ¢, and e, (solid line) along with
the common normalized spatial width (dot-dashed
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Fig. 1. Intensity ratio of backward to forward components (solid
line) and normalized spatial width (dot-dashed line) of funda-
mental solitons pulses, versus absolute value of group velocity v.
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line). As can be seen, in the stationary case the two
envelope components of the soliton are equally in-
tense. On the other hand, whenever the group ve-
locity v approaches the velocity of light in the me-
dium, the component with opposite signs of phase
and group velocity becomes negligibly small. Cor-
respondingly, the width of the hyperbolic secant en-
velope narrows down to zero. In the figure, we report
the dimensionless quantity

.__K_n — 2y1/72
=ge =(1=v)'2,
which, in the case Q= im, yields in real units a spatial
width of the hyperbolic secant equal to 1/ W. In gen-
eral, this width is (Wsin Q).

Numerical simulations indicated that egs. (5), (6)
vield physically stable and robust solutions. More
specifically, even in cases where the initial condi-
tions did not closely match the shape of e, and e,, the
computed envelopes did indeed evolve into one
member of the family after losing some power into
radiation (see fig. 2: in these and in the following

intensity

intensity

Fig. 2. Evolutions of (a) |e,|? and (b) of |e,|>?, for an initial
condition that does not exactly match the expressions for the
family of self-transparency solitons. After some radiation losses,
the field still evolves into a member of the family.
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T

e

Fig. 3. Fast collision of two GST solitons. We display here sums
of the envelope intensities | e, |2+ | e, |2 for two counterpropagat-
ing solitons with velocities v equal to +0.9. No apparent distor-
tion in the shapes or velocities is observed, while only a small
position shift occurs.

simulations, 6=0.5). We have also observed that
when two GST pulses collide, their shapes and ve-
locities upon emerging from the interaction are al-
most unaffected. Fig. 3 shows the collision of two fast
v==10.9) equally intense self-transparency soli-
tons, whose initial shapes were computed from eqs.
(5), (6) with cos Q=0. The interaction time is rel-
atively short, so that the pulses pass through each
other with little distortion. On the other hand, fig. 4
reports the collision between relatively slow
(v=£0.1) solitons: in this case, even though during
the time of collision the pulses get dramatically re-

Fig. 4. As in fig. 3, with velocities v= % 0.1. A longer interaction
takes place and a slight oscillation is superimposed on the emerg-
ing pulses.

40

PHYSICS LETTERS A

23 October 1989

shaped, two pulses still emerge from the interaction
with a substantial time shift but little change in ve-
locity. Note however, the small intensity oscillation
superimposed onto the outgoing pulses. All these
properties indicate that indeed the solutions (5), (6)
essentially share the stability properties of true so-
litons. The discussion which follows intends to ex-
plore this point in further depth.

We shall see below that one may obtain the non-
stationary or propagating soliton solutions of the
Thirring model by simply invoking the Lorentz in-
variance of egs. (2). This observation also applies to
the general case of interest here. To be more specific,
one finds that if ¥, ,, is of the form

W2y(2, 1) =K,y ¥1(2y(& Q)

Xexp($icosQ f—vz )
J1=v*/)’

where

P i)
'K, \1-v)

then the equations for ¥, (>, become
—ife+, toos Qi + |2 12

1+v . .
to— [0 1% =0, (7)
—v
Whe+ i, Tcos Qi + |9y | %
1—v
to— |, |2, =
-UI_I_UIV/zI!//z 0. (8)
Note that the addition of the self phase modula-
tion term makes these equations to be v dependent,
nevertheless as we will see, SPM only brings a cor-
rection into the phase and a new rescaling of the field.
These equations, as in the =0 case, have an invar-
iant, |§ |*—|¥21*=0, therefore  ¥,,=/({)
X exp[if; 2(£)] and the problem reduces to solving
for the functions f, 8, and 6,.
A further simplification can be achieved if we de-

fine 2u= 6, — 6,. We obtain for 4 and fthe following
equations,

((11_/; =tcos Q+cos 2ut (1/a?)f?,

af .
d—é_sm 2uf, (9)
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where one must read two systems of equations, each
corresponding to one choice of signs. After solving
for u and f, 8, and 6, are solved by quadrature. For
the positive nonlinearity case, the equations were first
solved by Chang, Ellis and Lee [16] in their study
of fermion confinement in a chiral-symmetric theory
in 1+1 dimensions. Their confined and time inde-
pendent solutions to the classical massive Thirring
model were obtained before the integrability of the
model was determined. In ref. [3], solutions of eqgs.
(9) were given for both choices of signs of the non-
linearity. In our case, we obtain from eqs. (9) the
two solutions given in (5), (6). It is important to
point out that, when £ is replaced by z, egs. (9) were
also derived by Mills and Trullinger in their descrip-
tion of stationary localized waves (occurring in the
forbidden frequency zones thus baptised gap soli-
tons) inside nonlinear superlattices [3].

We conclude by showing how the coupled equa-
tions (1) are in some sense the integrability condi-
tion similar to that obtained in refs. [10,11]. We shall
follow the approach of the second reference, al-
though both are equivalent. For the sake of concise-
ness, we shall restrict our treatment to the positive
nonlinearity case. Let x=(¢+z)/2 and p=(z—1)/2
and consider the system

d,.v1 +il%v, ={qv,, (10a)
0,02 —ilv, ={q*v, , (10b)

A1 1
d.v; -—l(@ - '07 fe |2)Ul

vy, (11a)

= \/» eTei”+i6v1 , (llb)

2 [= =}
q= %ez exp(ij lezlzdx—iﬁ)

and @ for the moment is an unknown function which
may depend on |e;] and |e,|. If a=—1, e;2y=¥/(2)
and O=const, then the equations for the Thirring
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model are the consistency condition v,,=v,, of (10),
(11) and in particular if in the scattering problem
(10) one substitutes as the potential the correspond-
ing one-soliton solution, a single -eigenvalue
{=1|{l exp[iarg({)] (where arg({)=4Q and [{] is
given by v=(|{]=2=[{|?)/(1{I~>+1{1?)), exists
[10]. In general, the equations that result from the
consistency condition read

d.e,=—ie; —i[(2/a®—1){e;|*—8.]e,, (12a)

d e =ie; +i(|e,12+6)e; . (12b)
Consider now the additional conditions on 6,

b.=0le |?,

0,==2(1—-1/a?)|e,|*—0oles|?. (13)

While a solution of egs. (12), (13) would also sat-
isfy the original equations (2), it is not necessarily
true that for every solution of (2) there is a 6 sat-
isfying (13). Nevertheless, for the GST solitons (5),
(6) there is a d satisfying (13) thus egs. (12), (13)
and (2) are equivalent. In this sense we may say that
the class of solutions (5), (6) arise from a Lax pair
formalism where the same eigenvalue of the integra-
ble (6=0) case occurs.

The interesting behavior of the present GST so-
litons suggests directions for the continuation of the
present study. In the context of nonlinear fiber op-
tics, some specific applications and a more detailed
analysis of the behavior of GST solitons in terms of
real parameters will appear in forthcoming papers
[14,15]. The physical relevance of the present so-
lutions to the classical field model (2) is, however,
likely to extend beyond the context of nonlinear op-
tics. From the theoretical point of view, a search for
a possible Bicklund transformation and a Painlevé
analysis would be in order for testing the integra-
bility of the equations. We also plan to address the
possible extension of higher order MTM solitons
[17] to the present case.
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