
Understanding Saul’yev-Type Unconditionally
Stable Schemes from Exponential Splitting
Siu A. Chin
Department of Physics, Texas A&M University, College Station, Texas 77843

Received 23 October 2013; accepted 1 May 2014
Published online 24 May 2014 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/num.21885

Saul’yev-type asymmetric schemes have been widely used in solving diffusion and advection equations.
In this work, we show that Saul’yev-type schemes can be derived from the exponential splitting of the
semidiscretized equation which fundamentally explains their unconditional stability. Furthermore, we show
that optimal schemes are obtained by forcing each scheme’s amplification factor to match that of the exact
amplification factor. A new second-order explicit scheme is found for solving the advection equation with the
identical amplification factor as the implicit Crank–Nicolson algorithm. Other new schemes for solving the
advection–diffusion equation are also derived. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential
Eq 30: 1961–1983, 2014

Keywords: exponential splitting; Saul’yev schemes; unconditional stable schemes

I. INTRODUCTION

The one-dimensional (1D) diffusion equation

∂u

∂t
= D

∂2u

∂x2
, (1.1)

can be solved numerically by applying the forward-time and central-difference approximations
to yield the explicit algorithm

u′
j = uj + r[(uj+1 − uj) − (uj − uj−1)], (1.2)

where xj = j�x, uj = u(xj , t), u′
j = u(xj , t + �t) and

r = �tD

�x2
. (1.3)

Correspondence to: Siu A. Chin, Department of Physics, Texas A&M University, College Station, TX 77843 (e-mail:
chin@physics.tamu.edu)
Contract grant sponsor: The Qatar National Research Fund (a member of Qatar Foundation); contract grant number:
NPRP #5-674-1-114

© 2014 Wiley Periodicals, Inc.

1962 CHIN

Under this (Euler) algorithm, each Fourier component ũk = eikx with wave number k is
amplified by a factor of

g = 1 − 4rsin2(k�x/2), (1.4)

restricting stability (|g| ≤ 1) to the Courant–Friedrichs–Lewy [1] limit,

r ≤ 1

2
. (1.5)

As explicit finite-difference methods approximate the exact amplification factor by power-
series such as (1.4), it seems inevitable that they will eventually blow-up and be limited in stability.
However, Saul’yev [2, 3] showed in the 50’s that, by simply replacing in (1.2), either

(uj − uj−1) → (u′
j − u′

j−1) or (uj+1 − uj) → (u′
j+1 − u′

j), (1.6)

one would have unconditionally stable algorithms:

u′
j = βSu

′
j−1 + γSuj + βSuj+1, (1.7)

or

u′
j = βSuj−1 + γSuj + βSu

′
j+1, (1.8)

where γS and βS are Saul’yev’s coefficients given by

γS = 1 − r

1 + r
and βS = r

1 + r
. (1.9)

Algorithm (1.7) is explicit if it is evaluated in ascending order in j from left-to-right (LR)
and if the left-most u1 is a boundary value fixed in time. Similarly, algorithm (1.8) is explicit
if it is evaluated in descending order in j from right-to-left (RL) and if the right-most uN is a
boundary value fixed in time. Saul’yev also realized that both algorithms have large errors, but if
they are applied alternately, the error would be greatly reduced. This then gives rise to alternating
direction explicit algorithms for solving the diffusion equation advocated by Larkin [4] and by
Barakat and Clark [5]. Similar asymmetric schemes have been derived for solving the advection
equation and hence the advection–diffusion equation by Robert and Weiss [6], Towler and Yang
[7], Campbell and Yin [8], Xie et al.,[9], and generalized to alternating group explicit methods
by Evans and Abdullah [10] and Evans [11]. Because of its explicit nature and unconditional
stability, Saul’yev-type algorithms are used in many applications and are included in textbook
[12] discussions of numerical methods for solving partial differential equations.

However, there remain unanswered questions about Saul’yev-type schemes: (1) although it is
easy to show that algorithm (1.7) and (1.8) are unconditionally stable, there is no deeper under-
standing of this stability. (2) The algorithms are not explicit in the case of periodic boundary
conditions. What would be the algorithm if there are no fixed boundary values? (3) The alternat-
ing application of (1.7) and (1.8) greatly reduces the resulting error. How can one characterize
this improvement precisely? (4) Is it useful to generalize Saul’yev-type algorithms to higher order
time discretization?

This work presents a new way of deriving finite-difference schemes based on exponential-
splittings rather than Taylor expansions. The basic idea is to first solve the semidiscrete form of

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1963

the finite-difference equation to obtain an updating matrix of the form e�tA, then approximate this
exponential matrix by splitting

A =
N∑
i

Ai , (1.10)

where the exponential of each component matrix Ai can be exactly evaluated. This is the same
type of splitting that produces symplectic integrators [13–15]. Here, we show that such splitting
also naturally produces Saul’yev-type schemes. For later reference, we summarize some basic
results on splittings below.

Splitting methods are based on approximating eε(A+B) to any order in ε via a single product
decomposition

eε(A+B) =
∏

i

eai εAebi εB, (1.11)

where A and B are noncommuting operators or matrices. The key idea is to preserve the exponential
form of the matrix. The two first-order Trotter [16] approximations are

T1A(ε) = eεAeεB, T1B(ε) = eεBeεA, (1.12)

and the two second-order Strang [17] product approximations are

T2A(ε) = T1A(ε/2)T1B(ε/2) = e
1
2 εAeεBe

1
2 εA,

T2B(ε) = T1B(ε/2)T1A(ε/2) = e
1
2 εBeεAe

1
2 εB. (1.13)

The average approximation

T2C(ε) = 1

2
[T1A(ε) + T1B(ε)], (1.14)

is also second order, but it is no longer a single product of exponentials. This is undesirable in
other splitting contexts as being nonunitary or no longer symplectic. However, in the present
application, as we will see in Section IV, while it is less accurate than the product approximations
(because its time-step is twice as large), it converges better.

In the next two sections, we will give new derivations of Saul’yev-type diffusion and advec-
tion algorithms, followed by detailed discussions of their convergences, schemes for solving the
diffusion–advection equation and finally some conclusions.

II. SPLITTING DIFFUSION ALGORITHMS

Consider solving the diffusion equation (1.1) with periodic boundary condition uN+1 = u1 in the
semidiscretized form,

duj

dt
= D

�x2
(uj+1 − 2uj + uj−1). (2.1)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1964 CHIN

Regarding uj as a vector, this is

du
dt

= Au, (2.2)

with

u =

⎛
⎜⎜⎜⎝

u1

u2

...
uN

⎞
⎟⎟⎟⎠ , A = D

�x2

⎛
⎜⎜⎜⎜⎜⎝

−2 1 1
1 −2 1

. . .
1 −2 1

1 1 −2

⎞
⎟⎟⎟⎟⎟⎠ , (2.3)

and exact solution

u(t + �t) = e�tAu(t). (2.4)

The Euler algorithm corresponds to expanding out the exponential to first order in �t

u(t + �t) = (1 + �tA)u(t), (2.5)

resulting in a power-series amplification factor (1.4), with limited stability.
If the exponential in (2.4) can be solved exactly, the semidiscretize amplification factor would be

gsd = e−hsd , (2.6)

where

hsd = r4sin2(θ/2) and θ ≡ k�x. (2.7)

The resulting exact semidiscrete algorithm will be unconditionally stable for all r > 0. In the
limit of �x → 0,

hsd → hex = rθ 2 = �tDk2, (2.8)

each k-Fourier components will be damped by the exact amplification factor

gex = e−hex = e−�tDk2
, (2.9)

which is the exact solution to (1.1). (Thus solving the semidiscretized equation exactly may still
be far from solving the equation exactly.)

To preserve the unconditional stability of the exact semidiscrete solution, one must seek alter-
native ways of approximating of e�tA without doing any Taylor expansion. The structure of A
immediately suggests that it should decompose as

A =
N∑

j=1

Aj , (2.10)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1965

where each Aj has only a single, nonvanishing 2 × 2 matrix along the diagonal connecting the j
and the j + 1 elements:

Aj = D

�x2

⎛
⎜⎜⎜⎜⎝

. . .
−1 1
1 −1

. . .

⎞
⎟⎟⎟⎟⎠ and AN = D

�x2

⎛
⎜⎜⎜⎜⎝

−1 1
. . .

. . .
1 −1

⎞
⎟⎟⎟⎟⎠ . (2.11)

The exponential of each Aj can now be evaluated exactly:

e�tAj =

⎛
⎜⎜⎝

1
α β

β α

1

⎞
⎟⎟⎠ , e�tAN =

⎛
⎜⎜⎝

α β

1
1

β α

⎞
⎟⎟⎠ , (2.12)

where

α = 1

2
(1 + γ), β = 1

2
(1 − γ), and γ = e−2r . (2.13)

Each e�tAj updates only uj and uj+1 as

u′
j = αuj + βuj+1,

u′
j+1 = βuj + αuj+1. (2.14)

The eigenvalues of this updating matrix are α ± β = 1, γ , with det = γ . This means that the
updating is dissipative for r > 0 and unstable for r < 0. As α and β are given in terms of γ , the
resulting algorithm depends only on a single parameter γ .

As noted by proponents of non-standard finite-difference methods [18], there is arbitrariness,
or freedom, in choosing the form of the derivative approximation, for example,

uj+1 − 2uj + uj−1

h(�x)
, (2.15)

as long as h(�x) → �x2 as �x → 0. Therefore, instead of just r as defined by (1.3), one is also
free to chose

r ′ = Dg(�t)

h(�x)
, (2.16)

so long as g(�t) → �t as �t → 0. Hence, one should regard γ , the single parameter of the
algorithm, as a more general function of r ′, as γ = exp(−2r ′). As we shall see later, it is sufficient
to regard

γ (r) = e−2f (r) > 0 such that lim
�t→0,�x→0

f (r) → r . (2.17)

(Note that this requires r to be small, but does not require r → 0.) This additional degree of
freedom will allow us to further optimize our algorithms.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1966 CHIN

One can now decompose exp(�tA) to first order in �t (apply (1.12) repeatedly) via either

T1A(�t) = e�tAN · · · e�tA2e�tA1 , (2.18)

or

T1B(�t) = e�tA1 · · · e�tAN−1e�tAN . (2.19)

These algorithms update the grid points sequentially, two by two at a time according to (2.14),
but each grid point is updated twice in successions. This is crucial for dealing with the periodic
boundary condition. Let u∗

j denotes the first time when uj is updated and u′
j the second (and final)

time it is updated. One then has for Algorithm 1A:

u∗
1 = αu1 + βu2, (2.20)

u∗
2 = βu1 + αu2,

u′
2 = αu∗

2 + βu3,

u∗
3 = βu∗

2 + αu3,

· · ·
u′

j = αu∗
j + βuj+1,

u∗
j+1 = βu∗

j + αuj+1,

· · ·
u′

N = αu∗
N + βu∗

1,

u′
1 = βu∗

N + αu∗
1. (2.21)

As α + β = 1, summing up both sides from (2.20) to (2.21) gives,

N∑
j=1

u′
j =

N∑
j=1

uj . (2.22)

The algorithm is, therefore, norm-preserving. The same is true of Algorithm 1B below. For
2 < j < N one has

u′
j = αu∗

j + βuj+1,

= α(βu∗
j−1 + αuj) + βuj+1,

= β(u′
j−1 − βuj) + α2uj + βuj+1,

= βu′
j−1 + γ uj + βuj+1, (2.23)

and for j = 2, N ,

u′
2 = βu∗

1 + γ u2 + βu3,

u′
N = βu′

N−1 + γ uN + βu∗
1. (2.24)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1967

Finally, when the snake bits its tail, one has

u′
1 = β

α
u′

N + γ u1 + γβ

α
u2. (2.25)

Similarly, 1B is given by

u∗
1 = βuN + αu1, (2.26)

u′
N = βuN−1 + γ uN + βu∗

1,

u′
j = βuj−1 + γ uj + βu′

j+1, (2.27)

u′
2 = βu∗

1 + γ u2 + βu′
3,

u′
1 = γβ

α
uN + γ u1 + β

α
u′

2. (2.28)

Algorithms 1A and 1B are essentially given by (2.23) and (2.27), respectively, except for three
values of u′

1, u′
2, and u′

N . They correspond to the LR and RL form of Saul’yev’s schemes (1.7)
and (1.8), but with different coefficients. Saul’yev’s original coefficient γS = (1 − r)/(1 + r)

corresponds to the choice of

f (r) = tanh−1(r) = r + r3

3
+ r5

5
+ · · · . (2.29)

However, in our derivation, the positivity requirement on γ limits Saul’yev’s scheme to r < 1.
There is no such requirement in Saul’yev’s original derivation. Note that his βS = r/(1 + r)

is also given by βS = (1 − γS)/2. In contrast to Saul’yev’s original algorithm, which cannot be
started for periodic boundary conditions, Algorithms 1A and 1B are truly explicit because they are
fundamentally given by the sequential updating of (2.14). Each algorithm can get started by first
updating u1 to u∗

1, then updating it again at the end to u′
1. These two schemes have amplification

factors

g1A = γ + βeiθ

1 − βe−iθ
,

g1B = γ + βe−iθ

1 − βe+iθ
, (2.30)

with opposite phase errors. As the semidiscrete amplification factor (2.6) is purely real with no
phase error, one is immediately alerted to the fact that these first-order schemes do not preserve
this qualitative feature of the exact solution. (This is also true of first-order symplectic integrators
in general; they are not time-reversible as the exact solution.) As we will see later, the convergence
behavior of these first-order schemes are also rather poor.

By virtue of (1.13), one can now immediately generate a second-order time-marching algorithm
via the symmetric product,

T2(�t) = T1B

(
�t

2

)
T1A

(
�t

2

)
,

= e
1
2 �tA1e

1
2 �tA2 · · · e

1
2 �tAN e

1
2 �tAN · · · e

1
2 �tA2 e

1
2 �tA1 . (2.31)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1968 CHIN

Note that this algorithm starts with A1, ascends to AN then descends back to A1, thus naturally
producing an alternating-direction LR then RL algorithm. In the original discussion of Saulyev
[3] and Larkin [4], this alternating use of the LR and RL algorithms is an ad hoc procedure. Here,
this procedure is an automatic consequence of the second-order algorithm.

If the boundary effects of u′
1, u′

2, and u′
N are ignored, and 1A and 1B are considered as given by

(2.23) and (2.27), then the alternative product T1A(�t/2)T1B(�t/2) yields the same second-order
algorithm with amplification factors

g2 = g1B

(
�t

2

)
g1A

(
�t

2

)
,

= γ̃ 2 + β̃2 + 2β̃γ̃ cos θ

1 + β̃2 − 2β̃ cos θ
, (2.32)

=
1 −

(
4β̃γ̃ /α̃2

)
sin2θ/2

1 +
(

4β̃/α̃2
)

sin2θ/2
= e−h2 , (2.33)

having no phase error and where

α̃ = 1

2
(1 + γ̃), β̃ = 1

2
(1 − γ̃) and γ̃ = γ (r/2). (2.34)

Thus, only the second-order scheme is qualitatively similar to the exact solution. Equation
(2.33) makes it clear that this algorithm is unconditionally stable as 0 ≤ γ̃ ≤ 1. Algorithms 1A
and 1B are also unconditionally stable since |g1A,1B| = √

g2 with γ̃ → γ . (Note that this also
proves the unconditional stability of Saul’yev’s original scheme even if his original γS can turn
negative, since it only approaches −1 as r → ∞.) Conventional explicit methods, like that of the
Euler algorithm, are limited in stability because they have power-series amplification factors. By
contrast, splitting finite-difference scheme derived here are unconditionally stable because they
produce Saul’yev-type schemes with rational-function amplification factors. This type of stability
is usually associated only with implicit methods.

In our derivation, we have the freedom in f (r) to optimize the algorithm. Expanding h2 of
(2.33) in powers of θ gives,

h2 = 2(1 − γ̃)

1 + γ̃
θ 2 − (13 − 35γ̃ + 35γ̃ 2 − 13γ̃ 3)

6(1 + γ̃)
3 θ 4 + · · · . (2.35)

Comparing this to the exact exponent,

hex = rθ 2, (2.36)

one sees that this term can be matched by requiring

1 − γ̃ (r)

1 + γ̃ (r)
= r

2
→ γ̃ (r) = γ (r/2) = 1 − r/2

1 + r/2
, (2.37)

which is precisely Saul’yev’s original coefficient. We shall refer to this algorithm as DS2. With
this choice for γ̃ (r), (2.33) reads

g2 = 1 − 2r(1 − r/2)sin2(θ/2)

1 + 2r(1 + r/2)sin2(θ/2)
, (2.38)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1969

with exponent

h2 = rθ 2 −
(

r

12
+ r3

4

)
θ 4 +

(
r

360
+ r3

8
+ r5

16

)
θ 6 + · · · . (2.39)

All terms except the first are error terms of the algorithm. Unfortunately, we have no more
degrees of freedom to eliminate these higher order error terms. Comparing this to that of the
implicit Crank–Nicolson (CN) scheme [which is without the ±r/2 terms in (2.38)]:

hCN = rθ 2 − r

12
θ 4 +

(
r

360
+ r3

12

)
θ 6 + · · · , (2.40)

one sees that both have comparable O(θ 4) errors but CN’s error is smaller.
In this section, we have shown that by splitting the matrix form of the semidiscrete equation,

one naturally produces Saul’yev-type unconditional algorithms. Although first-order algorithms
do not preserve the qualitative feature of the exact solution, second-order schemes do and can be
fine-tuned to match the exact amplification exponent to the leading order. We will examine the
convergence behavior of these diffusion schemes in Section IV.

III. SPLITTING ADVECTION ALGORITHMS

For the advection equation

∂u

∂t
= −v

∂u

∂x
, (3.1)

its usual semidiscrete form is

∂uj

∂t
= − v

2�x
(uj+1 − uj−1), (3.2)

with discretization matrix

B = v

2�x

⎛
⎜⎜⎜⎜⎜⎝

0 −1 1
1 0 −1

. . .
1 0 −1

−1 1 0

⎞
⎟⎟⎟⎟⎟⎠ , (3.3)

and solution

u(t + �t) = e�tBu(t). (3.4)

The semidiscrete amplification factor (θ = k�x)

gsd = e−iη sin θ , with η = v�t

�x
, (3.5)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1970 CHIN

is unitary (or dissipationless) and causes a phase-shift of each Fourier component. In the limit of
�x → 0,

gsd → gex = e−iηθ = e−ikv�t , (3.6)

the phase-shift becomes uniform for all Fourier modes eikx → eik(x−v�t), resulting in a uniform
shift of the entire function u(x) → u(x − v�t), which is the exact solution to (3.1). Any Taylor
expansion of (3.4) will produce algorithms with a nonunitary g, resulting in unwanted dissipa-
tions or instability. The situation here is much more delicate than in the diffusion case. The natural
decomposition is similarly,

B =
N∑

i=1

Bj , (3.7)

where

Bj = v

2�x

⎛
⎜⎜⎜⎜⎝

. . .
0 −1
1 0

. . .

⎞
⎟⎟⎟⎟⎠ with BN = v

2�x

⎛
⎜⎜⎜⎜⎝

0 1
. . .

. . .
−1 0

⎞
⎟⎟⎟⎟⎠ . (3.8)

It follows that

e�tBj =

⎛
⎜⎜⎝

1
c −s

s c

1

⎞
⎟⎟⎠ , e�tBN =

⎛
⎜⎜⎝

c s

1
1

−s c

⎞
⎟⎟⎠ , (3.9)

where now

c = cos(η/2) and s = sin(η/2). (3.10)

Each e�tBj only updates uj and uj+1 as

u′
j = cuj − suj+1,

u′
j+1 = suj + cuj+1. (3.11)

As in the diffusion case, the above updating can be recasted into the following forms for
Algorithms 1A and 1B, with 1A given by

u∗
1 = cu1 − su2,

u′
2 = su∗

1 + u2 − su3,

u′
j = su′

j−1 + uj − suj+1, (2 < j < N) (3.12)

u′
N = su′

N−1 + uN − su∗
1,

cu′
1 = su′

N + cu1 − su2.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1971

and 1B given by

u∗
1 = suN + cu1,

u′
N = suN−1 + uN − su∗

1,

u′
j = suj−1 + uj − su′

j+1, (2 < j < N) (3.13)

u′
2 = su∗

1 + u2 − su′
3,

cu′
1 = suN + cu1 − su′

2.

Again, Algorithms 1A and 1B correspond to the LR and RL form of Saulyev’s schemes. In con-
trast to the diffusion case, these algorithms are not exactly norm-preserving for periodic boundary
condition. By adding up both sides of the above algorithms, one finds that what is preserved by
1A is not the usual norm N = ∑N

j=1 uj , but a modified norm given by

Ñ1A = N +
(

c

1 − s
− 1

)
u1. (3.14)

Similarly, what is preserved by 1B is

Ñ1B = N +
(

c

1 + s
− 1

)
u1. (3.15)

If initially u1 = 0, then Ñ1A = Ñ1B = N0, where N0 is the initial norm. As the system evolves,
each algorithm’s actual norm will evolve as

N1A = N0 −
(

c

1 − s
− 1

)
u1,

N1B = N0 −
(

c

1 + s
− 1

)
u1. (3.16)

The error is due to a single point u1, where it is the only point not updated twice immediately.
As the wave form travels around the periodic box, u1 will trace out the shape of the wave and
imprint that as the error of the norm in time. For a sharp pulse, the norm error will return to
zero after the pulse peak has passed through u1. Thus, norm-preservation will be periodic. We
emphasized that this only apply to the periodic boundary case. For the fixed boundary case of
u1 = 0, the norm is conserved.

If the boundary values u′
1, u′

2, and u′
N are ignored for now, then again the resulting second-order

algorithm is unique, independent of the order of applying 1A or 1B. The amplification factors are
all unitary:

g1A = 1 − seiθ

1 − se−iθ
= exp(−iφ1A), (3.17)

g1B = 1 + se−iθ

1 + seiθ
= exp(−iφ1B), (3.18)

g2 = g1B(�t/2)g1A(�t/2)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1972 CHIN

= 1 − i2(s̃/c̃2) sin θ

1 + i2(s̃/c̃2) sin θ
= exp(−iφ2), (3.19)

with phase angles

φ1A = 2tan−1

(
s sin θ

1 − s cos θ

)
,

φ1B = 2tan−1

(
s sin θ

1 + s cos θ

)
,

φ2 = φ1A(�t/2) + φ1B(�t/2),

= 2tan−1

(
2s̃

1 − s̃2
sin θ

)
, (3.20)

where here

s̃ = sin(η/4) and c̃ = cos(η/4). (3.21)

As g1A and g1B are not complex conjugate of each other, their phase errors do not exactly
cancel. Their residual difference is the error of the second-order algorithm.

Algorithms (3.12) and (3.13) are our derivations of Saul’yev-type schemes for solving the
advection equation. The coefficient here, s = sin(η/2), is again different from the coefficient
of s = η/2 in Saul’yev’s schemes by simply modifying the equation. Our derivation showed
why it makes no sense to apply Saul’yev’s schemes at s = η/2 > 1, since such a scheme can-
not be derived from the fundamental updating matrix (3.11) with a real c = √

1 − s2. At s >
1, Saul’yev’s schemes are in fact unstable, suffering from spatial amplification [8], despite the
unimodulus appearance of (3.17) and (3.18). This is easy to see in the case of Algorithm 1A. If
initially uj = 0 for j ≥ J , but uJ−1
= 0, then according to (3.12), u′

J+n = sn+1u′
J−1 increases

without bound as a function of n. Even the case of s = 1 is pathological. For Saul’yev’s coefficient
s = η/2 = 1, one has

g1A = −eik�x = −eik(v/2)�t and g1B = e−ik�x = e−ik(v/2)�t . (3.22)

Under Algorithm 1A, Fourier mode eikx will flip its sign and propagate with velocity −v/2.
Under 1B, it will propagate with velocity v/2. The resulting second-order algorithm by concate-
nation would then leave the Fourier mode stationary with only a sign flip. This is completely
contrary to the behavior of the exact solution and is a source of great error for Saul’yev-type
schemes in solving the advection equation.

By appealing to the freedom in choosing the form of the derivative approximation, one can
generalize to

s(η) = sin(f (η/2)), (3.23)

which implies that a general s(η) must still obey

−1 ≤ s(η) ≤ 1. (3.24)

As we will show later, alternative choices for s other than s = η/2 will eliminate much of the
above unphysical behaviors.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1973

Although the derived choice of s = sin(η/2) is unconditionally stable for all η, the result-
ing Algorithms 1A and 1B have huge phase errors, and are no better than Saul’yev’s choice of
s = η/2. This is because in comparison with the exact phase for the advection equation:

φex = ηθ = v�tk, (3.25)

Algorithms 1A and 1B have expansions

φ1A = 2s

1 − s
θ − s(1 + s)

3(1 − s)3 θ 3 + · · · ,

φ1B = 2s

1 + s
θ − s(1 − s)

3(1 + s)3 θ 3 + · · · , (3.26)

and neither s = η/2 nor s = sin(η/2) can result in a first-order coefficient of θ matching that of φex

exactly. As any coefficient (1+a) multiplying ηθ will displace the Fourier mode to eik(x−(1+a)v�t),
with a displacement error of δx = av�t , forcing a to zero is the most basic requirement of any
advection scheme.

The choice of s that can do this is, for 1A,

2s

1 − s
= η → s = η

2 + η
, (3.27)

and for 1B,

2s

1 + s
= η → s = η

2 − η
. (3.28)

This then reproduces the Robert and Weiss [6, 8] forms of the Saul’yev-type algorithm and will
be denoted as RW1A and RW1B. For η > 0, only RW1A is unconditionally stable and RW1B is
limited by spatial amplification to η < 1. The pathological behavior of 1A at s = 1 can no longer
occur at any finite η. For the above choices of s, the corresponding phase angles are

φ1A = ηθ −
(

η

6
+ η2

4
+ η3

12

)
θ 3 + · · · ,

φ1B = ηθ −
(

η

6
− η2

4
+ η3

12

)
θ 3 + · · · . (3.29)

The third and higher order terms in θ are now dispersion errors of the schemes.
The second-order algorithm (2.31) now corresponds to applying RW1A then RW1B in

succession, each at �t/2, yielding

φ2 = φ1A(η/2) + φ1B(η/2),

= ηθ −
(

η

6
+ η3

48

)
θ 3 +

(
η

120
+ 5η3

192
+ η5

1280

)
θ 5 + · · · . (3.30)

This second-order advection algorithm will be denoted as RW2. Because RW1B is limited by
spatial amplification to η < 1, RW2 is limited in stability to η < 2.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1974 CHIN

TABLE I. Properties of various advection algorithms discussed in the text. 1A and 1B are the first-order
left-to-right and right-to-left schemes, respectively, derived in this work. S1A, S1B and RWIA, RW1B are
Saulyev’s and Robert and Weiss’ forms [8] of the same algorithms, respectively. The second-order advec-
tion algorithms 2, S2 and RW2 are alternating-direction algorithms by applying their respective 1A and
1B algorithms in succession at half the time-step size as mandated by (2.31). Algorithm C2 is the unique
second-order algorithm with the same s function for both 1A and 1B but without any first-order phase error.
As defined in the text, η = v�t/�x.

1A 1B S1A S1B RW1A RW1B 2 S2 RW2 C2

s = sin(
η

2) sin(
η

2)
η

2
η

2
η/2

1+η/2
η/2

1−η/2

√
1+η2−1

η

First-order phase error? Yes Yes Yes Yes No No Yes Yes No No

Stable against spatial
amplification for η < π η < π η < 2 η < 2 All η η < 1 η < 2π η < 4 η < 2 All η

To generate a stable second-order algorithm for all η, one can apply 1A then 1B with the same
s̃. To match the first-order term θ to φex then requires

2s̃

1 − s̃
+ 2s̃

1 − s̃
= η → 2s̃

1 − s̃2
= η

2
→ s̃ = 2

η

(√
1 + η2

4
− 1

)
. (3.31)

The resulting amplification factor is, according to (3.19),

g2 = 1 − i(η/2) sin θ

1 + i(η/2) sin θ
, (3.32)

which is precisely the implicit CN amplification factor. Since by (3.31), s̃ ≤ 1, and c̃ = √
1 − s̃2

is well-defined for all η, the algorithm is unconditionally stable and can be applied to periodic
boundary problems via the fundamental updating (3.11). Corresponding to (3.32), the phase-angle
has the expansion,

φ2 = ηθ −
(

η

6
+ η3

12

)
θ 3 +

(
η

120
+ η3

24
+ 3η5

240

)
θ 5 + · · · . (3.33)

We shall designate this second-order algorithm, with s̃ given by (3.31), as C2. The second-
order algorithm corresponding to Saul’yev’s choice of s̃ = η/4 will be denoted as S2, and the
initially derived result of s̃ = sin(η/4) as just Algorithm 2. Comparing (3.33) and (3.30) to the
phase angle of the Lax–Wendroff (LW) scheme,

φLW = ηθ − 1

6
(η − η3)θ 3 − i

1

8
(η2 − η4)θ 4 + 1

120
(η + 5η3 − 6η5)θ 5 + · · · , (3.34)

one sees that LW has smaller dispersion errors. Its imaginary part, signifying damping, also helps
to smooth out much of these dispersive oscillations.

The distinctive features of all Saulyev-type advection algorithms derived here are summarized
in Table I.

In Fig. 1, we show the working of these algorithms in propagating an initial profile

u(x, 0) = exp

[
−

(x

2

)6
]

. (3.35)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1975

FIG. 1. The propagation of initial profile (3.35) five times around a periodic box of [−10,10] with
�x = 0.025, �t = 0.02, v = 1, and η = 0.8, corresponding to 5000 iterations of each algorithm. If
there were no first-order phase error, the profile would remain centered on x = 0. Algorithms 2 and S2
have large positive phase errors. All second-order schemes suffer from dispersive, oscillating errors. The
LW scheme’s oscillations are damped because it is dissipative (the bright green line). From (3.29), scheme
RW1B’s third-order dispersive error coefficient vanishes for η = 1 and is only 0.016 at η = 0.8. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

The power of 6 was chosen to provide a steep, but continuous profile so that both the first-order
phase error (due to a
= 0) and the dispersion error (due to the O(θ 3) and higher order terms) are
visible. If the profile were too steep, like that of a square wave, the dispersion errors would have
overwhelmed the calculation and masked the first-order phase error. Our CN-like scheme C2 is
more dispersive than LW because it has no damping.

In this section, we have shown that Saul’yev-type algorithm can also be systematically derived
for solving the advection equation. More importantly we have shown that it is the amplification
exponent (and not the amplification factor itself) that is crucial in deriving the first-order Robert
and Weiss [6, 8] schemes and the new CN-like second-order algorithm C2.

IV. CONVERGENCE

As Saul’yev-type schemes are unconditionally stable, in accordance with Lax’s equivalence the-
orem [19], their convergence depends on whether they are consistent. Truncation errors in these
schemes have been extensively studied in Refs. [4–8]. Here, we will also pinpoint their peculiar

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1976 CHIN

origin. Consider first the advection case. For Algorithm 1A (3.12), making a Taylor expansion in
t gives,

u′
j = uj − s(uj+1 − u′

j−1),

= uj − s(uj+1 − uj−1) + s�t∂tuj−1 + s
�t2

2
∂2

t uj−1 + · · · . (4.1)

For the original Saul’yev case, s = η/2 ∝ �t/�x. In all other cases, this is the leading order
term as �t → 0. When s is multiplying a paired term,

(uj+1 − uj−1) = 2�x∂xuj + O(�x3), (4.2)

or when s is multiplying a spatially expanded term in powers of �x, its singular 1/�x dependence
would be safely removed. So, the only “dangerous” terms that contribute to the truncation errors
in (4.1) (with one power of �t divided out) are the spatially unexpanded terms

s∂tuj + s
�t

2
∂2

t uj + · · · = v�t

2�x
∂tuj + v�t2

4�x
∂2

t uj + · · · . (4.3)

Similarly for Algorithm 1B,

u′
j = uj − s(u′

j+1 − uj−1)

= uj − s(uj+1 − uj−1) − s�t∂tuj+1 − s
�t2

2
∂2

t uj+1 + · · · , (4.4)

but now the same unexpanded terms are all negative. As the leading truncation error terms are
∝ �t/�x, both algorithms are not consistent unless, as �t → 0 and �x → 0,

�t

�x
→ 0. (4.5)

This is a severe limitation on the size of �t that can be used. This is a well-known property of
Saul’yev-type algorithms [4–8]. However, we already knew that splitting first-order algorithms
are not representative of the exact solution and should not be used in isolation.

The second-order scheme by averaging 1A and 1B would have all such “dangerous” terms
canceled,

u′
j = uj − s

2
(uj+1 − uj−1) − s

2
(u′

j+1 − u′
j−1),

∂tuj + �t

2
∂2

t uj + · · · = − s

2�t
(2�x∂xuj + 2�x∂xu

′
j + O(�x3)),

= − v

4�x
(4�x∂xuj + 2�x�t∂x∂tuj + O(�x�t2) + O(�x3)),

∂tuj + v∂xuj = −1

2
�t∂t (∂tuj + v∂xuj) + O(�t2) + O(�x2). (4.6)

resulting in a bona fide second-order algorithm.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1977

For the case of the product second-order algoritm in which one uses Scheme 1A for �t/2 then
Scheme 1B for �t/2, one has

u∗
j = s̃u∗

j−1 + uj − s̃uj+1, (4.7)

u′
j = s̃u∗

j−1 + u∗
j − s̃u′

j+1, (4.8)

where u′
j = u(t + �t , j�x), u∗

j = u(t + �t/2, j�x), uj = u(t , j�x), and s̃ = s(η/2).
Substituting (4.7) into (4.8) gives,

u′
j = uj − s̃

(
u′

j+1 − 2u∗
j−1 + uj+1

)
,

= uj − 2s̃(uj+1 − uj−1) − s̃�t∂t (uj+1 − uj−1)

− s̃
1

2
�t2∂2

t (uj+1 − 1

2
uj−1) + · · · . (4.9)

One immediately sees that the last pairing is incomplete and there will be a residual unexpanded
term. In the limit of s̃ → η/4 = v�t/(4�x), the truncation errors are

∂tuj + 1

2
�t∂2

t uj = − 2s̃

�t
(2�x∂xuj) − s̃∂t (2�x∂xuj)

− s̃
1

2
�t∂2

t

(
1

2
uj

)
+ O(�t2) + O(�x2),

∂tuj + v∂xuj = − v�t2

16�x
∂2

t uj − �t

2
∂t (∂tuj + v∂xuj) + O(�t2) + O(�x2). (4.10)

The leading error is now ∝ �t2/�x, which vanishes as �t → 0 as long as �t/�x ∝ constant.
This is no worse than the conventional LW scheme which required �t/�x ≤ 1/v = constant for
stability and hence, for convergence.

Consider now the diffusion case. The first-order Saul’yev schemes also have truncation error
∝ �t/�x, as clearly shown by Larkin [4]. For the second-order scheme, he only gave result for
the average of Algorithms 1A and 1B. Here, we give the truncation error for the product form
of the second-order algorithm. The result is very similar to the advection case. For Scheme 1A
(2.23), we have

u∗
j − β̃

(
u∗

j − �x∂xu
∗
j + 1

2
�x2∂2

x u
∗
j + · · ·

)

= γ̃ uj + β̃

(
uj + �x∂xuj + 1

2
�x2∂2

x uj + · · ·
)

. (4.11)

Since γ̃ + β̃ = 1 − β̃, it follows that

u∗
j = uj + β̃

1 − β̃

(
−�x∂x(u

∗
j − uj) + 1

2
�x2∂2

x (u
∗
j + uj) + O(�x3)

)
. (4.12)

Similarly for Algorithm 1B,

u′
j = u∗

j + β̃

1 − β̃

(
�x∂x(u

′
j − u∗

j) + 1

2
�x2∂2

x (u
′
j + u∗

j) + O(�x3)

)
. (4.13)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1978 CHIN

Substituting (4.12) into (4.13) then yields,

u′
j = uj + β̃

1 − β̃

(
�x∂x(u

′
j − 2u∗

j + uj) + 1

2
�x2∂2

x (u
′
j + 2u∗

j + uj) + O(�x3)

)
. (4.14)

For Saul’yev original algorithm, one has exactly

β̃

1 − β̃
= r

2
. (4.15)

For the more general case of (2.17), this is also the leading order term in r as �t → 0. Hence,

∂tuj + 1

2
�t∂2

t uj + O(�t2) = r

2�t

(
1

4
�x�t2∂x∂

2
t uj + 1

2
�x2∂2

x (4uj + 2�t∂tuj)

+ O(�x�t3) + O(�x2�t2) + O(�x3)

)
,

∂tuj − D∂2
x uj = r

8
�t�x∂x∂

2
t uj − �t

2
∂t (∂t − D∂2

x)uj

+ O(�t2) + O(�t3/�x). (4.16)

If �t → 0 and �x → 0 such that r is a constant, then the above algorithm is second order in
�t�x but only of time order �t3/2. In comparison, conventional first- and second-order schemes
for solving the diffusion equation require three and five grid points, respectively. Saul’yev-type
algorithms achieve order �t3/2 with only three grid points. The average algorithm, as in the
advection case, would be strictly second order.

V. SOLVING THE ADVECTION–DIFFUSION EQUATION

The advection–diffusion equation,

∂u

∂t
= −v

∂u

∂x
+ D

∂2u

∂x2
, (5.1)

has the exact operator solution

u(x, �t) = e
−v�t ∂

∂x
+D�t ∂2

∂x2 u(x, 0). (5.2)

If v and D are just constants, then as [∂

∂x
, ∂2

∂x2] = 0, one has

u(x, �t) = e−v�t ∂
∂x e

D�t ∂2

∂x2 u(x, 0),

= e−v�t ∂
∂x ũ(x, �t),

= ũ(x − v�t , �t), (5.3)

where ũ(x, �t) is the diffused solution. The complete solution is, therefore, the exact diffused
solution ũ(x, �t) displaced by v�t .

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1979

For periodic boundary condition, our matrices also commute, [A, B] = 0, so that the discretized
version also holds,

u(t + �t) = e�tAe�tBu(t). (5.4)

Thus, second-order algorithms can be obtained by applying second-order advection and dif-
fusion algorithms in turns from the previous sections. However, because the advection algorithm
has a one-point norm failure at u1, all Saul’yev-type advection–diffusion algorithms described in
this section will not be norm-conserving for periodic boundary condition. Of course, for more
practical applications with fixed boundary value of u1 = 0, there is no such norm-conserving
problem.

As we have learned in the advection case, any initial algorithm from splitting the semidiscretize
matrix may not be optimal. Therefore, to solve the advection–diffusion equation (5.1), one may
as well directly start with an assumed updating matrix,

u′
j = αuj + λuj+1,

u′
j+1 = βuj + αuj+1, (5.5)

and determine its elements by enforcing the norm-conserving condition and by matching its
amplification exponent to that of the exact amplification exponent. The sequential applications of
the above updating matrix yields Saul’yev-type Algorithms 1A and 1B,

u′
j = βu′

j−1 + γ uj + λuj+1,

u′
j = βuj−1 + γ uj + λu′

j+1. (5.6)

These schemes will be norm-preserving, if one imposes

β + γ + λ = 1. (5.7)

The determinant γ = α2 − βλ is to be regarded as fixing α as a function of γ and β via
α = √

γ + βλ. The resulting amplification factors are then

g1A = γ + λeiθ

1 − βe−iθ
= e−h1A ,

g1B = γ + βe−iθ

1 − λeiθ
= e−h1B . (5.8)

The norm condition (5.7) fixes λ in terms of β and γ . In terms of γ and β Algorithms 1A and
1B have expansions,

h1A = 2β − (1 − γ)

1 − β
iθ + (1 − γ)(β + γ)

2(1 − β)2 θ 2 + O(θ 3),

h1B = 2β − (1 − γ)

γ + β
iθ + (1 − γ)(1 − β)

2(γ + β)2 θ 2 + O(θ 3). (5.9)

Matching the first- and second-order coefficients of the exact exponent

hex = iηθ + rθ 2, (5.10)

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1980 CHIN

then completely determines, for 1A and 1B, respectively,

β = 1 − γ + η

2 + η
γ = 1 − wr

1 + wr
w = 2

2 + η(3 + η)
, (5.11)

β = 1 − γ + γ η

2 − η
γ = 1 − wr

1 + wr
w = 2

2 − η(3 − η)
. (5.12)

These are the generalized Robert–Weiss algorithms for solving the advection–diffusion equa-
tion, which will be designated as ADRW1A and ADRW1B, respectively. Second-order algorithm
can again be derived by applying ADRW1A then ADRW1B according to (2.31).

One can also determine a second-order algorithm directly by matching its amplification
exponent:

g2 =
(

γ̃ + λ̃eiθ

1 − β̃e−iθ

) (
γ̃ + β̃e−iθ

1 − λ̃e+iθ

)
= e−h2 , (5.13)

where γ̃ = γ (�t/2), and so forth. In terms of γ̃ and β̃, h2 has the expansion,

h2 = iθ

(
(1 + γ̃)(γ̃ − 1 + 2β̃)

(1 − β̃)(γ̃ + β̃)

)
+ O(θ 2). (5.14)

Matching this to the first-order coefficient of the exact exponent (5.10) determines

β̃ = 1

2
(1 − γ̃) + 1

2
(1 + γ̃)s̃, (5.15)

and

λ̃ = 1

2
(1 − γ̃) − 1

2
(1 + γ̃)s̃. (5.16)

where s̃ has been previously defined by (3.31). In terms of only γ̃ ,

h2 = iηθ + 2
(1 − γ̃)

(1 + γ̃)

(1 + 3s̃2)

(1 − s̃2)
2 θ 2 + O(θ 3), (5.17)

and matching the second-order coefficient in (5.10) determines

γ̃ = 1 − wr/2

1 + wr/2
with w = (1 − s̃2)

2
/(1 + 3s̃2). (5.18)

This is then the generalization of advection algorithm C2 to the advection–diffusion case. We
shall refer to this algorithm as ADC2. If η = 0, s̃ = 0, one recovers Saulyev’s form (2.37) of the
diffusion algorithm DS2. If r = 0, then γ = 1 and one recovers the advection algorithm C2 with
λ̃ = −β̃ = −s̃.

In Fig. 2, we illustrate the working of these new algorithms and the effect of this norm-loss
error at a large value of r = 1.33. For clarity, only results from three representative algorithms
ADRW1A, A/D, and ADC2 are shown. The exact solutions are given as black dotted lines. All
three algorithms track the exact solution closely prior to the peak passing through the right side

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1981

FIG. 2. The propagation of a Gaussian profile in a periodic box of [0,10] with �x = 0.05, �t = 0.033, v =
1, D = 0.1, η = 0.66, and r = 1.33. (The conventional first-order diffusion scheme (1.2) is unstable for r >
0.5.) The profile is initially centered at x = 5. The exact solutions are given as black dotted lines, and are
coincided by algorithm A/D’s result of red dotted lines. The blue and green lines are results of ADRW1A
and ADC2, respectively. The slight asymmetry in ADRW1A’s results reflects the residual asymmetry of its
underlying first-order diffusion algorithm. All three profiles produced by ADRW1A, ADC2, and A/D are
in essential agreement prior to the pulse peak hitting the right periodic edge. As the profiles reappear from
the left, the norm of ADC2 is noticeably lower. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

of the periodic box. As the Gaussian peak emerges from the left, algorithm ADC2 suffers an irre-
versible norm-loss and its peak is noticeably lower. Algorithm A/D basically coincided with the
exact solution. Again, ADC2’s norm-loss error only occurs for periodic boundary conditions. For
nonperiodic applications, ADC2 should be more efficient as it only requires half the computational
effort as A/D.

VI. CONCLUSIONS AND FUTURE PROSPECTS

In this work, we have shown that Saul’yev-type schemes can be fundamentally derived from
the exponential form of the semidiscrete equation. The unconditional stability of these schemes
follows directly from splitting of the exponential matrix. The resulting schemes can be further opti-
mized by matching the scheme’s amplification exponent to that of the exact exponent. From this,
new second-order Saul’yev-type schemes for solving the advection and the advection–diffusion
equations can be derived.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

1982 CHIN

Conventionally, the amplification factor has been used mostly to decide the stability of the
algorithm. This work showed that the amplification exponent is of even greater importance, and
can be used systematically to improve or even directly derive, as in Section V, Saul’yev-type (or
conventional) finite-difference schemes.

Saul’yev-type schemes considered in this work are at most second-order because they only use
three grid points. Also, their amplification exponents can only match the exact one to leading order.
To eliminate higher order error terms in the exponent, more grid points would be needed. Higher-
order Saul’yev-type scheme can then be derived by directly matching the exact amplification
exponent, as illustrated in Section V.

The generalization to higher dimensions can be done by dimensional splitting, resulting in
unconditionally stable, alternating-direction-explicit methods. For example, in two dimensions,
(2.4) generalizes to

u(t + �t) = e�tAx e�tAy u(t), (6.1)

where now Ax and Ay are the diffusion matrices in the x and y directions, respectively. One can
then decompose each matrix as in the 1D case.

The generalization to nonconstant coefficients is equally easy. For D(x), one can take

Aj = D̃j

�x2

⎛
⎜⎜⎜⎜⎝

. . .
−1 1
1 −1

. . .

⎞
⎟⎟⎟⎟⎠ , (6.2)

with D̃j = D((xj + xj+1)/2). The resulting updating matrix elements αj and βj will then be
spatially dependent and the resulting algorithm can no longer be combined into Saul’yev’s form.

Future and more practical applications of these new algorithms will determine their ultimate
usefulness.

References

1. R. Courant, K. O. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathema-
tischen Physik, Math Anal 100 (1928), 32–74.

2. V. K. Saul’yev, On a method of numerical integration of a diffusion equation, Dokl Akad Nauk SSSR
(in Russian) 115 (1957), 1077–1079.

3. V. K. Saul’yev, Integration of equation of earabolic type by the method of nets, Pergamon Press,
New York, 1964.

4. B. K. Larkin, Some stable explicit difference approximations to the diffusion equation, Math Comput
18 (1964), 196–201.

5. H. Z. Barakat and J. A. Clark, On the solution of the diffusion equations by numerical methods,
Transaction of the ASME, J Heat Transfer 88 (1966), 421–427.

6. K. V. Robert and N. O. Weiss, Convective difference schemes, Math Comput 20 (1966), 272–299.

7. B. F. Towler and R. Y. K. Yang, Numerical stability of the classical and modified Saul’yev finite difference
methods, Comput Chem Eng 2 (1978), 45–51.

8. L. J. Campbell and B. Yin, On the stability of alternating-direction explicit methods for advection-
diffusion equations, Numer Methods Partial Differential Equations 23 (2007), 1429–1444.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

SAUL’YEV-TYPE SCHEMES FROM SPLITTING 1983

9. Z. Xie, J. Lin, and J. Zhou, A new unconditionally stable explicit scheme for the convection-diffusion
equation with Robin boundary conditions, Int J Comput Math 85 (2008), 1833–1847.

10. D. J. Evans and A. R. B. Abdullah, Group explicit methods for parabolic equations, Int J Comput Math
14 (1983), 73–105.

11. D. J. Evans, Alternating group explicit methods for the diffusion equations, Appl Math Model 9 (1985),
201–206.

12. L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and
engineering, Wiley, New York, 1982.

13. H. Yoshida, Recent progress in the theory and application of symplectic integrators, Celest Mech Dyn
Astron 56 (1993), 27–43.

14. E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, Springer-Verlag, Berlin,
New York, 2002.

15. R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer 11 (2002), 241–434.

16. H. F. Trotter, Approximation of semi-groups of operators, Pac J Math 8 (1958), 887–919.

17. G. Strang, On the construction and comparison of difference schemes, SIAM J Numer Anal 5 (1968),
506–517.

18. R. E. Mickens, Nonstandard finite difference models of differential equations, World Scientific,
Singapore, 1994.

19. P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite-difference equations, Commun
Pure Appl Math 9 (1956), 267–293.

Numerical Methods for Partial Differential Equations DOI 10.1002/num

