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For Hamiltonian systems of the form H= T(p) + V(q) a method is shown to construct explicit and time reversible symplectic 
integrators of higher order. For any even order there exists at least one symplectic integrator with exact coefficients. The simplest 
one is the 4th order integrator which agrees with one found by Forest and by Ned. For 6th and 8th orders, symplectic integrators 
with fewer steps are obtained, for which the coefficients are given by solving a set of simultaneous algebraic equations numerically. 

1. Introduction 

Symplectic integrators are numerical integration 
schemes for HamiRonian systems, which conserve 
the symplectic two-form d p ^ d q  exactly, so that 
(q(0) ,  p (0 )  ) - .  (q(T), p (z )  ) is a canonical transfor- 
mation [1-6] .  For both explicit and implicit inte- 
grators, it was shown that the discrete mapping ob- 
tained describes the exact t ime evolution of  a slightly 
perturbed Hamiltonian system and thus possesses the 
perturbed Hamiltonian as a conserved quantity. This 
guarantees that there is no secular change in the er- 
ror of  the total energy (which should be conserved 
exactly in the original flow) caused by the local trun- 
cation error. I f  the integrator is not symplectic, the 
error of the total energy grows secularly in general. 
See ref. [7] for more details. 

A quite general idea to construct the explicit sym- 
plectic integrator for a Hamiltonian 

H= T ( p ) +  V(q) (1.1) 

is given by Ned  [6].  Although the idea is quite sim- 
ple, practice is quite another thing. For example, 
constructing the 6th order integrator just by follow- 
ing the idea of Neri seems to be impossible, or at least, 
very difficult. In this note, a method is given to con- 
struct the symplectic integrator (explicit, t ime re- 
versible) of  any even Order (section 4). The sim- 
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plest non-trivial one, which is the 4th order 
integrator, agrees with one found by Forest and Ruth 
[3,4] and by Ned  [6]. For 6th and 8th orders, sym- 
plectic integrators with fewer steps are also obtained, 
for which the coefficients are given as a numerical 
solution of a set of  simultaneous algebraic equations 
(section 5 ). 

2. Problem to be solved 

Let A and B be non-commutative operators and z 
be a small real number. Then, 

Problem. For a given positive integer n which will 
be called the order of  integrator, find a set of  real 
numbers (cl, c2 .... , Ck) and (dl, d2, ..., dk) such that 
the difference of the exponential function 
exp[z (A+B)]  and the product of  exponential 
functions 

exp(cl cA) exp(d~ xB) exp(c2cA) exp(d2zB)X.. .  

X exp(ckcA) exp(dkzB) 

is of  the order of  z n+ ~, i.e., the following equality 
holds, 

exp[z (A+B)]  

k 

= !-I exp(cicA) exp(d i zB)+o(z  "+l) . (2.1) 
l m l  

262 0375-9601/90/$ 03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland) 



Volume 150, number 5,6,7 PHYSICS LETTERS A 12 November 1990 

For example when n=  1, a trivial solution is 
ct=dt= 1 (k= 1 ), and we have 

exp[z(A+B)]=exp(zA) exp(zB)+o(z 2) . (2.2) 

When n=2,  we find that c~=c2=½, d1=l ,  d2=0 
(k=2) ,  thus 

exp[r(A+B) ] 

=exp(½TA) exp(rB) exP(½rA) +o(~ 3) . (2.3) 

Although the problem above is quite general and may 
have wide applications, it is directly related to the 
symplectic integrator of the Hamiltonian system 
( 1.1 ) as shown by Neri [ 6 ]. 

Introducing the notation z=  (q, p), the Hamilton 
equation is written in the form 

~= {z, H(z)} ,  (2.4) 

where braces stand for the Poisson bracket, {F, G} 
=FqGp-FpG~. If  we introduce a differential opera- 
tor De by Dc, F:={F, G}, (2.4) is written as ~=Dxz, 
so the formal solution, or the exact time evolution of 
z(t) from t = 0  to t=z is given by 

z(z) = [exp(zDH) ]z(0) . (2.5) 

For a Hamiltonian of the form (1.1), DH=Dr+Dv 
and we have the formal solution 

z(z) =exp [ z(,4 +B)  ]z (0 ) ,  (2.6) ~ 

where A:=Dr, and B,=Dv. 
Suppose (ci, di) ( i=  1, 2 ..... k) is a set of real num- 

bers which satisfy the equality (2.1) for a given in- 
teger n. Now consider a mapping from z=z (0 )  to 
z' =z(z)  given by 

z'=(,=I-Iexp(cirA)exp(d~zB))z. (2.7) 

This mapping is symplectic because it is just a prod- 
uct of elementary symplectic mappings, and approx- 
imates the exact solution (2.6) up to the order o(z"). 
Furthermore, (2.7) is explicitly computable al- 
though (2.6) is only formal. In fact (2.7) gives the 
succession of the mappings, 

OT 
q~=qe-t +rc~--~p (P i - l ) ,  

OV 
pi=p,_,-zdi'~q (qi), (2.8) 

for i=1 to i=k, with (qo, po)--z and (qk, pk)=Z'. 
An nth order symplectic integrator (integration 
scheme) is thus obtained. 

The direct approach to the problem is obviously 
as follows. We expand the left hand side of (2.1) in 
powers of r and equate the coefficients of the equal 
powers of z up to the order r n. Thus, we obtain a set 
of non-linear algebraic equations for unknowns ci and 
di. For example when n=  ! ( lst  order integrator), 
we have two equations from the coefficients of A and 
B, 

Cl-[-C2"['...-t-Ck=I, dl+d2+...WCk=l, (2.9) 

so that the simplest solution is k=  1, c~ = d l =  1. When 
n=2  (2nd order integrator), in addition to (2.9), 
we have an equation coming from the coefficient of 
AB, 

cl (dl +d2 +...dk) + c2 (d2 -t-d3 -I-...+dk) +...+Ckdk 

--2,  __! (2.10) 

and the simplest solution is k=2,  c~=c2= ½, d~= 1. 
In this straightforward way, Ned [ 6 ] obtained a 4th 
order integrator (k= 4), 

I 1 --21/3 
C I --~-C4 ~--~ 2(2_21/3) ' C 2 = C 3 - -  2(2_21/3) ' 

1 21/3 
dl =d3=  2_21/3, d 2 = -  2_21/3, d4=0 .  

(2.11) 

But with this direct method, it is almost hopeless to 
obtain a much higher integrator. 

We now mention that (2.1) is equivalent to 
k 

S(r)  ,--- 1-/exp(cizA) exp(dizB) 
i=l 

=exp( [z(A +B) +o (z  n+l ) ] ,  (2.12) 

and in the following sections we use some indirect 
method to find the set of coefficients (c~, di) satis- 
fying (2.12). 

3. Basic  formelas 

First we recall the Baker-Campbell-Hausdorff 
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(BCH) formula [ 8,4,7 ]. For any non-commutative 
operators X and Y, the product of the two exponen- 
tial functions, exp(X) exp(Y), can be expressed in 
the form of a single exponential function as 

exp(X) exp(Y) = e x p ( Z ) ,  

where 

Z=X+ r+½ [X, Y] 

+~2([X, X, Y]+ [Y, Y, XI)+2~[X, Y, Y,X] 

-72~([Y, Y, Y, Y,X]+ [X,X,X,X, Y]) 

1 +~z-6(fY, X,X,X, Y] + [X, Y, Y, Y,X]) 

+~o( [X,  X, Y, Y,X]+[Y, Y,X,X, r ] )  

+ .... (3.1) 

Here we used the notation of the commutator [X, 
Y]-'= XY-YX ,  and higher order commutators like 
[X, X, Y] .'= IX, [X, Y] ]. A remarkable feature of 
this BCH formula is that there appear only com- 
mutators of X and Y except for the linear terms in 
the series (3.1). 

By repeated application of the BCH formula (3.1), 
we find 

exp(X) exp(Y) exp(X) =exp(  W) ,  

where 

W = 2 X +  Y+~[ Y, Y, X] --~[X, X, Y] 

+~6o[X,X,X, X, Y]-3-~[Y, Y, Y, Y,X] 

+~o[X, Y, Y, r , x ]+Air ,  x , x , x ,  r] 

-~o[X, X, Y, Y,X]+~o[Y, Y,X,X, Y] 

+ .... (3.2) 

Thus the operator for the 2nd order symplectic in- 
tegrator (2.3) can be written in the form 

S2,d(z) :=exp(½zA) exp(zB) exP(½zA) 

=exp(zoq-~ 'c30~3 -~-'c50/5-~T70~7 -~-...) , (3.3) 

where 

a ,  : = A + B ,  Cta:=fi[B,B,A]-~[A,A,B], 

c~s :=ss-~[A,A,A,A, B] + .... 

We now mention that in the expression (3.3) there 
exist no terms of even powers of z, i.e., 

Og2=OL4=C~ 6 . . . . .  0. This comes from the fact that 
the operator S2nd(Z) is symmetric and has the exact 
time reversibility 

S(z)S( - z) = S (  - z)S(z) = identity. (3.4) 

Indeed this is an example of a more general state- 
ment as follows. 

Lemma. Let S(z) be an operator of the form 
(2.12 ) which has the time reversibility (3.4). If we 
expand S(z) in the form 

S(z) = exp (z?~ + 7.272 -~- "L'373 -{- "L'474 -~-...) (3.5) 

then 

72 =74 =76 . . . . .  0 .  

To see this, we make the product of S(T) and 

S( - z) = exp ( - zT~ + z272 - r 373 + z474 . . . .  ) .  

By the BCH formula (3.1) we find, for lower orders 
of z, 

S(z )S ( - z )  =exp [2z272 + o ( z  3) ] . (3.6) 

Since S (z) S ( - z ) = 1, the argument of the exponen- 
tial function, 2 z 272 + o (z 3 ), must vanish identically. 
This requires, at first, that 72=0. Now the same 
product gives 

S(z )S ( - z )  =exp[2z474 + o ( z  5) ] (3.7) 

and requires that 74 = 0. By repeating this procedure 
we get 76=78 . . . . .  0. 

Therefore if  a symplectic integrator has a sym- 
metric form so that (3.4) holds, it is automatically 
of an even order. Keeping this fact in mind, we now 
construct symplectic integrators (4th, 6th, 8th .. . .  ) 
by a symmetric product of symplectic integrators of 
a lower order. 

4. Symmetric integrator with exact coefficients 

A 4th order integrator is obtained by a symmetric 
repetition (product) of the 2nd order integrator 
(3.3) in the form 

S4th (~') := S2nd (XI ~')S2nd (XO ~')S2nd (Xl T) , (4.1) 

where :co and x~ are two real unknowns to be deter- 
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mined. If we apply formula (3.2) to (4.1), with 

S2~d(Xl Z) = exp (zx, 0~, "~- "~3X31 Ol 3 + "C5X51 O~ 5 "~- ...) , 
(4.2) 

and 

S2nd(XoT) = e x p  ('CXoOtl + "t'3Xo3 Or3 + z-SXo5 O/5 + . . . )  , 
(4.3) 

we have 

S4th(z)=exp[z(Xo + 2Xt)Oh +z3(x~ + 2x~)ot3 

+zS(x~ +2xlS)ots +...] . (4.4) 

In order that (4.4) gives a 4th order integrator, we 
need two conditions 

Xo+2Xl = 1 ,  x 3 + 2 x 3 = 0 ,  (4.5) 

so that S4th (z) = e x p [ z ( A + B )  + o ( ¢ )  ]. The unique 
real solution is obviously 

2 ' /3 1 
Xo= 2_2, /3  , x x - 2 _ 2 , / 3 .  (4.6) 

If  we compare the operator (4.1) with (2.12), we 
find the relations between the two sets of coefficients; 

d,=d3=x,, d2=xo, 

CI~-C4=½Xl, C2=C3-.m. ½(Xodf 'Xl) .  

With the values (4.6), we find that (4.1) is exactly 
the same as the known 4th order integrator (2.11 ). 

Once a 4th order integrator is found, it is easy to 
obtain a 6th order integrator using the 4th order one 
by the same process. By definition a 4th order (sym- 
metric) integrator has an expansion 

S4th ('C) = e x p  [ "t'O~l + "c5~5 + "t'7£~7 + 0 ('t '9) ] . (4.7) 

We try to get a 6th order integrator by the symmetric 
product 

S6th('~):-~S4th(Yl'l~)S4th(YOq~)S4th(Yl'l[) • (4.8) 

As before, by formula (3.2), (4.8) has the expansion 

S6th ('~) =exp [Z(yo+2yl )o/1 +zS(y~ + 2y~S)&5 

"~'O(T7) ] . (4.9) 

In order to be a 6th order integrator we must have 

yo+Zy, = 1 ,  y~+2y~=O, (4.10) 

o r  

2 1/5 1 
Yo = 2 _ 2 , / 3 ,  Yl - 2_2 , /3  • (4.11 ) 

More generally, i f  a symmetric integrator of order 
2n, S2n(z), is already known, a ( 2 n +2 ) th  order in- 
tegrator is obtained by the product 

S2n+2(7[):-~.S2n(zl'r)S2n(,7,o"f/)S2n(ZlZ), (4.12) 

where Zo and zl must satisfy 

Z o + 2 z l = l ,  Zo 2"+'+2z~ ~ + ' = 0 ,  (4.13) 

o r  

Z o =  
21 / (2n+ 1 ) 

2 _ 2 1 / 2 ( 2 n + 1 ) ,  

1 
Z a -  2 _ 2 1 / ( 2 n + 1  ) • (4.14) 

The combination of (4.1) and (4.8) gives 

S6th(~') :=S2nd(Xlyl r)S2nd(XoYl "c)S2nd(Xlyl "C) 

XS2nd(XlYor)S2nd(XoYor)S2nd(XlYo T) 

×S2,d(SlylZ)Sz,d(XoYlZ)S2nd(Xlylz) , (4.15) 

which implies the exact coefficients in (2.12) as 

dl=d3=dT=d9=Xlyl, dz=ds=XoYl, 

d,=d6=xlyo, ds =Xoyo, 

and 

c l = l d l ,  Clo=½d9, 

c i=½(d~_l+dA,  i = 2 , 3  .... , 9 .  

In this way we can construct symplectic integrators 
of an arbitrary even order with exact coefficients. 
However, with this construction, the (2n)th order 
integrator requires the operator S2nd, 3"- '  times. This 
means that the number of steps k is k = 3 n - l +  1, 
which grows rapidly as n increases. In the next sec- 
tion, an alternative method is shown to obtain more 
economically integrators, though the coefficients 
cannot be given analytically. 

5. 6th and 8th order integrators with fewer steps 

Let us define a symmetric operator S (m) (z) by 
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S (m) ( ~ ) : = S 2 n d ( W m T )  X ... X S2nd (W 1 T)S2nd (WO T ) 

XSEnd(wtz )X . . .XS2 ,d(w,"z )  , (5.1) 

with unknowns Wo, w~, ..., w,". I f  we apply formula 
(3.2) to express (5.1) in the form of a single ex- 
ponential function, like (4.4), we find that in ad- 
dition to the operators a t ,  a3, as, aT, ..., there appear 

#s '= [at, at, a3] 

at the order z s, and 

/ /7= [am,a~,as] ,  r7'=[a3, a3, a t ] ,  

a7:~-- [0/I ,  a t ,  o / t ,  a t ,  0/3] 

at the order z 7. Thus we write down (5.1) as 

S(,") ( z ) =exp [ zAt,,"0/~ + z3A3,,,,0/3 

+zs  (As,,"0/s +Bs,,.fls) 

"~- T 7 (A7,,, 0/7 + B7,mfl7 "at" C7,m)P7 + D7,m ~7 ) 

+ o ( z 9 ) ]  . (5.2) 

Comparing the both sides of 

SO"+ t ) ( r)=S2nd( w,"+ l r )s<r") ( r)S2.d( w,"+ t r ) 
(5.3) 

with use of  (3.2), we find recursion relations for the 
coefficients. Those for A~,," are simply 

A t,,"+ l =At,," + 2Win+ t , ( 5 . 4 )  

A3,m+ I =A3,mW2W3+l , (5.5) 

As,,.+ t =As,m + 2w5~+ I , (5.6) 

+ 2 W m +  t . . . .  , (5.7) a7,m+ 1 = A7,m 7 

with initial conditions 

At,o=Wo, Aa,o=Wo 3, As,o=Wo 5, 

AT, 0 = Wo 7 . . . . .  

For the other coefficients we find 

Bs,,.+ t 1 2 3 = B5,," +~(A t,,. w,"+ l -Al,, .A3,mW,.+ t ) 
1 2 ---~(a3,mW,"+ t - a t , m W 4 m +  l ) , ( 5 . 8 )  

n7,,"+ 1 i 2 5 = B7,," +'g (A l,," Wm+l  - A I , m A s , m W , " +  l ) 

1 2 6 - - g ( A s , , " w , . + t  ) (5.9) - - a l , m W m + l  

C7,m+ 1 = C 7 ,  m ..t_.g(A3,mWrn+ll 2 __Al,mA3,mW3m+ 1 ) 

1 6 - - g ( A l ,  m W,"+ 1 - - A 3 , m W 4 +  1) , ( 5 . 1 0 )  

D 7 m +  1 ..~_ O T , ,  " 7 4 , "[-~'~'6(A3,mWm+ 1 - A l , m W r m +  1 ) 

7 3 2 5 +~6(A1,,"A3,mWm+l ) - - Z  l ,mWm+ | 

1 3 4 2 2 --a3(A l ,mWm+ 1 - - A  l,mA3,m Wm+ 1 ) 

I gA4 , 3 __h3,mA3,mWm+l)  ~ 3-~ ~,.-a l,m rv m+ 1 

1 2 -g(Bs,mWm+l +al,mBs,mWm+l) , (5.1 1 ) 

with initial conditions 

B5,0 = BT,0 = (77,0 = D7,0 = 0 .  

For A j,,, we have obviously 

A~,,"=Wo + 2(Wl +WE +...+Wm) , (5.12) 

h3,," =W3o + 2(w3 +wa2 + . . . + w 3 )  , (5.13) 

As,m =Wo 5 +2(w~ +wz 5 + . . .+  w ~ ) ,  (5.14) 

h7,ra=WTo-l- 2(W7 + W72-k-...-I-WTm) . (5.15) 

But for other coefficients, the result is not concise. 
The obvious fact is that for a given m, we have 
Bs,,"=Bs,,"(Wo, wt, ..., win) which is a homogeneous 
polynomial of  degree 5 in w, and BT,m,  CT,m, DT,m 
which are homogeneous polynomials of  degree 7 in 
W. 

Now in order that (5.1) gives a 6th order inte- 
grator, we have the four conditions 

A l . , " = l ,  A3,,"=0, As, ,"=0,  Bs, ,"=0,  
(5.16) 

so that m = 3 is necessary and sufficient. Thus (5.16 ) 
is considered as a set of simultaneous algebraic equa- 
tions for unknowns (Wo, wt, w2, w3). In order to ob- 
tain an 8th order integrator, we need further four 
conditions 

h 7 , m = 0 ,  B 7 , m = 0 ,  C 7,m~ .O ,  D 7 , , " = O ,  
(5.17) 

in addition to (5.16). Therefore m = 7, and we have 
a set of  simultaneous algebraic equations (5.16) and 
(5.17 ) for unknowns (wo, wt ..... w7). We can always 
reduce one order of  the simultaneous algebraic equa- 
tions by eliminating Wo using A~,,"= 1, i.e., 

w0 = 1-2(w~ + w 2 + . . . + w m ) .  (5.18) 
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6th order symplecti¢ integrators. 
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Solution A Solution B Solution C 

w~ - 0.117767998417887E 1 - 0.213228522200144E 1 0.152886228424922E- 2 
w2 0 .235573213359357E0 0.426068187079180E- 2 - 0.214403531630539E 1 
w 3 0 .784513610477560E0 0 .143984816797678E1  0.144778256239930E1 

Table 2 
8th order symplectic integrators. 

Solution A Solution B Solution C 

W l -0.161582374150097E1 -0.169248587770116E-2 0.311790812418427E0 
w2 -0.244699182370524E1 0 .289195744315849E1  -0.155946803821447E1 
W3 -0.716989419708120E-2 0.378039588360192E-2 -0.167896928259640E1 
w4 0 .244002732616735E1 -0.289688250328827E1 0.166335809963315E1 
w5 0 .157739928123617E0  0 .289105148970595E1  -0.106458714789183E1 
w 6 0 .182020630970714E1 -0.233864815101035E1 0.136934946416871E1 
w7 0 .104242620869991E1  0 . 1 4 8 8 1 9 2 2 9 2 0 2 9 2 2 E 1  0.629030650210433E0 

Solution D Solution E 

w~ 0 .102799849391985E0  0.227738840094906E- 1 
w 2 -0.196061023297549E1 0.252778927322839E1 
w 3 0 .193813913762276E1 -0.719180053552772E- 1 
w4 -0.158240635368243E0 0.536018921307285E-2 
w5 -0.144485223686048E1 -0.204809795887393E1 
w 6 0 .253693336566229E0  0.107990467703699E0 
w7 0 .914844246229740E0  0.130300165760014E1 

A set of  algebraic equations is thus obtained, which 
has the general form 

f l  ( W l ,  W2, ..-, W m ) = 0  , 

f 2 ( W l ,  W 2 . . . . .  Wm)=O,  

... 

fm(WI,  W2, ..., Win)  ~---0 , 

and must  be solved numerically. The Newton-Raph-  
son method is familiar  to solve this kind of equa- 
tions. However it is difficult to derive the expression 
for the Jacobian matrix df/dwj, which is necessary 

for the Newton-Raphson  method. Here we have used 
the Brent method [ 9 ] which does not  need the Ja- 
cobian matrix and  is suitable for our  problem. 

Using the Brent method,  three solutions (w~, w2, 
w3) for the 6th order integrator have been obtained. 
It seems that there is no other solution. For the 8th 

order integrator at least five solutions (w~, w2, ..., WT) 
have been obtained. These numerical values are listed 
in tables 1 and 2. Once the values of  the wi are ob- 

tained, we get the original coefficients in (2.12) as 
( k = 2 m + 2 )  

d,=d2,,+,=Wm, d2=d2m=Wm_t, ..., 

dm=d,,,+2=wl, dm+l =Wo, 

and 

Cl=C2m+2-.-=lWm, C2=C2mWI=½(Wm-[-Wm_I), 

.... Cm+l =Cm+2-."-=I(WI "['Wo) . 

For the 6th order integrator ( n = 3 )  the number  of 
steps is k= 8, and for the 8th order integrator, k= 16. 
On the other hand in the case of the previous section, 
k= 10 for the 6th order integrator and k = 2 8  for the 
8th order one. Therefore the integrators in this sec- 
t ion are really time-saving. 
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Appl ica t ion  o f  these integrators to the gravita-  
t ional  N-body prob lem is now is progress [ 5 ] and  
will be publ ished elsewhere. In o rder  to obta in  10th 
order  integrators in this way, the next order  o f  the 
BCH formulae  (3 .1)  and  (3.2)  becomes  necessary, 
and the order  o f  the s imul taneous  algebraic equa- 
t ions becomes  much higher. 
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