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A new method of splitting exponential operators is proposed in the exponential form of the operator solution of the time- 
dependent Schriidinger equation. The method is shown to be third-order accurate in the time increment. In particular the phase 
of the wavefunction is shown to be exceptionally accurate for time-independent potentials. The new method is shown to be more 
efficient than the standard second-order evolution operator algorithms for both time-independent and time-dependent potentials. 

1. Introduction 

Recent developments in laser physics and laser 
chemistry have pointed out the need for efficient al- 
gorithms to solve the time-dependent Schrijdinger 
equation [l--4] and simultaneously the Maxwell- 
Schriidinger equation [ $61. The first describes the 
quantum behaviour of matter in the presence of elec- 
tromagnetic pulses whereas the second describes the 
classical propagation of electromagnetic pulses in 
molecular media. With present lasers, very intense 
fields are accessible so that nonperturbative methods 
are needed to solve the equations for the interaction 
of electromagnetic pulses with molecules [ 11. 

The time-dependent SchrGdinger equation de- 
scribing molecular multiphoton transitions is a lin- 
ear parabolic partial differential equation which can 
be written as 

V”ll~(R, t) =hl~(R)-~(r, f) . (2) 
R is a molecular coordinate whereas r is the electro- 
magnetic field coordinate. E(r, t) represents the 
electromagnetic pulse, p,,,(R) is a transition mo- 
ment representing transitions between different elec- 
tronic states of quantum number n. Solution of eq. 
( 1) generates the total time-dependent molecular 
wavefunction v/( R, t, E( r, t) ) which becomes an im- 
plicit functional of the electric field E. This function 
allows one in principle to calculate the exact total po- 
larizability P( t, E( r, f) ) induced by the electromag- 
netic perturbation [ $61, 

P(t,E(r,t))=(y/(R,t,EI/I(R)I(u(R,t,E)), (3) 

where p is the total dipole moment of the system. 
The polarizability becomes a source term in Max- 
well’s equation, 

ie~(R,t)=-~~(R,I)+V,(R)yl,(R,I) 
1 d*E(r t) 4n a2P(r, t) 

V*Qr,t)-~-&=~~. (4) 

+ C vnn,(R, 1) w,,(R, f) s 
n’ 

where V,,(R) is the time-independent field free mo- 
lecular (electronic) potential and V,,.(R, t) is the 
time-dependent electromagnetic-molecule interac- 
tion, 

Eqs. ( 1) and (4) are the Maxwell-Schriidinger 
equation of a molecular system, the solution of which 
would enable one to describe nonlinear optical phe- 
nomena at the molecular level [ 5-71. 

In the case of a slowly varying envelope, eq. (4) 
can be reduced to a nonlinear parabolic partial dif- 
ferential equation (the paraxial wave equation) 
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[ 5,6,8]. Thus both equations, ( 1) and (4) become 
diffusion equations with imaginary diffusion coef- 
ficients, the first being a linear and the second a non- 
linear parabolic differential equation. For intense 
pulses, i.e. if the nonperturbative regime applies, both 
equations ( 1) and (4 ) must be solved accurately for 
long propagation times. In the present note we wish 
to present a new scheme for solving numerically the 
linear parabolic equation ( 1) to high order by split 
exponential operator methods. As shown by pre- 
vious authors, the imaginary diffusion coefficient in 
the Schrijdinger equation can render certain well 
known unstable numerical schemes such as explicit 
integration methods stable [ 81. We extend here the 
previous work of Burstein and Mirin [ 9,101 for real 
hyperbolic initial value problems. The new higher 
order splitting method should be applicable to both 
linear real and imaginary diffusion equations. For 
nonlinear equations, the present method can be also 
implemented in the split step methods for solving 
such nonlinear equations [ 111. We are currently 
pursuing these approaches. 

2. Third-order split operator method 

The exponential representation of the operator so- 
lution to the Schrodinger equation for a time-inde- 
pendent Hamiltonian has an exact formal solution in 
terms of the evolution operator [ 121. Thus writing 
the one-dimensional time-dependent Schrijdinger 
equation as (we set 12 = m = I). 

aw t) 
‘at= ( - ; f + V(x) V(X> t) 1 

we can write the exact formal solution of (5 ) as 

~(x, t+At)=exp[ -iAt(A+B)]v(x, t). (6) 

This solution is no longer exact for a time-dependent 
V(x, I) as occurs in eq. (2) due to the noncom- 
mutativity of the now time-dependent Hamiltonian 
at different times [ 121. Splitting of the exact formal 
exponential operator for the time-independent op- 
erator B= V(x), 

&,(A, B)=exp[M+B) 1 , (7) 

is the key problem in obtaining accurate numerical 
solutions to eq. (6) for propagation to the time 
fn = n At t t. The simplest splitting formula is to first- 
order accuracy, 

s,,(A,B)=S,(A,B,~)tf[A,B]~zt . . . . (8) 

where 

S, (A, B, 2) =exp(M) exp(iB) . (9) 

Here we use the notation of ref. [ 91. Second-order 
accuracy is obtained with a three-split-operator sym- 
metric decomposition [ 9,101, 

&(A, &A)=exp(N2) exp(i@ exp(u/2), 

(10) 

since one can show readily that 

Ls,,=s* ts’ f0(A4) ) 

&s+&4+2B, [ASB]]i3. (11) 

Eq. ( 10) can be written as an iteration of S,, 

S*(A,B,3,)=S,(A,B!A/2) &(B,A,AI2). (12) 

This operator decomposition (i.e. ( 10) or ( 12) ) is 
currently being used extensively in the chemical 
physics literature [ 3,13-l 51. A third-order symmet- 
ric operator, by analogy to eq. ( 12), i.e. 

S,(A,B,~)=S,(A,B:AI4)S,(B,A,1/4), (13) 

can be shown to be asymptotically accurate to third 
order [ 9, lo], i.e. by iteration 

$‘= [$(A, B, L/N) S,(B, A, YN) INi > (14) 

one obtains third-order accuracy only in the limit 
ArLoo. This requires many calculations per time step 
and hence is not practical. 

Consecutive combinations offiw operators can be 
obtained to give third-order accuracy by choosing a 
nonsymmetric generalization of ( 13)) 

s,=s,(.4,B,y~)S*(A,B,~(l-y)), 

Y=f(l$i/fi). (15) 

Unfortunately, since A= -i in the time-dependent 
Schrodinger equation, this new splitting with com- 
plex ys creates exponentially growing and damped 
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solutions at different time steps, so that unitarity is 
not always conserved. Indeed numerical tries showed 
this scheme to be unstable, in spite of the promise of 
third-order accuracy. This scheme should be there- 
fore useful for real partial differential equations. 

We turn now to more general decompositions of 
the type encountered in eq. ( IO), as symmetric gen- 
eralizations of ( 15 ), 

Inserting S, from ( 10) into ( 16) one obtains by 
comparison with the exact exponential operator 

S,,(A,B)=S,+S’(2y3+(1-2y)3)+0(14), (17) 

where s’ is defined in eq. ( 11). For values of y sat- 
isfying the condition 

273$(1-2g)3=0, y=1/(2-21’3)) (ISI 

one obtains therefore a third-order accurate expo- 
nential operator S3 from eq. ( 18). The operator S3 
preserves unitarity of the Schrijdinger equation at 
every time iteration step. This is to be compared with 
the best third-order operator asymptotic Sy, eq. 
( 14), which is third-order accurate only in the limit 
N+co. Continuing the iteration processes in (16) 
i.e. next defining the exact evolution operator S,, in 
terms of symmetric products of S3 would give 

tT(2y4t (1-2y)4) to@*) , (19) 

where T is some remnant combination of commu- 
tators of A and B. The condition necessary for a 
fourth-order accurate S,, 

2y4t (l-27)4=0, (20) 

has no real roots. Thus as in the case of the five-op- 
erator expression eq. ( 15), complex roots would not 
preserve unitarity in the iteration steps, thus creating 
an unstable scheme. In fact, one can generalize eq. 
( 19) to express S,, as products of three S,_ ,, as shown 
recently by Suzuki [ 161 in the context of path in- 
tegral calculations. However, these higher order S,,, 
i.e. n> 4, depend on S, because of the recursion ( 19). 
Thus such higher order schemes would not be useful 
because of the violation of unitarity in s+ We con- 
clude therefore that eq. ( 16) seems to be the sim- 
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plest new third-order accurate splitting of operators. 
A final expression can now be written as 

&(A, B, J)=exp(@V) exp(@) 

xexp[f(l-y)Mlexp(~~8)exp(y~/2), (7.1) 

with y given by eq. (19). Although this expression 
involves seven exponential operators, we will show 
in section 3 that numerical algorithms based on the 
third-order accurate equation (21) are more eff- 
cient than algorithms based on the standard second- 
order accurate evolution operator Sz, eq. ( 10). 

3. Numerical comparisons 

Eq. (10) gives the most widely used three-split- 
operator expression which is second-order accurate. 
Eq. (2 1) is the new third-order accurate scheme. As 
with the second-order method, this new seven-split- 
operator scheme preserves unitarity at all time steps. 
Second-order and third-order accuracy hold only for 
time-independent potentials B, eq. (5) as shown 
above. For time-dependent Hamiltonians, i.e. time- 
dependent potentials B= V(X) tf(x, t), one can 
show by detailed calculation that the scheme based 
on S,, eq. (2 I), remains third-order accurate [ 171. 
This will be further corroborated by the calculations 
reported below. 

For comparing the truncation errors in the two 
schemes ( 10) and (21)> we shall use both the time- 
independent and time-dependent harmonic oscilla- 
tor, i.e. B=x2 and x*+.$(t). Exact solutions are 
known for both cases [ 181. For the time-indepen- 
dent harmonic oscillator, one can obtain another 
third-order accurate evolution operator S$ based on 
S,, eq. (9),andS’, eq. (11), i.e. 

&,(A, B) =&(A, B, 2) +O(A”) 3 

S;=Sib4, &A/2) exp(S’ )SIMB, W), 

exp(S’ ) =exp( -13A/6) exp(13B/3) tO(n4) . 

(22) 

Thus for the time-independent harmonic oscillator, 
we shall compare three methods based on S,, S; and 
S3 respectively (table 1). 

For the time-dependent harmonic’oscillator, S;, 
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Table 1 
Maximum errors in time-independent (V(x) =x2) solution 
v/(x,t)=p(x)exp[i~(t)]~ -7n<x<7x.CPUsecondsinparen- 
theses; t= 600 ( 2 100 cycles) 

At=0.03 
P(X) 
O(t) 

Ak0.08 
P(X) 
@(t) 

S* s; s, 

0.85X 10-Z 0.84x10-5 0.25 x lo-’ 
0.32x 10-l 0.55x low 0.11x10-’ 
(405) (904) (1164) 

0.93x 10-l 0.31 x10-’ 0.11x10-* 
0.23 0.13x10-2 0.47x 10-z 
(157) (345) (443) 

Table 2 
Maximum errors in time-dependent (V(x, t) =x2+x sin I) so- 
lution v(x, t)=p(x, t)exp[i$(x, t)]; -7rr6xG7n. CPU sec- 
onds in parentheses; t= 600 ( z 100 cycles) 

At=O.Ol 
p(4t) 
ti(.? I) 

& s3 

0.28X 10-l 0.23x lo-’ 
0.16x10-’ 0.13x 1o-2 
(1259) (3404) 

AtzO.03 
p(x,t) 
B(x, f) 

0.25x 10-l 0.84x 1O-4 
0.14 0.11x 10-l 
(440) (1180) 

eq. (22) is no longer valid due to noncommutativity 
ofH(t)=AtBatdifferenttimes [12].Thusonly& 
and S, algorithms can be compared (table 2). The 
numerical calculations were performed by iterating 
the successive exponentials in S,, S,, S;. The kinetic 
operator A= - &*/ax’ was calculated by fast Four- 
ier transform techniques. These are most convenient 
due to the well behaved properties of the potentials 
V(x), V(x, t) and functions y(x, t). Spectral meth- 
ods are known to have, in principle, infinite order 
accuracy in the space discretization (x) for smooth 
solutions [ 191. 

For computational purposes, functions v/(x, t) 
based on the evolution operators S2, S, and S; were 
calculated for the time-independent harmonic oscil- 
lator (o=$) (table 1) and the same oscillator 
perturbed by a sinusoidal potential V( x, t) =xsin t, 
i.e. with frequency oo= 1 (table 2). The initial con- 

ditions were chosen to be the ground state: 
v(x,~)=v~/,=~(x)=($ /x)1’4exp(-x2). Numer- 
ical solutions were compared to the exact solution 
[ 181. For the time-independent problem, I,Y(X, 
t) =p(x) exp[$(t) 1, the amplitudep depends on the 
space coordinate (x) only whereas the phase $ de- 
pends only on time (9=wt/2). In the general case, 
i.e. for time-dependent potentials, both p and @ de- 
pend on x and 1. Tables 1 and 2 present the maxi- 
mum differences between the numerical and exact 
values of the amplitude and phase. All calculations 
were performed on a RISC 6000/model 530 IBM 
workstation ( 10 megaflop performance). Calcula- 
tion times are reported in CPU seconds for such a 
machine. 

A study of tables 1 and 2 shows that the third-or- 
der accurate evolution operator S,, eq. (2 1)) is su- 
perior in accuracy to results obtained with the stan- 
dard second-order operator S,, eq. ( 10). Thus for 
equal computational time (e.g. S,( At= 0.08 ) versus 
S,(At=O.O3), table l), S, gives always better ac- 
curacy in the amplitude by about one order of mag- 
nitude than S, for both time-independent and time- 
dependent problems. In particular, S,, which com- 
pares well with S; , gives more accurate phases (by 
at least one order of magnitude) than S, for the time- 
independent problem. For the time-dependent prob- 
lem, table 2 shows that S3 gives a superior amplitude 
and a slightly better phase than S,. Clearly, phase is 
a very sensitive function of the potential. 

In conclusion, we have shown that the new evo- 
lution operator S,, eq. (21), allows explicit expo- 
nential numerical integration of parabolic partial 
differential equations such as the time-dependent 
Schriidinger equation with third-order accuracy, i.e. 
errors depend on (At)“, where At is the time step. 
For time-independent potentials, the method gives 
more accurate phases than the second-order S,. Since 
bound states and resonances (quasi bound states) 
are strongly dependent on phases [ 14,20 1, this higher 
order evolution operator should serve as a useful tool 
for determining accurate spectra of time-indepen- 
dent systems. The present method is therefore su- 
perior in accuracy over the standard second-order 
algorithms based on S,. We are currently extending 
this new method to the linear coupled equations ( 1) 
which occur in intense field multiphoton electronic 
transitions and to the accompanying Maxwell equa- 
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tion (4) which is a nonlinear equation. 
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