
MATH 337, by T. Lakoba, University of Vermont 15

2 Runge–Kutta methods

2.1 The family of Runge–Kutta methods

In this section, we will introduce a family of increasingly accurate, and time-efficient, methods
called Runge–Kutta methods after two German scientists: a mathematician and physicist Carl
Runge (1856–1927) and a mathematician Martin Kutta (1867–1944).

The Modified Euler and Midpoint methods of the previous section can be written in a form
common to both of these methods:

Yi+1 = Yi + (b1 k1 + b2 k2);
k1 = hf(xi, Yi),
k2 = hf(xi + c2 h, Yi + a21k1);
a21, b1, b2, c2, are some constants.

(2.1)

The choice of indices in these constants will become clear soon. Now, for the Modified Euler,

b1 = b2 =
1

2
, c2 = a21 = 1; (2.2)

while for the Midpoint method (see Questions for self-assessments),

b1 = 0, b2 = 1, c2 = a21 =
1

2
. (2.3)

In general, if we require that method (2.1) have the global error O(h2), we can repeat
the calculations we carried out in Section 1.4 for the Modified Euler method and obtain the
following 3 equations for 4 unknown coefficients a21, b1, b2, c2:

b1 + b2 = 1, c2b2 =
1

2
, a21b2 =

1

2
. (2.4)

Observations:

• Since there are fewer equations than unknowns in (2.4), then there are infinitely many
finite-difference methods whose global error is O(h2).

• One can generalize form (2.1) and seek methods of higher order (i.e. with the global error
of O(hk) with k ≥ 3) as follows:

Yi+1 = Yi + (b1k1 + b2k2 + b3k3 + . . .);
k1 = hf(xi, Yi),
k2 = hf(xi + c2h, Yi + a21k1),
k3 = hf(xi + c3h, Yi + a31k1 + a32k2),
etc.

(2.5)

This family of methods is called the Runge–Kutta (RK) methods. The quantities k1, . . . ks
are called stages. (Hence, an s-stage RK method requires s function evaluations.)

• In the above notations, one would always have c1 = 0. There is a more general, than
(2.5), form of the Runge–Kutta methods, where this is not necessarily so. This form will
be mentioned in Lecture 4.

• A neat, and conventional in the field of Numerical Analysis, arrangement of coefficients
amn, bm, cm is presented in Appendix 1 to this Lecture; see Section 2.3.

MATH 337, by T. Lakoba, University of Vermont 16

For example, if one looks for 4th-order methods, one obtains 11 equations for 13 coefficients.
Again, this says that there are infinitely many 4th-order methods. Historically, the most popular
such method has been

Yi+1 = Yi +
1

6
(k1 + 2k2 + 2k3 + k4);

k1 = hf(xi, Yi),

k2 = hf

(
xi +

1

2
h, Yi +

1

2
k1

)
,

k3 = hf

(
xi +

1

2
h, Yi +

1

2
k2

)
,

k4 = hf (xi + h, Yi + k3) .

(2.6)

We will refer to this as the classical Runge–Kutta (cRK) method.
The table below compares the time-efficiency of the cRK and Modified Euler methods and

shows that the former method is much more efficient.

Method Global error # of function evaluations
per step

cRK O(h4) 4

Modified Euler O(h2) 2

One of the reasons why the cRK method is so popular is that the number, s, of stages k1,
. . . ks (which always equals the number of function evaluations) per step in it equals the order
of the method. It is known that RK methods of order n ≥ 5 require more than n function
evaluations; i.e. they are less efficient than the cRK and other lower-order RK methods. For
example, a 5th-order RK method would require a minimum of 6 function evaluations per step.

2.2 Adaptive methods: Controlling step size for given accuracy

In this subsection, we discuss an important question of how the error of the numerical solution
can be controlled and/or kept within a prescribed bound. A more complete and thorough
discussion of this issue can be found in a paper by L.F. Shampine, “Error estimation and
control for ODEs,” SIAM J. of Scientific Computing, 25, 3–16 (2005). A preprint of this paper
is available on the course website.

To begin, we emphasize two important points about error control algorithms.

1. These algorithms control the local truncation error, and not the global error, of the solu-
tion. Indeed, the only way to control the global error is to run the simulations more than
once. For example, one can run a simulation with the step h and then repeat it with the
step h/2 to verify that the difference between the two solutions is within a prescribed
accuracy. Although this can be done occasionally (for example, when confirming a key
result of one’s paper), it is too time-expensive to do so routinely. Therefore, the error
control algorithms make sure that the local error at each step is less than a given tolerance
(which is in some way related to the prescribed global accuracy), and then just let the
user hope that the global accuracy is met. Fortunately, this hope comes true in most
cases; but see the aforementioned paper for possible problematic cases.

MATH 337, by T. Lakoba, University of Vermont 17

2. The goal of the error control is not only to control the error but also to optimize the
step size used to obtain different portions of the solution. For example, if it is found
that the solution changes very smoothly on a subinterval Ismooth of the computational
interval, then the step size on Ismooth can be taken sufficiently large. On the contrary,
if one detects that the solution changes rapidly on another interval, Irapid, then the step
size there should be decreased.

Methods where both the solution and its error are evaluated at each step of the calculation
are called adaptive methods. They are most useful in problems with abruptly (or rapidly)
changing coefficients. One simple example of such a problem is the motion of a skydiver: the
air resistance changes abruptly at the moment the parachute opens. This will be discussed in
more detail in the homework.

To present the idea of the algorithm used by adaptive methods, assume for the moment that
we know the exact solution yi. Let εglob be the maximum desired global error and n be the order
of the method. Then the actual local truncation error must be O(hn+1), or chn+1 + O(hn+2)
with some constant c. Since the maximum allowed local truncation error, εloc , is not prescribed,
it has to be postulated in some plausible manner. The common choice is to take εloc = hεglob.

Then, the steps of the algorithm of an adaptive method are as follows.

1. At each xi, compute the actual local truncation error ϵi = |yi − Yi| and compare it with
εloc. (The practical implementation of this step is described later.)

2a. If ϵi < εloc, then accept the solution, multiply the step size by κ(εloc/ϵi)
1/(n+1), (where

κ is some numerical coefficient less than 1), and proceed to the next step.
2b. If ϵi > εloc, then multiply the step size by κ(εloc/ϵi)

1/(n+1), re-calculate the solution,
and check the error. If the actual error is acceptable, proceed to the next step. If not, repeat
this step again.

Note that with the above step size adjustment, the error at the next step is expected to be
approximately

c

(
h · κ

(
εloc
ϵi

)1/(n+1)
)n+1

= εlocκ
n+1 ch

n+1

ϵi
≈ εlocκ

n+1 .

The coefficient κ < 1 (say, κ = 0.9) is included to avoid the situation where the computed error
just slightly exceeds the allowed bound, which would be acceptable to a human, but the com-
puter will have to recalculate the entire step, thereby wasting expensive function evaluations.

Now, in reality, the exact solution of the ODE is not known. Then one can use the following
trick. Suppose the numerical method we use is of sufficiently high order (e.g., the order 4 of the
cRK method is sufficiently high for all practical purposes). Then we can compute the solution

Y h
i with the step size h and at each step compare it with the solution Y

h/2
i , obtained with the

step size being halved. For example, for the cRK method is of fourth order, and hence Y
h/2
i

should be closer to the exact solution than Y h
i is by about 24 = 16 times. Then one can declare

Y
h/2
i to be the exact solution, compute ϵ̃i = |Y h/2

i − Y h
i |, and use ϵ̃i in place of the ϵi above.

1

However, this way is very inefficient. For example, for the cRK method, it would require 7

additional function evaluations per step (needed to advance Y h/2 from xi to xi+1). Therefore,

1Note that even though ϵ̃i appears to be defined as the global error (because Y
h/2
i is used in place of the

exact solution), it is actually the local truncation error. This is because at each step, we start from the “exact”

solution Y
h/2
i rather than using the previous approximations Y h

i .

MATH 337, by T. Lakoba, University of Vermont 18

people have designed alternative approaches to control the error size. Below we briefly describe
the ideas behind two such approaches.

Runge–Kutta–Fehlberg method2

Idea: Design a 5th-order method that would share some of the function evaluations with
a 4th-order method. The solution Y

[5]
i , obtained using the 5th-order method, is expected to

be much more accurate than the solution Y
[4]
i , obtained using the 4th-order method. Then we

declare ϵ̃i = |Y [5]
i −Y

[4]
i | to be the local truncation error3 and adjust the step size based on that

error relative to the allowed tolerance.

Implementation:

Y
[4]
i+1 = Yi +

(
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5

)
,

Y
[5]
i+1 = Yi +

(
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6

)
;

k1 = hf(xi, Yi),

k2 = hf

(
xi +

1

4
h, Yi +

1

4
k1

)
,

k3 = hf

(
xi +

3

8
h, Yi +

3

32
k1 +

9

32
k2

)
,

k4 = hf

(
xi +

12

13
h, Yi +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3

)
,

k5 = hf

(
xi + h, Yi +

439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

)
,

k6 = hf

(
xi +

1

2
h, Yi −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)
,

where Yi = Y
[5]
i .

(2.7)

Altogether, there are only 6 function evaluations per step, because the 4th- and 5th-order
methods share 5 function evaluations (one of them is for finding k2, which does not explicitly

enter the expressions for Y
[4]
i and Y

[5]
i but is used in the evaluation of k3). The RK-Fehlberg

method is an instance of an embedded method, because it embeds the computation of the 4th-
order solution into the computation of a higher- — 5th- — order solution.

Runge–Kutta–Merson method

Idea: For certain choices of the auxiliary functions k1, k2, etc., the local truncation error
of, say, a 4th order RK method can be made equal to C5h

5y(5)(xi) + O(h6) with some known
coefficient C5. (Note that this local truncation error is proportional to the (n+1)-st derivative
of the solution, where n is the order of the method. We observed a similar situation earlier
for the simple Euler method; see Eq. (1.3).) On the other hand, a certain linear combination
of the k’s can also be chosen to equal C5h

5y(5)(xi) + O(h6) for a certain class of functions
(namely, for linear functions: f(x, y) = a(x) + b · y, where b = const). Thus, we can obtain

2It is interesting to note that while the cRK method was developed in early 1900’s, its extension by Fehlberg
was proposed only in 1970.

3Just as in the footnote on the previous page, this implies that as the initial value at each step, here one

uses the more accurate of the two solutions, Y
[5]
i .

MATH 337, by T. Lakoba, University of Vermont 19

both an approximate solution and an estimate for its error. We can then use that estimate to
adjust the step size so as to always make the (estimate for the) local truncation error below a
prescribed maximum value.

For example, if one computes the solution Yi using the cRK method and then, in addition,
evaluates

k5 = hf

(
xi +

3

4
h, Yi +

1

32
[5k1 + 7k2 + 13k3 − k4]

)
, (2.8)

then it can be shown (with a great deal of algebra) that

Local truncation error ∼ 2

3
h (−k1 + 3k2 + 3k3 + 3k4 − 8k5) +O(h6) . (2.9)

Here the sign ‘∼’ is used instead of the ‘=’ because the equality holds only for f(x, y) =
a(x)+b·y, where b = const. Thus, again, by evaluating function f just one extra time compared
to the cRK method, one obtains both the numerical solution and a crude estimate for its error.
Then this error estimate can be used as the actual error ϵi in the algorithm of the corresponding
adaptive method.

Implementation: More popular than the method described by (2.8) and (2.9), however, is
another method based on the same idea and called the Runge–Kutta–Merson method:

Yi+1 = Yi +
1

6
(k1 + 4k4 + k5);

k1 = hf(xi, Yi),

k2 = hf

(
xi +

1

3
h, Yi +

1

3
k1

)
,

k3 = hf

(
xi +

1

3
h, Yi +

1

6
(k1 + k2)

)
,

k4 = hf

(
xi +

1

2
h, Yi +

1

8
(k1 + 3k3)

)
,

k5 = hf

(
xi + h, Yi +

1

2
(k1 − 3k3 + 4k4)

)
,

Local truncation error ∼ 1
30
(2k1 − 9k3 + 8k4 − k5) .

(2.10)

Once again, one should note that the last line above is only a crude estimate for the trun-
cation error (valid only when f(x, y) is a linear function of y). Indeed, if it had been valid for
any f(x, y), then we would have a contradiction with a statement found at the end of Sec. 2.1.
(Which statement is that?)

To conclude this presentation of the adaptive RK methods, we must specify what solution
is taken at xi+1. For example, for the RK–Fehlberg method, we have the choice between setting
Yi+1 to either Y

[4]
i+1 or Y

[5]
i+1. The common sense suggests setting Yi+1 = Y

[5]
i+1, because, after all,

it is Y
[5]
i+1 that we have declared to be our “exact” solution. This choice does work in most

circumstances, although there are important exceptions (see the paper by L. Shampine). Thus,
what the RK–Fehlberg method does is compute a 5th-order-accurate solution while controlling
the error of a less accurate 4-th-order solution related to it.

MATH 337, by T. Lakoba, University of Vermont 20

2.3 Appendix 1: Butcher’s tableau

The coefficients amn, bm, cm in (2.5) can be arranged in a matrix and vectors with respective
entries. For example, for the Modified Euler method, one has (compare with Eqs. (2.2)):

A ≡
(

a11 a12
a21 a22

)
=

(
0 0
1 0

)
, b ≡

(
b1
b2

)
=

(
1/2
1/2

)
, c ≡

(
c1
c2

)
=

(
0
1

)
.

(2.11)
Similarly, for the Midpoint method, one has:

A =

(
0 0
1/2 0

)
, b =

(
0
1

)
, c =

(
0
1/2

)
. (2.12)

In advanced texts on Numerical Analysis, it is common to present a RK scheme by presenting
its Butcher tableau,4 which is just a certain way to display matrix A and vectors b and c. The
form of the Butcher tableau is this:

c A

bT
(2.13)

where bT is the row made by transposing the column vector b. For example, the Butcher
tableau for the Midpoint method would usually be listed as:

0
1
2

1
2

0 1

(2.14)

Note that the convention is to not list zeros in the A matrix, leaving blank spaces where zeros
are supposed to be. Zeros, however, are explicitly shown in the b and c vectors.

You may legitimately wonder if it is ever possible to have c1 ̸= 0 or to have the first row
of matrix A, i.e. entries a11, a12, etc., nonzero. Indeed, in the latter case, the second line in
Eqs. (2.5) would read:

k1 = h f(xi, Yi + a11k1 + a12k2) ; (2.15)

then, how would it be possible to find the k1 on the left hand side if one needs the very same
quantity on the right hand side, not to mention a yet unknown k2? It turns out that methods
with c1 ̸= 0 and a1n ̸= 0 do, actually, exist. They are called implicit RK methods and have
a certain advantage over the explicit RK methods considered in this Lecture. We will learn
about this advantage (albeit for a slightly different method) in Lecture 4. (Of course, implicit
RK methods also have the disadvantage mentioned earlier in this paragraph.)

2.4 Appendix 2: Computing the solution at intermediate points

In some applications, one wants to know the solution not only at the grid points xi = x0+(i−1)h,
but also at some points xi,θ = xi + θh ∈ (xi, xi+1), 0 < θ < 1, between grid points. A
generalization of RK methods that allows one to perform such computations efficiently is called
Dense output methods. Its basic idea is somewhat similar to that of the embedded methods
(of which the RK–Fehlberg method is an example). Namely, given an s-stage, n-th order (i.e.,

4Named after J.C. Butcher, a numerical analyst from New Zealand, who contributed significantly in the
development of the theory of Runge–Kutta methods.

MATH 337, by T. Lakoba, University of Vermont 21

with local truncation error O(hn+1)) RK method with stages k1,. . . ,ks, one seeks a related dense
output method in the form:

Yi,θ = Yi +
s∗∑
i=1

bi(θ) ki with some coefficients bi(θ). (2.16)

If the local error of Yi,θ is required to also be O(hn+1) (as opposed to being of a lower order),
then one needs to have s∗ ≥ s + 1; i.e., a dense output method requires more stages than the
original RK method with the same order of local error. However, stages k1,. . . ,ks of the original
method can be designed to be embedded into the stages k1,. . . ,ks∗ of the dense output method;
therefore, the number of extra function evaluations can be made small.

More details can be found, e.g., in the book by E. Hairer, S.P. Nørsett, G. Wanner, “Solving
Ordinary Differential Equations I (Nonstiff problems),” 2nd Ed., Springer, 1993, Sec. II.6.

2.5 Questions for self-assessment

1. Verify the statements about Eqs. (2.2) and (2.3) made at the beginning of Section 2.1.
For example, for the Modified Euler, begin by comparing the first line in (2.1) with the
last line of Eq. (1.22) in Lecture 1. This, along with the definition of k1 in (2.1), will
tell you what b1 and b2 are. The value of c2 should easily follow from comparison of the
last line of (1.22) and third line in (2.1). Finally, comparison of the latter line with the
second line of (1.22) should tell you what a21 is. Do not forget to repeat this process for
the Midpoint method.

2. List the 13 coefficients mentioned in the paragraph after Eq. (2.5). Do not write the 11
equations.

3. If the step size is reduced by a factor of 2, how much will the error of the cRK and the
Modified Euler methods be reduced? Which of these methods is more accurate?

4. Suppose f = f(x) (on the r.h.s. of the ODE); that is, f does not depend on y but only
on x. What numerical integration method (studied in Calculus 2) does the cRK method
reduce to? [Hint: Rewrite Eq. (2.6) for f = f(x).]

5. List the 7 function evaluations mentioned in the paragraph before the title
‘Runge–Kutta–Fehlberg method’.

6. Describe the idea behind the Runge–Kutta–Fehlberg method.

7. Describe the idea behind the Runge–Kutta–Merson method.

8. Which statement is meant in the paragraph following Eq. (2.10)?

9. Is the Runge–Kutta–Merson an embedded method? (You do not need to understand the
mechanics of this method to answer this question. All you need is to compare Eq. (2.10)
with the definition of an embedded method, found earlier in these notes.)

10. One of the built-in ODE solvers in MATLAB is called ode45 . What do you think the
origin of this name is? Without reading the description of this solver under MATLAB’s
help browser, can you guess what order this method is?

11. Write the Butcher tableau for the Modified Euler method.

