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4 Stability analysis of finite-difference methods for ODEs

4.1 Consistency, stability, and convergence of a numerical method;
Main Theorem

In this Lecture and also in Lecture 8, we will need a notation for the norm. For any sequence
of numbers {an}, let

||a||∞ = max
n

|an| . (4.1)

This norm is called the “L∞-norm” of the sequence {an}. There exist other kinds of norms,
each of which is useful in its own circumstances. In this course, we will only deal with the
L∞-norm, and therefore we will simply denote it by ||a||, dropping the subscript “∞”. The
reason we are interested in this particular norm is that at the end of the day, we want to know
that the maximum error of our numerical solution is bounded by some tolerance εtol:

max
n

|ϵn| ≤ εtol, or ||ϵ|| ≤ εtol . (4.2)

We now return to the main subject of this section.

Recall that the main goal of a numerical method when solving an IVP

y′ = f(x, y), y(x0) = y0. (4.3)

is to assure that the numerical solution Yn closely matches the analytical solution y(xn)
15. In

other words, the global error of the numerical solution must be acceptably small. Ideally, one
also hopes that as one decreases the step size, the numerical solution approaches the analytical
solution closer and closer. Consequently, one makes the following definition.

Definition 1: A numerical method is called convergent if its global error computed up to
a given x satisfies:

lim
h→0

||ϵ|| ≡ lim
h→0

∥y − Y ∥ = lim
h→0

max
n

|yn − Yn| = 0 . (4.4)

Note that when taking the limit h → 0, the length (x − x0) of the computational interval is
taken as fixed.

Let us note, in passing, that Definition 1 tacitly implies that the numerical solution Yn is
computed with no round-off (i.e., machine) error. Indeed, if a round-off error is present, the
global error may increase, instead of decrease, as h gets too small: see the figure in Sec. 1.3 of
Lecture 1.

Below we will show that for a numerical method to be convergent, it needs to
satisfy two conditions. One of these conditions we know already:

• The numerical scheme must match the original ODE closer and closer as h → 0.

Let us express this fact in a more formal way using the simple Euler method as an example.
The numerical solution of (4.3) by that method satisfies:

Yn+1 − Yn

h
− f(xn, Yn) = 0 . (4.5)

Denote the l.h.s. of (4.5) as F [Yn, h]; then that equation can be rewritten as

F [Yn, h] = 0 . (4.6)

15In this and in all subsequent Lectures, we abandon the subscript i in favor of n, because we want to reserve
i for the

√
−1.
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(In general, any numerical method can be written in the form (4.6).) When one substitutes
into (4.6) the exact solution y(xn) of the ODE, one obtains:

F [yn, h] = τn . (4.7)

In Lecture 1, we called τn the discretization error and hτn, the local truncation error. Recall
that the local truncation error shows how close the numerical and exact solutions are after one
step, provided that they start at the same initial value. On the other hand, the discretization
error τn shows how closely the exact solution satisfies the numerical scheme. Equivalently, it
shows how closely the numerical scheme matches the original differential equation (4.3). This
motivates our next definition.

Definition 2: A numerical method F [Yn, h] = 0 is called consistent if

lim
h→0

||τ || = 0, (4.8)

where τn is defined by Eq. (4.7). According to the interpretation of the discretization error
stated after that equation, any consistent numerical method closely matches the original differ-
ential equation when the step size h is sufficiently small. Note that any method of order l > 0
is consistent because τn = O(hl).

To motivate the second condition (of the two mentioned after Definition 1), we pose a
question: What should one require of a consistent method in order for it to be convergent?
We will answer it in Theorem 4.1 below, but let us first explain why a consistent method may
fail to converge. Consider a numerical scheme of the form (4.6). Let its ideal solution, computed
without the round-off error, be Yn. Let its actual solution, computed with a round-off error, be
Un. That is, Un satisfies

F [Un, h] = ξn , (4.9)

where ξn is a small number that arises due to the round-off error. Since the round-off error is
small, than at early stages of the computation, Yn and Un are close to one another. Intuitively,
we expect Yn and Un to remain close throughout the computation.16 However, due to certain
behavior of the numerical method, these initially close solutions may eventually move far apart.
(How this can occur will be explained starting in Sec. 4.3; for now, just accept on faith that this
can indeed occur.) Such divergence between the two numerical solutions is intuitively unsatis-
factory. Indeed, one cannot guarantee the absence of tiny perturbations during calculation on a
computer, and yet one desires that such perturbations would not affect the numerical solution
in any significant way. These considerations motivate yet another definition.

Definition 3: Consider an IVP

y′ = λy, Reλ < 0; y(x0) = y0. (4.10)

Let Yn and Un be its numerical solutions defined as in the previous paragraph. The numerical
method is called stable if

||U − Y || ≤ C||ξ|| , (4.11)

where the constant C may depend on x (the length of the computational interval) but is required
to be independent of h. That is, for a stable method, the deviation between two numerical
solutions arising, e.g., due to the round-off error, does not grow with the number of steps.

16Otherwise, we would have extreme sensitivity of our computation to an unphysical cause, such as the
round-off error, and such a sensitive computation without a physical reason cannot describe the “reality”.
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Definition 3 imposes an important restriction on the class of equations to which it can be
applied. We will discuss this in detail in the next section. In the remainder of this section, we
will state, and outline the proof of, the main theorem of numerical analysis.

Theorem 4.1 (P. Lax):
If for an IVP (4.10) a method is both consistent and stable, then it converges. In short:

Consistency + Stability ⇒ Convergence

Remark: Note that all three properties of the method: consistency, stability, and convergence,
must be defined with respect to the same norm (in this course, we are using only one kind of
norm, so that is not an issue anyway).

The idea of the Proof: Consistency of the method means that the local truncation error
at each step, hτn, is sufficiently small so that the accumulated (i.e., global) error, which is on
the order of τn, tends to zero as h is decreased (see (4.8)). Thus:

Consistency ⇒ ∥y − Y ∥ is small, (4.12)

where, as above, Y is the ideal solution of the numerical scheme (4.6) obtained in the absence
of machine round-off errors and any errors in initial conditions.

Stability of the method means that if at any given step, the actual solution Un slightly
deviates from the ideal solution Yn due to the round-off error, then this deviation remains small
and does not grow as n increases. Thus:

Stability ⇒ ∥Y − U∥ is small. (4.13)

Equations (4.12) and (4.13) together imply that the maximum difference between the actual
computed solution un and the exact solution yn also remains small. Indeed:

∥y − U∥ = ∥(y − Y ) + (Y − U)∥ ≤ ∥(y − Y )∥+ ∥(Y − U)∥, (4.14)

which must be small because each term on the r.h.s. is small. The fact that the l.h.s. of the
above equation is small means, by Definition 1, that the method is convergent. q.e.d.

4.2 Setup for the stability analysis: the model equation

Let us first explain why we needed to restrict Definition 3 to IVPs (4.10). Suppose for a moment
that in that equation, one takes λ > 0 instead of Reλ < 0. Then any two analytical solutions
of such an equation that initially differ by a small amount δ, will eventually be separated
by δ exp[λx], which may no longer be small for a sufficiently large x. Consequently, one
cannot expect that any two numerical solutions, which are supposed to follow the behavior
of the analytical ones, will stay close as required by (4.11). On the other hand, for λ < 0,
the “distance” between two analytical solutions of (4.10) decreases, and the same behavior is
expected from its numerical solutions. Hence the requirement “Reλ < 0” in (4.10).

In the remainder of this Lecture and also in Lecture 5, we will study stability of numerical
methods applied to the model equation

y′ = λy, (4.15)

which differs from (4.10) only in that we have dropped the restriction on λ.
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We will find that some of the methods are stable as per (4.11) even for Reλ > 0 in (4.15).
Let us note that this is not necessarily a good feature of the method; we will discuss this in
more detail in Lecture 5. A good method must have only one property: be convergent.
This depends not only on the method itself, but also on the equation to which it
is applied. Again, more detail on this will follow in Lecture 5.

Let us now explain why the simple linear equation (4.15) is relevant for predicting stability
of solutions of the ODE in (4.3) with a general, i.e., possibly nonlinear, function f(x, y). Recall
that we defined stability in regards to the deviation between two initially close numerical
solutions. Since numerical solutions are supposed to match analytical ones, we may as well
discuss stability of the latter. So, consider two analytical solutions y(x) and u(x) that are close
to each other. Their difference satisfies:

(y − u)′ = f(x, y)− f(x, u) ≈ fy(x, y) (y − u) . (4.16)

Locally, i.e. near any given “point” (x, y), the coefficient fy can be approximated by a constant,
and then the equation for (y− u) takes on the form (4.15). In other words, the model problem
(4.15) is the local linear approximation (also known as a linearization) of (4.3). One performs
stability analysis for the linear model problem (4.15) rather than for the ODE in Eq. (4.3)
because the former equation is simpler.

It is worth restating the main point of the previous paragraph while making a slightly
different emphasis: The stability of a numerical method depends on the problem
which it is applied to. Indeed, to decide whether the method at hand is going to be stable
for a given IVP (4.3), one should perform a linearization of the ODE as in (4.16). Then the
range of values of λ in the model problem (4.15) is just the range of values of fy in (4.16).
Depending on the specific value of λ, the numerical method applied to (4.15) may be stable or
unstable. We will discuss this further in Lecture 5.

Incidentally, note that if in (4.3), f(x, y) = a(x)y, i.e. if the original ODE is linear, then
the model equation (4.15) coincides with it. In such a case, the difference between any two of
its solutions satisfies exactly the same ODE as the solution itself.

Finally, let us note that the (global) numerical error ϵn, even if it is small, does not satisfy
the linear model equation (4.15). This is because an equation for the evolution of the global
error is similar to (4.16) but has an additional driving term on the r.h.s., which arises from the
local truncation error at each step:

ϵ′(x) “ = ” fy(x, y) · ϵ(x) +

{
driving terms due to
local truncation error

}
. (4.17)

(Here the equation sign is taken in quotes because we have approximated the evolution of the
discrete quantity ϵn with that of the continous one, ϵ(x).) If the numerical method is unstable,
both the solution of the model problem (4.15) and the numerical error will increase as the
computation proceeds. However, for a stable numerical method, one can encounter situations
where the numerical solution of (4.10) decays (as by definition it does for a stable method),
but the global error tends to a constant. You will see such an example in HW 5.

4.3 Stability analyses of some familiar numerical methods

Below we present stability criteria for the numerical methods we have studied in the preceding
Lectures for the model problem (4.15).
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We begin with the simple Euler method. Applying scheme (4.5) to (4.15), we obtain:

Yn+1 = Yn + λhYn , ⇒ Yn = Y0(1 + λh)n . (4.18)

To get a better idea what can “go wrong” with this scheme, let us assume for the moment that
λ < 0. (Recall that more generally, in Definition 3, we require Reλ < 0.) For λ < 0, the true
solution y0e

λx of (4.10) decreases, but the numerical solution (4.18) will decrease only if

|1 + hλ| < 1 ⇒ −1 < 1 + hλ < 1 ⇒ h <
2

|λ|
. (4.19)

E.g., to solve y′ = −30y (with any initial condition), we must use h < 2/30 in order to guarantee
that the round-off and truncation errors will decay.

Thus, for the model problem (4.15) with λ < 0, the simple Euler method is stable only when
the step size satisfies Eq. (4.19). This conditional stability is referred to as partial stability;
thus, the simple Euler method is partially stable.

For the general case where λ is a complex number, partial stability is defined as below.

Definition 4: A method is called partially stable if, when applied to the model problem
(4.15) with Reλ < 0, the corresponding numerical solution is stable only for some values of λh.
The region in the λh-plane where the method is stable is called the region of stability of the
method.

Let us find the region of stability of the simple Euler method. To this end, write λ as the
sum of its real and imaginary parts: λ = λR + iλI (note that here and below i =

√
−1). Then

the first of the inequalities in (4.19) becomes

|1 + hλR + ihλI | < 1 ⇒√
(1 + hλR)2 + (hλI)2 < 1 . (4.20)

Thus, the region of stability of the simple Euler
method is the inside of the circle

(1 + hλR)
2 + (hλI)

2 = 1,

as shown in the figure on the right.

Stability region for simple Euler method

−2 

hλ
I
 

hλ
R

We now present brief details about the region of stability for the Modified Euler method.
In a homework problem, you will be asked to supply the missing details.

Substituting the ODE from (4.15) into Eqs. (1.22) (see Lecture 1), we find that

Yn+1 =
(
1 + hλ+

1

2
(hλ)2

)
Yn . (4.21)

Remark 1: Note that the factor on the r.h.s. of (4.21) is quite expected: Since the Modified
Euler is the 2nd-order method, it makes sense that its solution of the model problem (4.15)
turned out to be the 2nd-degree polynomial that approximates the exponential in the exact
solution yn+1 = yne

λh.
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Remark 2: The factor relating solutions Yn and Yn+1 at two consecutive steps is called the
amplification factor of the scheme. We will denote it by ρ. Thus, for methods like simple and
Modified Euler, and for RK methods of Lecture 2 in general, one has:

Yn+1 = ρ
(
hλ

)
Yn . (4.21′)

For example, for (4.21), ρ =
(
1 + hλ+ 1

2
(hλ)2

)
.

Remark 3: Returning to the point made in Remark 1, we note that the amplification factor
of a RK method of order m does not have to be exactly equal to the m-order Taylor polynomial
of exp[λh]. Rather, it has to coincide with such a polynomial up to terms of order O

(
(hλ)2

)
.

A more general formula for ρ
(
hλ

)
for RK methods is derived in Appendix.

The boundary of the stability region is obtained
by setting the modulus of the factor on the r.h.s.
of (4.21) to 1:∣∣∣∣1 + hλ+

1

2
(hλ)2)

∣∣∣∣ = 1.

Indeed, if the factor on the l.h.s. is less than 1,
all errors will decay, and if it is greater than 1,
they will grow, even though the exact solution may
decay.
The above equation can be equivalently written as

Stability region for Modified Euler method

−2 

hλ
I
 

hλ
R

(
1 + hλR +

1

2

(
(hλR)

2 − (hλI)
2
))2

+ (hλI + h2λIλR)
2 = 1 . (4.22)

The corresponding region is shown above.

When the cRK method is applied to the model problem (4.15), the corresponding stability
criterion becomes ∣∣∣∣∣

4∑
k=0

(hλ)k

k!

∣∣∣∣∣ ≤ 1 . (4.23)

The expression on the l.h.s. is the fourth-degree polynomial approximating eλh; this is consistent
with the Remark made after Eq. (4.21).

For real λ, criterion (4.23) reduces to

−2.79 ≤ hλ ≤ 0 . (4.24)

Note that the cRK method is not only more accurate than the simple and Modified Euler
methods, but also has a greater stability region for negative real values of λ.

4.4 Stability analysis of multistep methods

We begin with the 2nd-order Adams–Bashforth method (3.5):

Yn+1 = Yn + h

(
3

2
fn −

1

2
fn−1

)
. (3.5)
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Substituting the model ODE (4.15) into that equation, one obtains

Yn+1 −
(
1 +

3

2
λh

)
Yn +

1

2
λhYn−1 = 0 . (4.25)

To solve this difference equation, we use the same procedure as we would use to solve a linear
ODE. Namely, for the ODE

y′′ + a1y
′ + a0y = 0

with constant coefficients a1, a0, we need to substitute the ansatz17 y = erx, which yields the
following polynomial equation for r:

r2 + a1r + a0 = 0 .

Similarly, for the difference equation (4.25), we substitute Yn = ρn. Here ρ has the same meaning
of the amplification factor as defined in Remark 2 in Section 4.3. Upon this substitution and
subsequent cancelling all terms in (4.25) by the common factor ρn−1, one obtains:

ρ2 −
(
1 +

3

2
λh

)
ρ+

1

2
λh = 0 . (4.26)

This quadratic equation has two roots:

ρ1 =
1

2


(
1 +

3

2
λh

)
+

√(
1 +

3

2
λh

)2

− 2λh

 ,

ρ2 =
1

2


(
1 +

3

2
λh

)
−

√(
1 +

3

2
λh

)2

− 2λh

 .

(4.27)

In the limit of h → 0 (which is the limit where the difference method (4.25) reduces to the
ODE (4.15)), one can use the Taylor expansion (and, in particular, the formula

√
1 + α =

1 + 1
2
α +O(α2) ), to obtain the asymptotic forms of ρ1 and ρ2:

ρ1 ≈ 1 + λh, ρ2 ≈
1

2
λh . (4.28)

The solution Yn that corresponds to root ρ1 turns, in the limit h → 0, into the true solution of
the ODE y′ = λy, because

lim
h→0

ρn1 = lim
h→0

(1 + λh)n = lim
h→0

(1 + λh)x/h = eλx ; (4.29)

see Sec. 0.5. However, the solution of the difference method (4.25) corresponding to root ρ2
does not correspond to any actual solution of the ODE ! For that reason, root ρ2 and the
corresponding difference solution ρn2 are called parasitic.

The role of a parasitic root is that it gives rise to a contribution that contaminates the
numerical solution in a way different than does the local truncation error, discussed in Lecture
1 and later. Namely, by the linear superposition principle, which applies to linear difference
equations just like it does to linear differential equations, one can write the general solution of
Eq. (4.25) as:

Yn = c1ρ
n
1 + c2ρ

n
2 , (4.30)

17This is a German word meaning, approximately, a template.
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with some constants c1 and c2 (which depend on Y0 and Y1). In order for the numerical solution
to remain close to the true solution (4.29), the parasitic-solution ρ2-term must remain small
compared to the true-solution ρ1-term for all n.

A good thing about the parasitic solution for the 2nd-order Adams–Bashforth method is that
it does not grow for sufficiently small λh. In fact, since for sufficiently small h, ρ2 ≈ 1

2
λh < 1,

then that parasitic solution decays to zero rather rapidly and therefore does not contaminate
the numerical solution.

To require that the 2nd-order Adams–Bashforth
method be stable is equivalent to requiring that
both ρ1 and ρ2 satisfy

|ρ1| ≤ 1 and |ρ2| ≤ 1 . (4.31)

The stability region is inside the oval-shaped re-
gion shown on the right (the little “horns” are the
plotting artifice). This figure is produced by Math-
ematica; in a homework problem, you will be asked
to obtain this figure on your own.
A curious point to note is that the two require-
ments, |ρ1| ≤ 1 and |ρ2| ≤ 1, produce two non-
overlapping parts of the stability region boundary
(its right-hand and left-hand parts, respectively).

Stability region of 2nd-order
Adams–Bashforth
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A similar analysis for the 3rd-order Adams–
Bashforth method (3.11) shows that the corre-
sponding difference equation has three roots, of
which one (say, ρ1) corresponds to the true solu-
tion of the ODE and the other two (ρ2 and ρ3) are
the parasitic roots. Fortunately, these roots decay
to zero as O(h) for h → 0, so they do not affect
the numerical solution for sufficiently small h. For
finite h, the requirement

|ρ1| ≤ 1, |ρ2| ≤ 1, |ρ3| ≤ 1

results in the stability region whose shape is qual-
itatively shown on the right.

Stability region of 3rd-order
Adams-Bashforth

h λ
r
 

h λ
i
 

−6/11 

From the above consideration of the 2nd- and 3rd-order Adams–Bashforth methods there
follows an observation that is shared by some other families of methods: the more accurate
method has a smaller stability region.

Let us now analyze the stability of the two methods considered in Sec. 3.3.

Leap-frog method

Substituting the model ODE into Eq. (3.20), one obtains

Yn+1 − Yn−1 = 2hλYn . (4.32)
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For Yn = ρn we find:

ρ2 − 2hλρ− 1 = 0 ⇒ ρ1,2 = hλ±
√

1 + (hλ)2 . (4.33)

Considering the limit h → 0, as before, we find:

ρ1 ≈ 1 + hλ, ρ2 ≈ −1 + hλ . (4.34)

Again, as before, the solution of the difference equation with ρ1 corresponds to the solution of
the ODE: ρn1 ≈ (1 + hλ)x/h ≈ eλx. The solution corresponding to root ρ2 is parasitic. The
general solution is a linear superposition of the true and parasitic solutions:

Yn = c1ρ
n
1 + c2ρ

n
2 ≈ c1e

λx + c2(−1)ne−λx , (4.35)

where constants c1 and c2 depend on the two initial points, Y0 and Y1. For a Y1 obtained by
a sufficiently accurate method, these constants are such that initially, the parasitic solution is
much smaller than the true one: |c2| ≪ |c1|, with c1 ≈ Y0. As x increases, the relative size of
the true and parasitic solutions may change. This depends on the sign of λ, as described below.

λ > 0 Then ρ2 = −(1 − hλ), so that |ρ2| < 1, and the parasitic solution decays, whereas
the true solution, (1 + hλ)n ≈ eλx, grows. Thus, the method truthfully reproduces the actual
solution of the differential equation. (Note that even though the numerical solution grows, one
cannot call the numerical method unstable, because by Definition 3 in Sec. 4.1, a method can
be classified as stable or unstable only for λ < 0.)

λ < 0 Then ρ2 = −(1 + h|λ|), so that |ρ2| > 1. We see that in (4.35) the parasitic part
(the second term) of the solution grows, whereas the true solution (the first term) decays; thus,
for a sufficiently large x, the numerical solution will bear no resemblance to the true solution.

The stability region of the Leap-frog method,
shown on the right, is disappointingly small: the
method is stable only for

λR = 0 and − 1 ≤ hλI ≤ 1 . (4.36)

Moreover, since this region consists just of its own
boundary, where |ρ1| = |ρ2| = 1, then the numeri-
cal error will not decay but will maintain (approx-
imately) constant magnitude over time.

Stability region of Leap−frog

hλ
i
 

hλ
r

i 

−i 

Note, however, that this occurs where λR = 0 and hence | exp[λx]| ≡ | exp[iλIx]| = 1, i.e.
where the true solution also does not decay. We will see in Lecture 5 that this coincidence of the
behaviors of the numerical error and the true solution may be beneficial for certain problems.

For problems with λ < 0, the Leap-frog method is unstable. However, this numerical in-
stability is weak, because the parasitic error c2(−1 + hλ)n ≈ c2(−1)n exp[|λ|x] will require
|λ|x > O(1) to overtake the true solution c1(1 + hλ)n ≈ c1 exp[−|λ|x], given that |c2| ≪ |c1|
(see the text after (4.35)). Thus, since the numerical solution will stay close to the true solution
for |λx| ≤ O(1), the Leap-frog method is called weakly unstable.
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Divergent 3rd-order method (3.22)

For the model problem (4.15), that method becomes

Yn+1 +
3

2
Yn − 3Yn−1 +

1

2
Yn−2 = 3hλYn . (4.37)

Proceeding as before, we obtain the characteristic equation for the roots:

ρ3 +

(
3

2
− 3hλ

)
ρ2 − 3ρ+

1

2
= 0 . (4.38)

To consider the limit h → 0, we can simply set h = 0 as the lowest-order approximation. The
cubic equation (4.38) reduces to

ρ3 +
3

2
ρ2 − 3ρ+

1

2
= 0 , (4.39)

which has the roots
ρ1 = 1, ρ2 ≈ −2.69, ρ3 ≈ 0.19 . (4.40)

Then for small h, the numerical solution is

Yn = c1(1 + hλ)n + c2(−2.69 +O(h))n + c3(0.19 +O(h))n

(approximate true (parasitic solution (parasitic solution
solution) that explodes) that decays)

(4.41)

The second term, corresponding to a parasitic solution, grows (in magnitude) much faster than
the term approximating the true solution, and therefore the numerical solution very quickly
becomes complete garbage. This happens much faster than for the Leap-frog method with
λ < 0. Therefore, method (3.22) is called strongly unstable; obviously, it is useless for any
computations.

The above considerations of multistep methods can be summarized as follows. Consider a
multistep method of the general form (3.17). For the model problem (4.15), it becomes

Yn+1 −
M∑
k=0

akYn−k = h
N∑
k=0

bkλYn−k . (4.42)

The first step of its stability analysis is to set h = 0, which will result in the following charac-
teristic polynomial:

ρM+1 −
M∑
k=0

akρ
M−k = 0 . (4.43)

This equation must always have a root ρ1 = 1 which corresponds to the true solution of the
ODE. If any of the other roots, i.e. {ρ2, ρ3, . . . , ρM+1}, satisfies |ρk| > 1, then the method is
strongly unstable. If any root with k ≥ 2 satisfies |ρk| = 1, then the method may be weakly
unstable (like the Leap-frog method). Finally, if all |ρk| < 1 for k = 2, . . . ,M + 1, then the
method is stable for h → 0. It may be either partially stable, as the single-step methods
and Adams–Bashforth methods,18 or absolutely stable, as the implicit methods, that we will
consider next.

18You will be asked to explain why this is so in one of the QSAs.
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4.5 Stability analysis of implicit methods

Consider the implicit Euler method (3.41). For the model problem (4.15) it yields

Yn+1 = Yn + hλYn+1, ⇒ Yn = Y0

(
1

1− hλ

)n

. (4.44)

It can be verified (do it, following the lines of Sec. 0.5) that the r.h.s. of the last equation
reduces for h → 0 to the exact solution y0e

λx, as it should. The stability condition is∣∣∣∣ 1

1− hλ

∣∣∣∣ ≤ 1 ⇒ |1− hλ| ≥ 1 . (4.45)

The boundary of the stability region is the circle

(1− hλR)
2 + (hλI)

2 = 1 ; (4.46)

the stability region is the outside of that circle (see
the second of inequalities (4.45)).

Stability region of implicit Euler

hλ
i
 

hλ
r

Definition 5: If a numerical method, when applied to the model problem (4.15), is stable
for all λ with λR < 0, such a method is called absolutely stable, or A-stable for short.

Thus, we have shown that the implicit Euler method is A-stable.
Similarly, one can show that the Modified implicit Euler method (3.43) is also A-stable (you

will be asked to do so in a homework problem).

Theorem 4.2:
1) No explicit finite-difference method is A-stable.
2) No implicit method of order higher than 2 is A-stable.

Thus, according to Theorem 4.2, implicit methods of order 3 and higher are only partially
stable; however, their regions of stability are usually larger than those of explicit methods of
the same order.

An old but classic reference on stability of numerical methods is the book by P. Henrici,
“Discrete variable methods in ordinary differential equations,” (Wiley, 1968).

4.6 Appendix: Amplification factor of Runge–Kutta methods

As we noted in Sec. 2.3, RK methods can be (and in the professional literature are) described
by Butcher tableau. In its notations, the first equation in (2.5) can be written in the form:

Yn+1 = Yn + bTk, (4.47)

where k ≡ [k1, k2, . . . , ks]
T is the column vector, whose components are the stages, defined

after (2.5). For a general function f(x, y) on the r.h.s. of the ODE, one cannot write an
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equation for the stages in a form more compact than done in (2.5). However, for the model
equation (4.15), it is possible to write a compact equation for k using matrix A from the
Butcher tableau.

To see this, let us first write down this equation for the specific form of (2.5) and then
generalize. Let us denote

z ≡ hλ . (4.48)

Given that f(x, y) = λy, the lines in (2.5) starting with the second one become:

k1 = hλYn

k2 = hλ (Yn + a21k1)
k3 = hλ (Yn + a31k1 + a32k2)

⇒ k = zYn1̂+ zAk ⇒ k = zYn (I − zA)−11̂,

(4.49)
where we have defined the column vector 1̂ ≡ [1, 1, . . . , 1]T , and I is the identity matrix of the
same dimension as A. Combining the last equation with (4.47) one arrives at:

Yn+1 =
(
1 + zbT (I − zA)−11̂

)
Yn . (4.50)

Thus, the amplification factor, defined in (4.21′), is:

ρ(z) =
(
1 + zbT (I − zA)−11̂

)
, (4.51)

where, again, matrix A and vector b of the RK coefficients are defined in Sec. 2.3.

4.7 Questions for self-assessment

1. Explain the meanings of the concepts of consistency, stability, and convergence of a nu-
merical method.

2. State the Lax Theorem.

3. Give the idea behind the proof of the Lax Theorem.

4. Why is the model problem (4.15) relevant to analyze stability of numerical methods?

5. Does the model problem (4.15) predict the behavior of the global error? Give a complete
answer.

6. What is the general procedure of analyzing stability of a numerical method?

7. Obtain Eq. (4.26).

8. Obtain Eq. (4.28).19

9. Why does the characteristic polynomial for the 3rd-order Adams–Bashforth method (3.11)
have exactly 3 roots?

10. Would you use the Leap-frog method to solve the ODE y′ =
√
y + x2 ?

11. Obtain (4.34) from (4.33).

19In the sentence above it, (1 + α) is the expression under the square root in (4.27).
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12. Why is the Leap-frog method called weakly unstable?

13. Why is the method (3.22) called strongly unstable?

14. Are Adams–Bashforth methods always partially stable, or can they be weakly unstable?

Hint: Look at Eq. (4.42) and determine what values a0 through aM are for these methods.
You may review explicit forms of the the 2nd-, 3rd-, and 4th-order Adams-Bashforth
methods in Lecture 3. (You may verify your guess by looking at (3.16).) Next, when
hλ = 0, what are the roots ρ1, ρ2, . . . of Eq. (4.43)? Finally, make an educated guess what
becomes of those roots when 0 < h|λ| ≪ 1.

15. Same question about Runge–Kutta methods.

16. Explain how the second equation in (4.44) follows from the first.

17. Present your opinion on the following issue. When programming any of the explicit
methods, you wrote a Matlab function that could apply that method to an arbitrary
function f(x, y) in the ODE of (4.3). Would you write a Matlab function implementing
the Implicit Euler method is a similar way?

18. Verify the statement made after Eq. (4.44).

19. Obtain (4.47) from (4.45).

20. Is the 3rd-order Adams–Moulton method that you obtained in Homework 3 (problem 3)
A-stable?


