
Error Estimation and Control for ODEs

L.F. Shampine
Mathematics Department

Southern Methodist University
Dallas, TX 75275

lshampin@mail.smu.edu

February 3, 2004

Abstract

This article is about the numerical solution of initial value problems for
systems of ordinary differential equations (ODEs). At first these problems
were solved with a fixed method and constant step size, but nowadays the
general-purpose codes vary the step size, and possibly the method, as the
integration proceeds. Estimating and controlling some measure of error
by variation of step size/method inspires some confidence in the numerical
solution and makes possible the solution of hard problems. Common ways
of doing this are explained briefly in the article.

Running Title: Error Estimation
Key Words: ODE, IVP, error estimation, error control

1 Introduction

We consider the numerical solution of initial value problems (IVPs) for ordinary
differential equations (ODEs). It is convenient in both theory and practice to
write the ODEs as a system of first order equations

y′(t) = f(t, y(t)) (1)

For given initial value y(a), we want to approximate y(t) for a ≤ t ≤ b. All the
popular codes for solving IVPs implement methods that start with y0 = y(a).
On reaching yn ≈ y(tn), they take a step of size hn in the direction of b to form
an approximate solution at tn+1 = tn + hn. The early codes integrated with a
constant step size specified by the user and this is still done for some purposes.
Nowadays general-purpose codes estimate some kind of error and control it by
adapting the step size, and perhaps the numerical method, to the solution. This
article is about the estimation and control of error when solving IVPs, but at
times it will be illuminating to contrast IVPs and boundary value problems
(BVPs). For instance, the survey of Christiansen and Russell [3] shows that a

1



good many definitions of error and ways of selecting the mesh points tn are seen
in programs that solve BVPs. Comparatively few are seen in programs that
solve IVPs and in this article we discuss only the most common.

The most important reason for estimating error is to gain some confidence
in the numerical solution. There is some cost associated with estimating error
and adapting the step size/method, but generally this is a bargain because the
IVP is solved more efficiently. Indeed, if a solution can change significantly on
a scale that is very small compared to b− a, it may be impractical to solve the
problem with a constant step size that is small enough to resolve the fastest
changes in y(t). And, if a constant step size is too big, the computation may
become unstable. Controlling the error by adjusting the step size can often
stabilize the integration.

We survey error estimation and control as seen in popular general-purpose
codes for IVPs, but with a particular concern for issues pertinent to the time
integration of partial differential equations. Accordingly, we emphasize modest
accuracy and low to medium order methods. Addressing these issues is more
difficult for higher order methods and this complicates the implementation of
methods and the interpretation of results.

2 Preliminaries

There are two kinds of discrete-variable methods that are popular for solving
IVPs. In taking a step of size hn from an approximation yn ≈ y(tn), one-step
methods such as Runge–Kutta (RK) form approximate solutions yn,j ≈ y(t̃n,j)
and evaluate f at arguments t̃n,j that are all in the span of the current step, i.e.,
tn ≤ t̃n,j ≤ tn + hn. Methods with memory like the Adams methods and the
BDFs (backward differentiation formulas) make use of approximate solutions
and values of f computed at mesh points tj < tn. The basic formulas produce
an approximate solution only at tn+1. They can be supplemented so as to obtain
an approximate solution at any t in [tn, tn+1]. Suitable approximations underlie
the very definitions of Adams formulas and BDFs, but they are the result of
considerable research for one-step methods. For one-step methods, computing
an approximation between mesh points is often called “dense output” and the
scheme itself, a “continuous extension”.

A general-purpose code that adapts the step size/method to the solution
asks the user for a tolerance τ . At each step the code selects a step size/method
so that some measure of error is smaller than τ . In order to solve the problem
efficiently, the code tries to select a step size that is about as big as possible.

There are two major factors affecting the choice of step size. One is accuracy
and the other is stability. Popular numerical methods produce results in qual-
itative agreement with the solution of the IVP only when step sizes/tolerances
are sufficiently small. It is characteristic of a class of IVPs called “stiff” that the

2



stability requirement is much more restrictive than the accuracy requirement.
Because of this special methods are used for stiff IVPs. These methods are all
implicit. It is much more expensive to evaluate an implicit formula when solving
a stiff IVP, but the strong stability properties of some implicit formulas are so
much better than explicit formulas that they are a great bargain.

3 True (Global) Error

The users of popular codes generally assume that the codes estimate and control
the true (global) error

y(tn)− yn (2)

They do not. In fact, it is unusual for a solver even to estimate the true er-
ror when solving IVPs. The solvers all integrate from a to b. Without solving
a problem more than once, it is not possible to control the global error: The
stability of the IVP itself governs the propagation of numerical errors. Accord-
ingly, we do not know how the errors we make at each step, the local errors,
will propagate. On reaching a point tn, it is quite possible that we have already
made errors that will prevent us from achieving a given global accuracy in the
rest of the integration. Solving BVPs is different. The popular BVP solvers
compute an approximate solution for the whole interval and then improve it
until the specified global accuracy is achieved. In contrast to IVP solvers, it is
common that these codes estimate and control the true error.

A natural way to assess the true error is to solve the problem a second
time with a reduced step size or tolerance, as the case may be. If the second
integration is more accurate, the error of the first result can be estimated by
comparison. This is regarded as too expensive to do routinely when solving
IVPs, but we recommend it for spot checks. Though plausible, this estimate
of the true error can be inaccurate and unreliable because reducing the step
size/tolerance may not result in a more accurate result. An example is given in
[23] of a simple problem for which a production-grade code returned the same
machine numbers as answers for absolute error tolerances 10−2, 10−3, . . . , 10−7.
Another simple problem is given there for which reducing the tolerance from
10−4 to 10−5 for another production-grade code increased the maximum error
by a factor of 8. There are a number of reasons why this kind of thing hap-
pens: The numerical solution may not behave as expected because the step
size/tolerance is too big. The same is true when the step size/tolerance is so
small that the effects of finite precision arithmetic are visible. Other aspects
of the integration may affect the choice of step size, hence the behavior of the
numerical solution. One is providing for output. A more subtle reason is that
step sizes are chosen conservatively so as to reduce the likelihood of a failed
step. This means that some steps are unnecessarily small. When the problem
is solved with a reduced tolerance, the solver may find that it is sometimes

3



not necessary to reduce the step size of the first integration in order to pass
the error test in the second integration. Some codes adapt the method to the
solution. Reducing the tolerance can alter the methods selected and so affect
substantially the behavior of the error. A regular behavior of the error when the
tolerance is reduced is useful in assessing the true error, but it is also desirable
in its own right. For this reason a number of authors, e.g. [40, 25, 2], have
studied the issues and considered how to improve the tolerance proportionality
of a solver.

The method of integrating twice can be made more reliable by coupling
the two integrations. One such approach is to use the same method for both
integrations and half the step size in the second integration. Using standard
asymptotic results it is then not only possible to estimate the global error of
the first integration, but also that of the more accurate second integration.
Exploiting this, a code like GERK [34, 35] can compute a global error estimate
at a modest additional cost. A variant [5, 6] of the approach is to develop
formulas that not only approximate the solution, but also the global error.
When the solution is moderately smooth, the approach works well, but it is
difficult to get reliable results at both crude and stringent tolerances. This is
quite serious because an important reason for wanting an estimate of the global
error is to recognize an inadequate numerical solution, which is most likely at
crude and stringent tolerances. A fundamental difficulty is that the approach
depends on the solution being smooth throughout the interval of integration.

Schemes for the accurate estimation of global errors when solving IVPs are
generally thought to be too expensive and of too limited applicability for pro-
duction codes.

4 Error Estimation

After explaining in the last section what popular codes do not do, let us now
consider what they actually do. Most codes estimate the local error, so we begin
with it. We then consider estimation of the residual, a measure of error that
shares some attributes of both local and global error.

4.1 Local Error

On reaching tn, the local solution u(t) is defined as the solution of

u′ = f(t, u), u(tn) = yn (3)

The local error of the step from tn is

len = u(tn + hn)− yn+1 (4)

4



It measures how well the method approximates the behavior of a solution of the
ODE over one step. For a method of order p,

len = hp+1
n φ(tn, yn) + O(hp+2

n ) (5)

Accordingly, we can control the local error by adjusting the step size. The global
error is related to the local error by

gen+1 = y(tn+1)− yn+1 = [y(tn+1)− u(tn+1)] + len

The first term on the far right is the difference at tn+1 of two solutions of the
ODE that differ at tn by

y(tn)− u(tn) = y(tn)− yn = gen

This term reflects the stability of the IVP itself, hence is beyond our control.
A good way to think about the behavior of the true error is that it consists
of a local error introduced in the present step plus the global error propagated
from previous steps. If the IVP is unstable, this decomposition makes clear that
small local errors are amplified in the numerical solution. On the other hand, we
should not assume that the error increases throughout the integration. In any
portion of an integration where the IVP is strongly stable, propagated errors
are actually damped, i.e., ‖y(tn+1)− u(tn+1)‖ ¿ ‖gen‖.

The usual way to estimate the local error can be described as taking each
step with two formulas. There is a basic approximation yn+1 of order p and
another approximation, y∗n+1, of order p∗ > p. Then

estn = y∗n+1 − yn+1 = [u(tn + hn)− yn+1]− [u(tn + hn)− y∗n+1]
= len + O(hp+2) (6)

We see that estn is an asymptotically correct estimate of the local error of the
lower order formula. Many codes control the size of this error, but advance
the integration with the higher order result because it is believed to be more
accurate. This is called local extrapolation [21].

4.2 Residual

Important applications require that we be able to approximate y(t) at any point
a ≤ t ≤ b. By forming a continuous extension that approximates y(t) on each
[tn, tn+1], we obtain in aggregate an approximation S(t) to y(t) on all of [a, b].
Local error control provides at best an indirect control of the accuracy of S(t).
Enright [8] proposes controlling the size of the defect (residual) of S(t),

r(t) = S′(t)− f(t, S(t))

5



In a backward error analysis we regard S(t) as the exact solution of the ODE

S′ = f(t, S) + r(t)

and we ask whether this ODE is close to the one given, i.e., whether the residual
is small. This approach to the control of error has been fundamental in the
solution of linear algebraic equations. Though it has not yet seen much use in
solving initial value problems for ODEs, the BVP solvers MIRKDC [10] and
bvp4c [19] use it. The DDE solvers DDVERK [9] and ddesd [28] also use it.
Enright [7] is a nice survey of the solution of ODEs with control of the defect.

Residual control has a number of virtues. One is that it assesses the error
throughout the interval of integration, not just the error made in advancing a
step. It is hard to get a reliable assessment of error when the solution is not very
smooth. It is also hard when the step sizes/tolerances are too big for asymptotic
approximations to be valid or too small for the precision available. We can
evaluate the residual wherever we like at a cost of an evaluation of f(t, S(t)).
Clearly we can use this fact to estimate reliably the size of the residual even in
the most difficult circumstances if we are willing to pay the price. Research in
the area has concentrated on getting a reliable estimate inexpensively.

The schemes that Enright [8] proposes for estimating a norm of the residual
are plausible, but they are not asymptotically correct. Higham [16] shows how
to obtain an asymptotically correct estimate and in [17] he does the same for
another kind of continuous extension. For both kinds of continuous extensions
the behavior of the residual is known to leading order. Using this behavior it
is possible to obtain an asymptotically correct estimate with a single sample.
Kierzenka and Shampine [19] do something similar when solving BVPs, but
they approximate the size of the residual in an integral norm. The samples
are chosen so that the quadrature formula provides an asymptotically correct
estimate, but the point is to obtain a credible estimate when the asymptotic
results are of marginal applicability. In [28] Shampine extends the concept of
local error from (4) to

Len = u(tn + σhn)− S(tn + σhn)

for 0 ≤ σ ≤ 1. He then establishes a simple relationship between the size of the
residual on the span of the step to the size of Len for both kinds of schemes
investigated by Higham. For such formulas control of the residual provides a
direct control of the local error throughout the span of a step, at least when all
is going well.

5 Adjustment of Step Size

We estimate and control a measure of error mainly for two reasons. One is
to have some confidence in the results. The other is to solve hard problems.

6



Though related, the tasks are distinct and sometimes we emphasize one more
than the other. Estimation and control of error is not expensive, indeed, it
may be essential for the efficient solution of an IVP, but in some contexts a
constant step size is still popular. Even then a passive estimate of error is
worth consideration.

5.1 Control of Local Error/Residual

One way to gain confidence in a solution is to estimate either the local error or
the residual at each step and verify that it is smaller than a given tolerance.
We can take advantage of this estimate to choose the largest step size that will
result in an acceptable error. In this section we discuss adjustment of the step
size in terms of local error because this is conventional and the adjustment is not
essentially different when the size of the residual is controlled. We assume that
in taking a step from tn with a formula of order p , we compute an asymptotically
correct estimate of the local error,

estn = len + h.o.t. = hp+1
n φ(tn, yn) + O(hp+2

n )

Here h.o.t. is “higher order terms”. The user specifies a suitable norm and a
tolerance τ . The result is to satisfy

‖estn‖ ≤ τ (7)

This is called an error per step (EPS) criterion. If the estimated error does not
pass this test, the step is rejected and repeated with a smaller step size. From
the asymptotic behavior of the local error we see that if hn is reduced to αhn,
then len is reduced to αp+1 len. This tells us that the largest α for which the
estimated local error will pass the error test is approximately

α =
(

τ

‖estn‖
)1/(p+1)

(8)

If the step is a success and the error is unnecessarily small, we could increase
the step size on the next step. We estimate the error of such a step of size
hn+1 = αhn to be

estn+1 = hp+1
n+1 φ(tn+1, yn+1) + h.o.t.

= (αhn)p+1 φ(tn, yn) + h.o.t.

= αp+1 estn + h.o.t.

From this we see that we can use the same recipe (8) for adjusting the step
size after both successful and unsuccessful steps. There is considerable art to
using this recipe in practice. For one thing, failed steps are expensive, so it is

7



important to be conservative in the choice of step size. For another, very large
changes of step size cannot be justified with these asymptotic arguments. And,
the asymptotic approximations are not valid when the step size is too big or
too small for the precision or the leading term in the expansion vanishes. More
information about what is done in practice can be found in [36, 37, 30, 26].

The procedure outlined can be refined using some previously computed in-
formation to predict better the behavior of the local error. This is done in im-
portant early work by Zonneveld [42] that was significantly improved by Watts
[41]. Gustafsson and coworkers [13, 14] took a different tack, regarding the se-
lection of step size as a control problem. The schemes favored by Watts and
Gustafsson et alia are quite similar, remarkably so in light of the very different
approaches.

An alternative to (7) is to require that

‖estn‖ ≤ hn τ (9)

which is a criterion of error per unit step (EPUS). This criterion was in vogue at
one time because if (9) holds at every step, it is easy to establish convergence and
a bound on the true error that is proportional to the tolerance. This conclusion
is not true for EPS. The most effective codes of the time used EPS, so what
was missing in our understanding of this matter? Two issues are key: local
extrapolation and an efficient step size.

Some of the effective codes that used EPS did local extrapolation (XEPS).
It is not hard to show that this amounts to a generalized EPUS and then to
prove that the convergence results for EPUS are true for this generalization.
The local error estimator rests on the assumption that the higher order formula
is more accurate. This suggests advancing the integration with the higher order
formula, but that is not always a good idea. The most important difficulty
with local extrapolation is that the stability of the integration then depends
on the stability of the higher order formula. As an example, we observe that
the BDFs are the most popular formulas for solving stiff IVPs. When the
natural error estimator is used, local extrapolation results in a formula with
unsatisfactory stability. That is why none of the widely-used BDF codes does
local extrapolation.

If we assume that the step size is chosen to be about as big as possible,
it is easy enough to analyze all the possibilities for one-step methods [24] and
see that the error behaves in a regular way. There has been little success in
analyzing the behavior of the error in the popular BDF and Adams codes that
vary their order (method) as well as step size, but recently it has been shown
[27] that XEPS control as implemented in ODE/STEP,INTRP [30] results in
an error bound that is proportional to the tolerance.

An alternative way to view local extrapolation is to say that the step size
is chosen to be efficient for a lower order method. In this view, the step size is
smaller than it has to be. When the method used for error control is one order

8



lower, this is not very important. Implicit RK methods can be an effective way to
solve stiff IVPs, but it is hard to develop a pair of formulas with good properties
that can be evaluated efficiently together. It is so hard that researchers have
been willing to settle for a difference in orders greater than one. An important
example is RADAU5 [15], which advances the integration with a formula of order
5, but selects a step size appropriate to a formula of order 3. The difference
in order is uncomfortably large, but order 3 is the best that you can do with
the information available in forming the higher order result. The formula of
order 3 has good stability, but it is not nearly as good as that of the formula
of order 5. RADAU5 compensates for this with the scheme proposed in [29] for
filtering error estimates so as to match better the stability of the formula used to
advance the integration of a stiff IVP. When there is a considerable discrepancy
in the orders of the formula used for step size selection and the formula used to
advance the integration, it is appropriate to take a different view of the whole
process. We discuss this further in the next section.

5.2 Solve Hard Problems

Adapting the step size/method to the solution is not just a matter of improving
the efficiency of the integration; it makes practical the solution of hard problems.
If the solution changes at very different rates in portions of the integration, it
may be impractical to solve the IVP with a constant step size small enough to
resolve the fastest changes. A very old scheme for dealing with this is to adjust
the step size so as to control the relative change in the numerical solution. This
scheme has the virtues of simplicity and universal applicability. Certainly it is
plausible to use a small step size where the solution is changing rapidly and
a big one elsewhere, but it was a long time before the scheme was justified
theoretically. In [38] it is analyzed within the framework of the conventional
schemes outlined in §2. The great applicability of the scheme reflects its great
disadvantage—because it treats all methods like a particular method of very low
order, namely one, it is grossly inefficient for methods of even moderate order.
Still, it does deal with sharp changes in the solution, even discontinuities, as
illustrated by numerical examples in [38]. It also stabilizes the integration in a
way that we take up now.

As noted in §2, the step size may have to be restricted if the numerical
solution is to behave like y(t). There is a theory of absolute stability that quan-
tifies this restriction. The theory has certainly proved its worth in providing
guidelines for practical computation, but it is rigorously applicable only to a
small class of ODEs solved with constant step size. According to this theory,
if a constant step size is too large, the computation can become unstable and
the results “explode”. This never happens when using a production–grade code
that adapts the step size to the solution. An explanation offered in [22] and
subsequently refined in [39] is: When the step size is small enough to corre-

9



spond to being inside the region of absolute stability, the numerical solution
smoothes out. Standard local error estimators recognize that y(t) is easy to ap-
proximate and cause the solver to increase the step size. Eventually the step size
corresponds to being outside the stability region and the computation becomes
unstable. Standard estimators recognize this instability as local errors that are
unacceptably large and cause the solver to reduce the step size. Eventually the
step size corresponds to being inside the stability region and the cycle repeats.

We should state explicitly that all stiff problems are hard in the sense dis-
cussed here. Stiffness is a vague concept, but there are three essential ingredi-
ents: The IVP must be stable. The ODEs must have solutions that can change
on a time scale very short compared to b−a. The solution of interest may (and
usually does) exhibit such a change, but it must be slowly varying over most
of [a, b]. By definition the cost of solving a stiff IVP using a constant step size
small enough to resolve the rapid changes that are possible is unacceptably high.
Solving stiff problems is made practical by resorting to methods that can use a
large step size where the solution is slowly varying. These methods are much
more expensive per step than, say, explicit RK methods or Adams methods,
but they can take steps that are so much bigger that the overall cost is quite
acceptable.

Returning to the issue of finding pairs of implicit RK formulas for solving stiff
IVPs, we appreciate now that a pair can be useful even if there is a considerable
discrepancy in orders—the connection between local error and true error is
somewhat weak at best and it is not at all unreasonable to regard step size
adjustment as just a way of solving hard problems. Jay [18, pp. 438–439] adopts
this point of view and describes a way of improving the qualitative behavior of a
solver that is particularly valuable in these circumstances. For a pair of formulas
of orders p∗ > p, the step size hn is selected so that the predicted error of size
O(hp+1

n ) is approximately equal to the tolerance τ , which is to say that the step
size is O

(
τ1/(p+1)

)
. With local extrapolation the actual error of the step is

O(hp∗+1
n ), hence O

(
τ (p∗+1)/(p+1)

)
. When p∗ is rather bigger than p, this error

is much smaller than τ , which is to say that the step size is much smaller than
necessary. The idea is to define an internal tolerance

µ = τ (p+1)/(p∗+1)

and select hn so that the error of the lower order formula is approximately equal
to µ. This step size is O(µ1/(p+1)), hence the actual error is

O
(
µ(p∗+1)/(p+1)

)
= O(τ)

In this way we can select a step size that has the right order for the formula used
to advance the integration. And, the user finds that reducing the tolerance τ
results in the local error being reduced proportionately. This argument assumes

10



that local extrapolation is done, but an internal tolerance was similarly used
in [25] to get tolerance proportionality when it is not. An internal tolerance is
used to deal with the substantial discrepancy in orders in RADAU5 [15] that
was mentioned earlier.

5.3 Passive Estimation of Error

As we have seen, there are important reasons for adapting the step size/method
to the solution, but in some circumstances researchers prefer to use a constant
step size and fixed method. It is still valuable to estimate error so as to have
some confidence in the numerical solution. In particular, monitoring the error
inspires some confidence that the step size is small enough both for resolving the
behavior of the solution and for the numerical method to behave as expected.
This is what we mean by “passive” estimation of error. It is not often done, so
we want to make the point here that for some formulas it is not expensive. In
this we emphasize low order schemes because they are of particular interest in
contexts where a fixed step size is used.

The local error of the trapezoidal rule when the step size is a constant h has
the form −y(3)(ξ)h3/12. It is easy enough to approximate the derivative using
differences of the yn or fn = f(tn, yn). These estimates are “free” because they
are just linear combinations of quantities computed as the integration proceeds.
An advantage of using the fn is that fewer terms need be retained. This is quite
satisfactory when solving non-stiff IVPs, but when solving stiff problems, errors
in yn can be significantly amplified in fn, c.f. [26]. Accordingly, when solving
stiff IVPs, standard local error estimators are based on approximating deriva-
tives by differences of the yn. For example, the local error of the trapezoidal
rule is estimated this way in ode23t [32]. Similarly, the local error of any of the
BDFs could be monitored passively using standard estimators like those of [12].

Many of the standard pairs of explicit RK formulas can be regarded as
providing free estimates of a local error. For example, the seminal (4,5) pair
of Fehlberg [11] was derived so as to provide an estimate of the error in the
formula of order 4, but the many production codes such as RKF45 [36, 37] that
use it do local extrapolation. The fifth order formula uses the minimal number
of stages, namely 6. Consequently, if we do a constant step size integration with
the minimal stage fifth order formula, we have available a free estimate of the
local error of the companion fourth order formula. Another point is made by the
BS(2,3) pair [1] because it is FSAL (First Same As Last): Dormand and Prince
[4] note that the first stage of an explicit RK formula is always f(tn, yn) and
propose that this stage from the next step be used in the companion formula
for error estimation in the current step. The stage is free only if the step is a
success so that it can be reused. Most steps do succeed, so FSAL formulas are in
wide use. They are attractive in the present situation because in a constant step
size integration, all steps are accepted. Using the BS(2,3) pair with constant

11



step size we integrate with a third order formula and obtain an estimate of the
local error of a companion second order formula for “free”. Another low order
example is the popular two-stage, second order RK method due to Heun. It is
shown in [21] that after two steps of the same size, a linear combination of the
stages provides an asymptotically correct estimate of the local error.

References

[1] Bogacki, P., and Shampine, L.F. (1989). A 3(2) pair of Runge-Kutta for-
mulas. Appl. Math. Letters 2, 1–9.

[2] Calvo, M.C., Higham, D.J., Montijano, J.M., and Rández, L. (1997). Step-
size selection for tolerance proportionality in explicit Runge–Kutta codes.
Advances in Computational Math. 24, 361–382.

[3] Christiansen, J., and Russell, R.D. (1978). Adaptive mesh selection strate-
gies for solving boundary value problems. SIAM J. Numer. Anal. 15, 59–80.

[4] Dormand, J.R., and Prince, P.J. (1980). A family of embedded Runge-
Kutta formulae. J. Comput. Appl. Math. 6, 19–26.

[5] Dormand, J.R., and Prince, P.J. (1984). Global error estimation with
Runge-Kutta methods. IMA J. Numer. Anal. 4, 169–184.

[6] Dormand, J.R., and Prince, P.J. (1985). Global error estimation with
Runge-Kutta methods II. IMA J. Numer. Anal. 5, 481–497.

[7] Enright, W.H. (2000). Continuous numerical methods for ODEs with defect
control. J. Comp. Appl. Math. 125, 159–170.

[8] Enright, W.H. (1989). A new error–control for initial value solvers. Appl.
Math. Comput. 31, 588–599.

[9] Enright, W.H., and Hayashi, H. (1997). A delay differential equation solver
based on a continuous Runge–Kutta method with defect control. Numer.
Alg. 16, 349–364.

[10] Enright, W.H., and Muir, P.H. (1996). Runge–Kutta software with defect
control for boundary value ODEs. SIAM J. Sci. Comput. 17, 479–497.

[11] Fehlberg, E. (1970). Klassische Runge-Kutta-Formeln vierter und
niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf
Wärmeleitungsprobleme. Computing 6, 61–71.

[12] Gear, C.W. (1971). Numerical Initial Value Problems in Ordinary Differ-
ential Equations, Prentice-Hall, Englewood Cliffs, NJ.

12



[13] Gustafsson, K. (1991). Control theoretic techniques for stepsize selection
in explicit Runge-Kutta methods. ACM Trans. Math. Softw. 17, 533–554.

[14] Gustafsson, K., Lundh, M., and Söderlind, G. (1988). A PI stepsize control
for the numerical solution of ordinary differential equations. BIT 18, 270–
287.

[15] Hairer, E., and Wanner, G. (1991). Solving Ordinary Differential Equations
II, Stiff and Differential-Algebraic Problems, Springer, Berlin.

[16] Higham, D.J. (1989). Robust defect control with Runge–Kutta schemes.
SIAM J. Numer. Anal. 26, 1175–1183.

[17] Higham, D.J. (1991). Runge–Kutta defect control using Hermite–Birkhoff
interpolation. SIAM J. Sci. Stat. Comput. 12, 991–999.

[18] Jay, L. (1998). Structure preservation for constrained dynamics with super
partitioned additive Runge-Kutta methods. SIAM J. Sci. Comput. 20, 416–
446.

[19] Kierzenka, J., and Shampine, L.F. (2001). A BVP solver based on residual
control and the Matlab PSE. ACM Trans. Math. Softw. 27, 299–316.

[20] Matlab 6 (2000). The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA
01760.

[21] Shampine, L.F. (1973). Local extrapolation in the solution of ordinary dif-
ferential equations. Math. Comp. 27, 91–97.

[22] Shampine, L.F. (1975). Stiffness and non-stiff differential equation solvers.
In Collatz, L., et al. (eds.), Numerische Behandlung von Differentialgle-
ichungen, ISNM 27, Birkhauser, Basel, pp. 287–301.

[23] Shampine, L.F. (1980). What everyone solving differential equations nu-
merically should know. In Gladwell, I., and Sayers, D.K. (eds.), Computa-
tional Techniques for Ordinary Differential Equations, Academic, London,
pp. 1–17.

[24] Shampine, L.F. (1985). The step sizes used by one-step codes for ODEs.
Appl. Numer. Math. 1, 95–106.

[25] Shampine, L.F. (1989). Tolerance proportionality in ODE codes. In Bellen,
A., et al. (eds.), Numerical Methods for Ordinary Differential Equations,
Lecture Notes in Math. No. 1386, Springer, Berlin, pp. 118–136.

[26] Shampine, L.F. (1994). Numerical Solution of Ordinary Differential Equa-
tions, Chapman & Hall, New York.

13



[27] Shampine, L.F. (2002). Variable order Adams codes. Comp. & Maths. with
Applics. 44, 749–761.

[28] L.F. Shampine, Solving ODEs and DDEs with residual control,
http://faculty.smu.edu/lshampin/residuals.pdf

[29] Shampine, L.F., and Baca, L.S. (1984). Error estimators for stiff differential
equations. J. Comp. Appl. Math. 11, 197–207.

[30] Shampine, L.F., and Gordon, M.K. (1975). Numerical Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman and Co.,
San Francisco.

[31] Shampine, L.F., Gladwell, I., and Thompson, S. (2003). Solving ODEs with
Matlab, Cambridge Univ. Press, New York.

[32] Shampine, L.F., and Reichelt, M.W. (1997). The Matlab ODE suite.
SIAM J. Sci. Comput. 18, 1–22.

[33] Shampine, L.F., Reichelt, M.W., and Kierzenka, J.A. (1999). Solving index-
1 DAEs in Matlab and Simulink. SIAM Review 41, 538–552.

[34] Shampine, L.F., and Watts, H.A. (1976). Global error estimation for ordi-
nary differential equations. ACM Trans. Math. Softw. 2, 172–186.

[35] Shampine, L.F., and Watts, H.A. (1976). Algorithm 504, GERK: global er-
ror estimation for ordinary differential equations. ACM Trans. Math. Softw.
2, 200–203.

[36] Shampine, L.F., and Watts, H.A. (1977). The art of writing a Runge-Kutta
code, Part I. In Rice, J.R. (ed.), Mathematical Software III, Academic, New
York, pp. 257–275.

[37] Shampine, L.F., and Watts, H.A. (1979). The art of writing a Runge-Kutta
code, II. Appl. Math. Comp. 5, 93–121.

[38] Shampine, L.F., and Witt, A. (1995). A simple step size selection algorithm
for ODE codes. J. Comp. Appl. Math. 58, 345-354.

[39] Shampine, L.F., and Witt, A. (1995). Control of local error stabilizes inte-
grations. J. Comp. Appl. Math. 62, 333-351.

[40] Stetter, H.J. (1980). Tolerance proportionality in ODE-codes. In März, R.
(ed.), Seminarberichte No. 32, Humboldt Univ., Berlin, pp. 109–123.

[41] Watts, H.A. (1984). Step size control in ordinary differential equation
solvers. Trans. Soc. for Computer Simulation 1, 15–25.

[42] Zonneveld, J.A. (1964). Automatic Numerical Integration, Mathematisch
Centrum, Amsterdam.

14


