
Numerical methods for local models

T.I. Lakoba∗

Department of Mathematics and Statistics, 16 Colchester Ave.,
University of Vermont, Burlington, VT 05401, USA

February 14, 2007

∗lakobati@cems.uvm.edu, 1 (802) 656-2610

1

Article synopsis

Numerical methods commonly used for solving ordinary differential equations, such as Euler

and trapezoidal (both explicit and implicit), Runge–Kutta, an multistep ones are presented

and compared with each other in terms of their accuracy and stability. The stability of any

given method is shown to be a critical factor determining whether the method is useful. It is

emphasized that numerical methods for conservative and nonconservative models must possess

different stability features, and it is further shown that Runge–Kutta methods possess both of

these features. The idea of methods with an adaptive step size is described. The phenomenon

of numerical stiffness is explained. Suitable built-in commands of Matlab are mentioned, and

an example of their usage is given.

Keywords: Numerical solution of differential equations; local models.

EDITORS, please include proper keywords or send me the list of them
to pick. I simply don’t know what else to put here.

2

Elementary methods for a single ODE

Ordinary differential equations (ODEs) are often found to model ecological systems that de-

scribe the evolution in time. ODEs arise when the system satisfies two requirements. First, the

evolution is to be sufficiently “smooth”. That is, the change of the system’s state from one ob-

servation moment to the next should be relatively small. These small changes may accumulate

into drastic ones given a sufficiently long evolution time. Second, one must be able to view the

system as behaving as a whole, undivisible entity. For example, the system should be assumed

to have no spatial extent, or, if it does have spatial dimensions, then the state of the system

must be the same in all of its spatial locations. In other words, the system must be uniform, or

local. If the system does not meet this requirement, it is referred to as distributed. Methods

for, and examples of, such distributed systems are found in the companion article by the same

author in this volume.

Some of the more simple ODEs can be solved analytically. For example, the classical Lotka-

Volterra model describing dynamics of a predator-prey system was formulated as a system of

two ODEs and studied analytically. However, as equations become more complex, bearing non-

linearities, or as the number of equations becomes large, analytical solution becomes impossible.

In that case ODEs have to be treated numerically.

This article surveys numerical methods for solving evolution problems described by an ODE

u̇(t) = f(u, t), u(t0) = u0 (1)

or systems of such equations; here u̇ ≡ du/dt. Let tn = t0 + nτ , where n = 1, 2, . . . and τ is a

(small) time step. Denote un ≡ u(tn) and Un to be, respectively, the exact and the numerical

solutions at time tn. Replacing u̇ with (Un+1−Un)/τ and denoting fn ≡ f(Un, tn), one obtains

the explicit Euler method:

Un+1 = Un + τ fn . (2)

To determine how accurately this approximates (1), one compares the l.h.s. of (2) with un+1:

un+1 = u(tn + τ) = un + τ u̇n + O(τ 2) = un + τ fn + O(τ 2) . (3)

The above notation O(τm), which will also be used throughout this article, stands for any

quantity that vanishes at the same rate as τm as τ tends to zero. For example, both −0.1τ 2 +

15τ 3 and τ 2/(1+ τ cos(2− τ)) are O(τ 2). Note also that all of O(τm)+O(τm), O(τm)−O(τm),

and O(τm) + O(τm+1) are O(τm). In the second equality in (3), one used the first two terms of

the Taylor expansion:

u(t + τ) = u(t) + u̇(t)τ +
1

2!
ü(t)τ 2 + O(τ 3) , (4)

and in the third, Eq. (1) for u̇.

In the accuracy analysis, one conventionally assumes that at steps before the last one, the

exact and numerical solutions coincide, i.e., un = Un. Then (2) and (3) yield the local error

(the error made at each computational step):

Un − un = O(τ 2). (5)

3

The errors at individual steps accumulate into the global error at the end of the computational

interval. There are (tfinal − t0)/τ = O(1/τ) such steps, whence

global error =
const

τ
· local error . (6)

In particular, the global error of the explicit Euler method is O(τ). Methods whose global error

is O(τm) are called mth-order methods. When m > 0, the global error tends to zero with τ ,

and the corresponding methods are called consistent.

The global error can be small only if the constant in (6) does not grow with n. This

motivates the notion of stability of a numerical method. A method is stable if its solution,

which is supposed to be close to the exact solution at some time t̄, remains close to the exact

solution at all later times. Thus, for a numerical method to provide a useful approximation,

i.e., converge, to the exact solution (when τ is sufficiently small), the method must be both

consistent and stable. This is usually stated as the Lax Theorem:

Consistency + Stability ⇒ Convergence. (7)

Let u + δu be a solution that is close to some given solution u at t̄; i.e., δu is much smaller

than u. This new solution satisfies (1) with u being replaced by u + δu. Subtracting these two

equations and neglecting terms of order O((δu)2), one obtains:

˙δu = [fu(u(t̄), t̄)] δu , (8)

where fu ≡ ∂uf(u, t). The quantity in brackets in (8) is a fixed number (rather than a function

of t) for any given value t̄, and it is this number that determined whether the initially small

deviation δu between the two solutions grows or decays, i.e., the stability of the solution.

Therefore, the stability of numerical methods for (1) is tested on an equation that has the form

of (8) but, by convention, is written for u rather than for δu:

u̇ = λu, λ = const . (9)

For reasons that will be explained when we consider systems of ODEs, λ is allowed to have

complex values, but with Re(λ) ≤ 0. (If Re(λ) > 0, the solution of (8) grows as exp[λ(t− t0)],

and hence it does not make sense to require that the numerical solution stay close to the exact

one if the latter itself is unstable.) Applying the explicit Euler method (2) to (9) yields:

Un+1 = (1 + λτ)Un, (10)

which means that this method is stable when

|1 + λτ | ≤ 1 (11)

When λ (< 0) is real, (11) implies the restriction on the step size of the form: τ < 2/(−λ).

In general, when λ ≡ λr + iλi is complex, (11) is rewritten as (1 + λrτ)2 + (λiτ)2 ≤ 1, which

defines the inside of the circle shown in Fig. 1 by the solid line. < EDITORS: Fig. 1 near here.

>

4

If in (1), one replaces u̇ with (Un − Un−1)/τ , the resulting method becomes the implicit

Euler method:

Un+1 = Un + τ fn+1 . (12)

Folowing the analysis above, one can show that its global error is also O(τ). The disadvantage

of this method compared to (2) is that to implement (12), one has to solve a nonlinear equation

for Un+1 at each step. The advantage, however, is that this method has a much greater stability

region than method (2): similarly to the above, one shows that the implicit Euler method is

stable for

|1− λτ | ≥ 1 , (13)

which defines the outside of the circle shown in Fig. 1 by the dashed line.

The accuracy of the Euler methods can be improved using the following observation. If f

in (1) were constant, methods (2) and (12) would have been exact, because in this case, the

slope of the evolution of u(t), determined by the f , would have been constant. Thus, the error

in, e.g., (5) occurs because the actual slope f(u, t) changes between tn and tn+1. Therefore, to

improve the accuracy of the method, one can take the average of the slopes at tn and tn+1. The

result is the modified implicit Euler method (also called implicit trapezoidal or implicit Heun

method):

Un+1 = Un +
τ

2
(fn + fn+1) . (14)

One can show that the global error of this method is O(τ 2) and its stability region is the

entire left-half plane (i.e. λrτ ≤ 0). Thus, this consistent method is stable for any step size

τ , and hence converges (see (7)) to the exact solution of (1) for any value of τ . However, the

disadvantage of this method is the same as that of (12): in general, one has to solve a nonlinear

equation to obtain Un+1.

To avoid solving nonlinear equations, one can replace Un+1 on the r.h.s. of (14) with its

estimate obtained from (2). This yields the modified explicit Euler, or Heun or trapezoidal,

method:

Ū = Un + τ fn , (15)

Un+1 = Un +
τ

2

(
fn + f(Ū , tn+1)

)
. (16)

Its global error is also O(τ 2) and the stability condition is

∣∣∣∣1 + λτ +
1

2
(λτ)2

∣∣∣∣
2

≤ 1 ; (17)

the corresponding region is the inside of the oval (thin solid line) in Fig. 2. Notice that the

expression on the l.h.s. of (17) is just the O(τ 2)-accurate Taylor expansion (4) of eλτ , which

correlates with the Heun method having the global error of O(τ 2). When λ is a real number,

the stability condition of this method is τ < 2/(−λ), i.e. the same as that for the explicit Euler

method (2).

A family of methods, called Runge–Kutta (RK) methods, generalizes the explicit Heun

method and allows one to construct methods with higher accuracy. This family of methods has

5

the form:
Un+1 = Un + (c1R1 + c2R2 + c3R3 + . . .);
R1 = τfn ,
R2 = τf(Un + β21R1, tn + α2τ),
R3 = τf(Un + β31R1 + β32R2, tn + α3τ),
etc.

(18)

where the c’s, α’s, and β’s are some properly chosen numeric coefficients. (Method (15), (16)

results for c2 = c3 = . . . = 0.) Historically, the most popular RK method is the following

4th-order method:

Un+1 = Un +
1

6
(R1 + 2R2 + 2R3 + R4);

R1 = τfn ,

R2 = τf
(
Un +

1

2
R1, tn +

1

2
τ
)

,

R3 = τf
(
Un +

1

2
R2, tn +

1

2
τ
)

,

R4 = τf (Un + R3, tn + τ) .

(19)

The stability region of this method is the inside of the contour shown with the thick solid line

in Fig. 2. When λ is a real number, the stability condition of this method is τ < 2.79/(−λ).

Thus, the advantage of the RK method (19) over the explicit Euler and Heun methods is not

only its higher accuracy but also the more relaxed stability condition on the step size τ . Yet

another advantage of this method will be pointed out later on. < EDITORS: Fig. 2 near here.

>

Adaptive methods

Adaptive methods are currently the default methods for solving ODEs in major computing

software. These methods, which can adapt the step size to the conditions of the problem, are

most useful when the coefficients in the problem change very rapidly over some time intervals

and smoothly otherwise. One simple example here is the motion of a skydiver: the air resistance

changes abruptly at the moment when the parachute opens. The coefficients in an equation,

say (1), determine the value of ∂uf , which is (see (9)) the prototype of the parameter λ in the

test equation (10). Thus, a drastic change in ∂uf will require a corresponding change in τ to

preserve both the accuracy and the stability of the numerical method. On the other hand, one

obviously wants to take as large a time step as possible to minimize the computational time.

Let us emphasize that in adaptive methods, one controls the local error, and not the global

error, of the solution. Indeed, the only way to control the global error is to run the simulations

more than once. For example, one can run a simulation with the step τ and then repeat it

with the step τ/2 to verify that the difference between the two solutions is within a prescribed

accuracy. Although this can be done occasionally, it is computationally inefficient to do so

routinely within the code. Therefore, error control algorithms in adaptive methods ensure that

the local error at each step is less than a given threshold, εloc. Next, let us assume for the

moment that the exact solution u(t) is known. Then conceptually, the steps of an error control

6

algorithm are the following. At each tn, compute the local error εn = |Un − un|. If εn < εloc,

accept the solution, multiply the next step size by κ(εloc/εn)1/(m+1) (where κ ∼ 0.8 is a “safety”

factor and m is the order of the method), and proceed to the next step. If εn > εloc, then

multiply the step size by κ(εloc/εn)1/(m+1) < 1, re-calculate the solution at this step, and check

the new local error. If this error is acceptable, proceed to the next step. If not, repeat this step

again. Now in reality, the exact solution un is not known. Then one can use, along with the

given mth-order numerical method, another method of a higher order whose (more accurate)

solution would play the role of the exact solution un above. To make this idea work time-

efficiently, the more accurate method should share some of the computational steps with the

original one, as first proposed by in 1970 by E. Fehlberg. He found a pair of the RK methods

(18) where six coefficients R1 . . . R6 are computed to obtain the 4th- and 5th-order accurate

solutions, U [4]
n and U [5]

n . Then the local error is computed as εn = |U [5]
n − U [4]

n |. One now has a

choice which of the two solutions one should accept as the output Un of the numerical method,

and the common sense suggests setting Un = U [5]
n . Thus, this adaptive method computes a 5th-

order accurate solution U [5]
n while controlling the error of the less accurate 4th-order solution

U [4]
n . Other adaptive methods operate similarly. Such methods are commonly referred to as

RK-Fehlberg, or embedded RK, methods.

A method from this family of methods proposed by J. Dormand and P. Prince is used in

the Matlab’s built-in command ode45, which computes a 5th-order solution of a given system

of ODEs using an adaptive step size. < EDITORS: Please don’t change the typesetter fornt for

Matlab commands to the regular font. Using the typesetter font in this case is not equivalent to

italicizing, boldfacing, or underlying a term. Rather, it is analogous to italicizing latin names, as

shown in the example articles you posted for the information of the authors. The use of such font for

Matlab commands is accepted as a convention in the literature on computational methods. Thank

you for not changing the font. > For an example of a code using a similar command see Fig. 5

below. Analogous built-in adaptive integration commands exist in Fortran and C.

Multistep methods

These methods use the numerical solution at tn and also at earlier times, tn−1, tn−2, etc., to

obtain the solution at tn+1. (In contrast, methods like (19) use the solution only at the time

tn to obtain the solution at tn+1 and hence are called single-step methods.) The idea behind

multistep methods is to use the solution computed at those earlier steps to predict not only

the slope, given by the r.h.s. of (1), of the solution at tn, but also the curvature (the second

derivative) and possibly higher-order derivatives of the solution. This allows one to approximate

it at tn+1 with an accuracy higher than that achieved by (2). For example, the formula for a

second-order-accurate, two-step method for (1) can be derived from the Taylor expansion of

the same order (see (4)):

Un+1 = Un + τU ′
n +

τ 2

2
U ′′

n = Un + τfn +
τ

2
(fn − fn−1) . (20)

In deriving (20), one uses U ′
n = fn and its corollary: U ′′

n = (fn − fn−1)/τ + O(τ), and omits

terms of order O(τ 3) and higher. To start this method, one uses f0 from the initial condition

7

and f1 found by some single-step method. Another well-known two-step second-order method

is a so called leap-frog method:

Un+1 = Un−1 + τfn . (21)

(It should be noted that this method is unstable for the test equation (10) for any Reλ < 0;

its stability region is the segment along the imaginary λ-axis shown in Fig. 1.) Formulae for

higher-order multistep methods, known as Adams methods, can be found in most textbooks.

The advantage of multistep methods over the single-step RK methods is that the latter require

at least m function evaluations per step for an mth-order-accurate RK method (e.g., (19)

requires 4 function evaluations), while a multistep method can achieve the same accuracy with

only one function evaluation for any order m. Thus, multistep methods are faster than the

RK ones. The main disadvantage of the multistep methods is that it is difficult to make them

use adaptive step size, because their formulae are inherently based on the assumption that

all steps have the same size τ . Another disadvantage of multistep methods is that they have

smaller stability regions, which shrink with increasing the method’s order. Therefore, currently

these methods are not widely used in commercial software, where the adaptive embedded RK

methods are used instead.

Methods for systems of ODEs

The extension of all of the above methods to higher-order equations or to K coupled equations,

u̇(k) = f (k)(~u, t), k = 1, . . . K, ~u = (u(1), . . . u(K)), (22)

is straightforward. Note that any higher-order ODE can be put in the form (22). For example,
···
u= f(u, u̇, ü, t) is written in this form as follows: u(1) ≡ u, u̇(1) = u(2), u̇(2) = u(3), u̇(3) =

f(u(1), u(2), u(3), t). The extension of, e.g., the RK method (19) to (22) is, for k = 1, . . . , K:

U
(k)
n+1 = U (k)

n +
1

6
(R

(k)
1 + 2R

(k)
2 + 2R

(k)
3 + R

(k)
4);

R
(k)
1 = τf (k)

n ,

R
(k)
2 = τf (k)

(
~Un +

1

2
~R1, tn +

1

2
τ
)

,

R
(k)
3 = τf (k)

(
~Un +

1

2
~R2, tn +

1

2
τ
)

,

R
(k)
4 = τf (k)

(
~Un + ~R3, tn + τ

)
,

(23)

where ~Un, ~R1, etc. are defined analogously to ~u in (22). As for a single ODE, an important

consideration when solving systems of ODEs is the stability of the numerical method. Here the

small deviation ~δu from the solution ~u of (22) satisfies an equation analogous to (9) where the

coefficient ∂uf is replaced with the matrix whose (j, k)th entry is ∂f (j)/∂u(k). By diagonalizing

this matrix (which is possible in the generic case), one finds that the component of ~δu “aligned

along” the lth eigenvector of this matrix satisfies (10), with λ ≡ λl being the corresponding

eigenvalue. Thus, the stability analysis for systems of ODEs reduces to that for a single ODE,

where λ may be complex even though the original equations are real-valued.

8

In this regard, systems which have purely imaginary eigenvalues when linearized near a

stable equilibrium require special attention. An example of such a system that is typical in the

study of population dynamics is the Lotka–Volterra predator-prey model:

u̇ = au− buv, v̇ = −cv + duv, (24)

where u and v are the populations of the prey and predators and a, b, c, d are positive constants.

Linearization of (24) near one of its equilibrium points, (ū = c/d, v̄ = a/b), yields a pair of

imaginary eigenvalues ±i
√

ac. Then the stability results presented above show that the explicit

Euler method (2) is unstable for the Lotka–Volterra model; see Fig. 1. (Strictly speaking, the

2nd-order Heun method (15), (16) and even the 5th-order RK method used by Matlab’s ode45

are unstable, but their instability is much weaker than that of (2).) Moreover, the implicit Euler

method (12), which is stable for this model, also produces a blatantly incorrect solution. Indeed,

the point τ · i√ac is strictly inside its stability region (see Fig. 1), and hence the numerical

solution obtained by this method will spiral towards the equilibrium point. However, the exact

analytical solution of (24) is known to orbit periodically about that point. As we show below,

the following 1st-order-accurate modification of (2) yields a solution of (24) that stays near the

exact periodic solution for all times:

Un+1 = Un + τ Un(a− bVn), Vn+1 = Vn + τ Vn(−c + dUn+1) . (25)

The reason is that the stability region for this method can be shown to be the same as that of the

leap-frog method (21), i.e. a segment along the imaginary (τλ)-axis (see Fig. 1). Since, as stated

above, eigenvalues of the linearization of (24) at any point sufficiently near the equilibrium are

almost purely imaginary, then the corresponding value τλ is on the boundary of the stability

region of method (25). Then small deviations from the exact solution (as well as from the

equilibrium) will neither grow nor decay with time, but will oscillate around that solution.

Thus, the important lesson to be drawn from this example is that the choice of the numerical

method depends on the eigenvalues of the linearized system in question. That is, methods that

work for systems with purely imaginary eigenvalues may not work for systems with real (and

negative) eigenvalues, and vice versa. In passing, let us also mention that method (25) and

the leap-frog method (24) are members of the family of symplectic methods which are designed

specifically for stable numerical integration of models exhibiting oscillatory behavior without

dissipation.

When dealing with an arbitrary system of ODEs, it is usually not possible to establish

beforehand whether the eigenvalues of its linearization are purely imaginary or not. In such

cases, one should use the RK methods (of order 4 or higher, if studying long-term evolution).

Indeed, if any of the eigenvalues are not purely imaginary, one needs a method whose stability

region extends into the left half of the complex (τλ)-plane. On the other hand, if there are

purely imaginary eigenvalues, the corresponding values of τλ must be on the boundary of the

stability region, in order for the numerical solution to be close to the exact solution for all times

(see above). From Fig. 2, one sees that the 4th- and 5th-order RK methods satisfy both of

these requirements, since their right boundary is following a segment along the imaginary axis

9

very closely (although, as one can show, not exactly). To illustrate the applicability of high-

order RK methods to models oscillatory behavior, we follow the evolution of a numerically

computed quantity that is conserved by the exact solution of (24). In Fig. 3, we plot this

quantity obtained with: the “simple” Euler method (2), the “symplectic” Euler method (25),

and the RK method (19). For a fair comparison, we used τ = 10−3 for each of the first-order

methods (2) and (25) and τ = 2 · 10−1 for the 4th-order method (19). This choice of τ makes it

clear that the observed poor performance of the “simple” Euler method is not due to its lower

accuracy compared to the RK method, but due to the inferior stability of the former method.

Indeed, the “symplectic” Euler method, whose accuracy is the same as that of “simple” Euler

method but the stability region is “just right” for this problem, stays close to the exact solution

(as can be shown, even for longer times than the RK method). < EDITORS: Fig. 3 near here.

>

Stiff equations

Models where there are two (or more) disparate time scales give rise to so called stiff ODEs. A

simple special case exhibiting such behavior is a system of two interacting species which, when

considered independently of each other, evolve at their respective equilibria at very different

rates. An example is a model (with exaggerated parameters) of interacting phytoplankton and

zooplankton populations (P and Z), proposed by J.E. Truscott and J. Brindley in 1994:

Ṗ = βP (1− P)− Z
P 2

ν2 + P 2

Ż = γZ

(
P 2

ν2 + P 2
− ω

)
,

(26)

where β, ν, γ, and ω are some positive constant parameters of the model. For β = 2000,

ν = 0.05, γ = 0.4, ω = 0.7, and the initial condition P (0) = Z(0) = 0.5, the evolutions of P and

Z are shown in Fig. 4. < EDITORS: Fig. 4 near here. > Note that when the two populations

do not interact, P and Z tend to their equilibria (1 and 0) with rates proportional to the greatly

different parameters β and γω, respectively. Mathematically, these rates are proportional to the

eigenvalues of the corresponging equations linearized about any “point” (P,Z) of the solution.

In the presence of the interaction, the “memory” about these disparate time scales is reflected

by the existence of both smooth and abrupt changes of P and Z. Let us emphasize that

even though those abrupt changes (with the rate proportional to β) occur relatively rarely and

“most of the time” the evolution is smooth, the two eigenvalues λ1 and λ2 of the linearized

system (26) have magnitudes on the orders of β À 1 and γω = O(1) for all times. Then any

explicit numerical method will require, as its stability condition, that τ max{|λ1|, |λ2|} = τO(β)

be less than a constant of order one. Thus, one needs to take steps τ = O(β−1) ¿ 1 to

resolve even the smooth motion occurring on the time scale O((γω)−1) = O(1). A common

approach to avoid such an inefficient use of computational resources is to use implicit methods

(of a form more sofisticated than (12) and (14)) which, as stated earlier, have much greater

stability regions than explicit methods and hence proceed in time with much larger steps.

10

Since the implementation of such methods requires the solution of (a system of) nonlinear

algebraic equations, their programming takes much more effort than that of explicit methods.

Fortunately, modern computational software have built-in commands for solving (systems of)

stiff ODEs. For example, the solution shown in Fig. 4 was obtained by a Matlab script shown

in Fig. 5. (The nonstiff solver ode45 for this problem would run about 50 times slower and

for larger values of β, it would simply fail.) Even though the example above uses unrealistic

values of parameters, it still illustrates the issue which occurs in many known systems of a large

number of coupled equations (for example, equations describing chemical reactions among trace

gases in the atmosphere). < EDITORS: Fig. 5 near here. >

The periodic solutions in the plankton model (26) and Lotka–Volterra equations are differ-

ent in the following regard. Any (meaningful) initial condition in the plankton model will be

attracted to the unique periodic solution shown in Fig. 4, while for the Lotka–Volterra model,

any initial condition will be repeated periodically, i.e. a continuum of periodic solutions ex-

ists. Correspondingly, the respective models are often referred to as excitable and conservative.

Conservative models with four and greater even number of interacting species may have imag-

inary eigenvalues of disparate magnitude. (According to our definition, such systems would

be also called stiff, but the convention is to use that name only for systems with Reλ < 0.)

Therefore, a suitable numerical method must have a section of its stability boundary following

the imaginary axis. The corresponding Matlab’s stiff solver is ode23t. Its performance can be

tested on the following simple model:

u̇ = 1000i u + eit , (27)

which has no ecological interpretation but serves to illustrate the above point. Indeed, the “free”

solution of (27) oscillates 1000 times faster than the “forced” one, hence two disparate rates

of conservative evolution are present. Other stiff and nonstiff Matlab’s solvers do not perform

satisfactorily for this problem. Thus, the conclusion drawn from this example is similar to that

stated earlier, namely: Methods that can be applied to nonconservative systems (such as (26))

may not work for conservative ones, and vice versa.

Further Reading

Chandra, P.K. and Singh, R.P. (1995). Applied numerical methods for food and agricul-

tural engineers. Boca raton, FL: CRC Press.

Gerald, C.F. and Wheatley, P.O. (1989). Applied numerical analysis (4th edn.). Reading,

MA: Addison Wesley.

Lee, H.J. and Schiesser, W.E. (2003). Ordinary and partial differential equation routines

in C, C++, Fortran, Java, Maple, and MATLAB. Boca Raton, FL: Chapman & Hall /

CRC.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1992). Numerical recipes

in Fortran 77 (2nd edn.). Cambridge, UK: Cambridge University Press; Press, W.H.,

11

Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Metcalf, M. (1996). Numerical recipes

in Fortran 90 (2nd edn.). Cambridge, UK: Cambridge University Press; Press, W.H.,

Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1992). Numerical recipes in C (2nd

edn.). Cambridge, UK: Cambridge University Press.

Sauer, T. (2006). Numerical analysis. Boston, MA: Pearson/Addison Wesley.

Shampine, L.F. (2005). Error estimation and control for ODEs, SIAM Journal of Scien-

tific Computing 25, 3–16.

Stanoyevitch, A. (2004). Introduction to numerical ordinary and partial differential equa-

tions using MATLAB. Hoboken, NJ: Wiley-Interscience.

See also in this volume:

Numerical methods for distributed models

12

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

τλ
i

τλ
r

Figure 1: Stability region boundaries of methods (2) (thin solid), (12) (dashed), and (21) (thick
solid). Note that for (12), the stability region is outside the dashed circle.

13

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4 τλ
i

τλ
r

Figure 2: Stability region boundaries of methods (15), (16) (thin solid), (19) (thick solid), and
the 5th-order RK method (dashed).

14

0 5 10 15 20
0.019

0.02

time

v
u

c e
xp

(−
v−

c
u

)

"symplectic" Euler

"simple" Euler

RK

Figure 3: Evolution of quantity Q = vuc exp[−v− cu], which is conserved for the exact solution
of the Lotka–Volterra model with a = b = 1 and d = c. The initial condition is u0 = v0 = 2,
and c = 2. The results are shown for methods (2) (“simple” Euler), (25) (“symplectic” Euler),
and (12) (4th-order RK). Values of the step size are indicated in the text. The smaller the
deviation of Q(t) from Q(0), the better the method performs.

15

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time

0.01⋅Z

P

Figure 4: The solution of the stiff model (26) with the parameters indicated in the text.

16

global beta nu gamma omega

% This allows one to communicate the

% parameter values to code plankton.m

tspan=[0 100]; % computational time window

y0=[0.5; 0.5]; % initial condition for u and du/dt

beta=2000; nu=0.05; gamma=0.4; omega=0.7;

options=odeset(’RelTol’,10^(-3),’AbsTol’,10^(-6));

% These are default values;

% the command is shown for

% illustration purposes only.

[t,y]=ode15s(@plankton,tspan,y0,options);

plot(t,y(:,1))

% -----------------------

% This is a separate function code

% defining the equations of the model.

function dydt=plankton(t,y)

global beta nu gamma omega

dydt=zeros(size(y));

% preallocate column vector dydt

% to speed up the computation

p2=y(1,:).^2; auxiliary=p2./(nu^2+p2);

dydt(1,:)=beta*y(1,:).*(1-y(1,:))-y(2,:).*auxiliary;

dydt(2,:)=gamma*y(2,:).*(auxiliary-omega);

Figure 5: The Matlab codes used to obtain the solution shown in Fig. 4.

17

