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Article synopsis

Numerical methods commonly used for solving partial differential equations of the reaction-

advection-diffusion type are presented. The use of implicit (e.g., Crank-Nicolson) and semi-

implicit methods is emphasized as being more time-efficient than that of explicit methods. The

main kinds of boundary conditions are considered. Briefly discussed are operator-splitting and

spectral methods, as well as methods for equations with two spatial dimensions and for hyper-

bolic problems. Relevant built-in commands of Matlab are presented and their counterparts in

other programming languages are briefly mentioned.

Keywords: Numerical solution of differential equations, spatially-extended models, age-

structured models, reaction-advection, reaction-diffusion, and advection-diffusion models. ED-
ITORS, please include proper keywords or send me the list of them to
pick. I simply don’t know what else to put here.
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Partial differential equations (PDEs) in ecological model-

ing

Such equations arise whenever the quantities of interest vary not only with time but also with

another variable. For example, in age-structured models, this variable is the age of a given

population subroup. When there are spatial interactions in the model caused by diffusion and

convection, the other variable is the spatial coordinate (or coordinates). In what follows we

focus on those models where the effect of diffusion is on the order of, or greater than, the

effect of convection. These models are described by so called parabolic equations. Models

where convection dominates diffision (this case includes the age-structured models) pertain to

a mathematically different type of problems called hyperbolic, or wave, equations; they will

only be mentioned briefly at the end of this article. To further narrow the scope of this article,

we will consider only finite-difference and elementary spectral numerical methods. The reader

can find accessible expositions of finite-element methods in, e.g., the books by Stanoyevich and

Chandra and Singh. The advantage of those methods over the finite-difference ones is that they

allow one to use a non-uniform spatial discretization and also to account for complex shapes of

two- and three-dimensional spatial domains. The price one pays for this advantage is a more

involved programming.

Explicit methods for reaction-advection-diffusion equa-

tions

The equation whose solution we will focus on is

u̇ = D(u, x, y)∂2
xu + g(u, x, t)∂xu + f(u, x, t), u(x, t0) = u0(x) (1)

where: t and x are the time and space variables and u̇ ≡ ∂tu. (A generalization of (1) to two

spatial dimensions will be considered later.) The three terms on the r.h.s. of (1) are associated

with diffusion, advection, and reaction, respectively. To illustrate the main issues of numerical

solution of (1), we first consider its simpler version — the Heat equation — where we retain

only the diffusion term and take the diffusion coefficient D to be a constant:

u̇ = D∂2
xu, u(x, t0) = u0(x) ; (2)

u(0) = 0, u(X) = 0 . (3)

The last two equations are called boundary conditions; such (or similar) conditions must always

be supplied for a PDE. Boundary conditions that fix the value of the unknown, as in (3), are

called Dirichlet boundary conditions. Boundary conditions of other types will be considered

later. Note that setting the boundary conditions (3) to zero does not restrict the generality of

our treatment. Indeed, for the more general conditions, u(0) = a(t), u(X) = b(t), one defines

a new variable w = u− [(X − x)a(t) + xb(t)]/X, which satisfies (2) and (3).

We discretize tn = t0 +nτ and xm = 0+mh, where τ and h are the time step and the mesh

size, and n = 0, 1, 2, . . . and m = 0, 1, . . . , X/h ≡ M . Denote un
m ≡ u(xm, tn) and Un

m to be,
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respectively, the exact and the numerical solutions at node (xm, tn). Replacing

u̇ → (Un+1
m − Un

m)/τ + O(τ)

∂2
xu → (Un

m+1 − 2Un
m + Un

m−1)/h
2 + O(h2) ,

(4)

one obtains the finite-difference approximation to (2):

Un+1
m = rUn

m+1 + (1− 2r)Un
m + rUn

m−1 , Un
0 = 0, Un

M = 0 , (5)

where

r =
Dτ

h2
. (6)

The meaning of the notation O(τ p) was explained in the companion article on ODEs. Equation

(5) is the counterpart of the explicit Euler method for ODEs. As follows from (4), its accuracy

is O(τ) + O(h2). (However, for an initial condition u0(x) that is either discontinuous or has a

discontinuous slope, the spatial accuracy is reduced: the smaller r in (6), the closer the accuracy

to the maximum possible value O(h2).) The numerical solution at node (xm, tn+1) can thus

be found from (5 and the initial condition U0
m = u0(xm) if one knows the solution at nodes

(xm, tn) and (xm±1, tn). These four nodes form a so called stencil for scheme (5), as shown

schematically in Fig. 1. < EDITORS: Fig. 1 near here. >

Stability analysis

As in the case of ODEs (see the companion article), the numerical method must be not only

accurate but also stable in order to converge to the exact solution when τ and h tend to

zero. The following von Neumann analysis is the standard tool to test stability of a numerical

method. First, we note that if Un
m and V n

m are two slightly different (due to, e.g., different initial

conditions) solutions of (5), then the error εn
m = V n

m − Un
m satisfies the same Eq. (5) (since the

latter is linear). This error can be expanded into a series of spatial Fourier harmonics:

εn
m =

∑

l

cl(n) exp[iklxm], i ≡ √−1 , (7)

where cl(n) are amplitudes of the harmonics and kl are inversely proportional to the spatial

oscillation periods of the harmonics. (Note that while the variable εn
m is real, both the exponen-

tials and their amplitudes cl are complex numbers; this is a standard mathematical procedure

that does not restrict the validity of the approach.) The “slowest” harmonics have kl ≈ 0 are

are changing very slowly with x. The “fastest” harmonic has kl ≈ π/h, which corresponds

to the shortest possible oscillation period of 2h; see Fig. 2. < EDITORS: Fig. 2 near here. >

Next, one assumes that the amplitudes cl(n) depend exponentially on the number of iterations:

cl(n) = ρn. Then if the subsequent analysis finds that |ρ| ≤ 1, then the method is stable,

and it is unstable otherwise. The substitution of (7) into (5) yields the stability condition

to be |ρ| = |1 − 2r + 2r cos(klh)| ≤ 1, which with the above bounds for kl (minkl = 0 and

maxkl = π/h) gives the stability condition for (7):

r ≡ Dτ/h2 ≤ 1/2 . (8)
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If this condition is violated (due to taking either τ “too large” or h “too small”), the fastest spa-

tial harmonic begins to grow exponentially, and the numerical solution soon becomes “drowned”

in a high-frequency noise.

From (8) one has τ = O(h2). Then the accuracy of method (5) can be expressed only in

terms of the mesh size h: O(τ) + O(h2) = O(h2) + O(h2) = O(h2). This leads to the following

observation. As we noted above, method (5) is the counterpart of the explicit Euler method for

ODEs (see Eq. (2) of the companion article). Other explicit methods may have a higher-order

accuracy in the time step; e.g., the PDE counterpart for (2) of the Heun method (Eqs. (15),

(16) of the previous article) would have accuracy O(τ 2). However, this would not increase the

overall accuracy of such a method. The reason is that the stability condition for this method is

also given by (8). Then, similarly to the above, the overall accuracy of the counterpart of the

Heun method for (5) is O(τ 2) + O(h2) = O(h4) + O(h2) = O(h2).

Implicit methods for the Heat equation

Stability condition (8) forces one to use a rather small time step, which for integration over

large times may take a considerable computational time. (With modern computers, this is

rarely an issue when the PDE involves only one spatial coordinate, but for problems with two

(or three) spatial coordinates, this issue is still significant.) Therefore, methods whose stability

conditions would be less restrictive than (8) (or even absent) are of considerable interest. A

famous example is the Crank–Nicolson (CN) method, obtained from the following discretization

of (5):
Un+1

m − Un
m

τ
=

D

2

[
Un

m+1 − 2Un
m + Un

m−1

h2
+

Un+1
m+1 − 2Un+1

m + Un+1
m−1

h2

]
. (9)

This method is stable unconditionally (i.e., for any τ), and its accuracy is O(τ 2) + O(h2), as

we will explain below. Its stencil is shown in Fog. 3 by the six grey circles. < EDITORS: Fig. 3

near here. > ¿From (9) one can see that Un+1
m cannot be determined in isolation. Rather, one

has to determine the vector of the unknowns on the entire (n + 1)th time level. Introducing

notations

~U
n

=




Un
1

Un
2

·
Un

M−2

Un
M−1




and A =




−2 1 0 · · 0
1 −2 1 0 · 0
· · · · · ·
0 · 0 1 −2 1
0 · · 0 1 −2




(10)

one can rewrite the CN method (9) as a matrix equation:

(
I − r

2
A

)
~Un+1 =

(
I +

r

2
A

)
~Un , (11)

where I is the M ×M unit matrix and r is defined in (8).

The number of arithmetic operations required to solve a generic M ×M matrix equation

(i.e., a system of M linear equations with M unknowns) is on the order of M3. Thus, if

the spatial domain is discretized by, say, 100 mesh points, solving such a generic M × M

matrix equation would take about one million operations per time step. This is many orders
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of magnitude greater then the operations count for method (5), which requires only about

4M operations per time step. However, the matrix (on the l.h.s.) of the CN method (11)

is not generic. Rather, it is tridiagonal, meaning that only its entries on the main diagonal

and the two adjacent sub- and super-diagonals are nonzero (see (10)). For such matrices, it is

possible to solve (11) using only about 8M operations, a tremendous improvement compared

to the generic count of about M3. The corresponding solution method is called the Thomas

algorithm (invented in the 1940’s) and is discribed in most textbooks on numerical solution of

PDEs or on numerical analysis. This method is also rather easy to program. Thus, the CN

method offers a considerable computational time saving compared to the explicit method (5),

because the time step in the CN method is no longer restricted by (8) to ensure stability.

However, the time step in the CN method still needs to be about, or smaller than, the mesh

size h to ensure the accuracy O(h2). This is especially important if the initial condition u0 has

sharp corners or is discontinuous. In such a case, it has been found empirically that nonsmooth

features of u0(x) “diffuse away” (as they do in the exact solution) and do not contaminate

the numerical solution when τ < h/(3
√

D). Also, the smaller r, the faster these nonsmooth

features “diffuse away” in the numerical solution. Alternatively, for a nonsmooth u0, one can

use another method:

3

2

Un+1
m − Un

m

τ
− 1

2

Un
m − Un−1

m

τ
= D

Un+1
m+1 − 2Un+1

m + Un+1
m−1

h2
, (12)

which has the same accuracy and the stability property as the CN method, but smoothes out

nonsmooth initial conditions much more successfully (i.e., for larger r.) (The derivation of this

formula uses the same idea as the derivation of the two-step method (20) in the companion

article on ODEs.) Method (12) is to be started by computing U1
m by, say, the CN method. To

program the rest of (12), one moves all of the Un+1’s on the l.h.s. and all the other terms on

the r.h.s. and then rewrites this as a matrix equation analogous to (11). The matrix on the

l.h.s. is tridiagonal and hence can be inverted time-efficiently using the Thomas algorithm.

We now briefly explain why the accuracy of the CN method is O(τ 2)+O(h2); this will show

how (11) can be generalized for the more general equation (1). First, note that for any function

u(t), different discretization schemes approximate the derivative u̇ with different accuracy. For

example,

u̇(t) =
u(t + τ)− u(t)

τ
+ O(τ), (13)

u̇(t) =
u(t + τ)− u(t− τ)

2τ
+ O(τ 2), (14)

as can be shown using the Taylor expansion of u near time t. That is, the approximation at

point t is more accurate if one uses the data points located symmetrically on both sides of t.

Note then that points t and t + τ are located symmetrically about the point t + 1
2
τ . Therefore,

a formula similar to (14) approximates u̇ at that point with accuracy O(τ 2):

u̇
(
t +

τ

2

)
=

u(t + τ)− u(t)

2 (τ/2)
+ O(τ 2). (15)

Therefore, the quotient appearing on the l.h.s. of (11) approximates u̇ with accuracy O(τ 2)

about the virtual node at (xm, tn + (τ/2) ), shown in Fig. 3 with a cross. Finally, similarly to
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(14) and (15) it can be shown that,

∂2
xu

(
t +

τ

2

)
=

∂2
xu(t + τ) + ∂2

xu(t)

2
+ O(τ 2). (16)

Combining (16) with the second equation in (4), one has that the r.h.s of (11) approximates

∂2
xu at the same virtual node with accuracy O(h2) + O(τ 2). Thus, the overall accuracy of (11)

is O(τ 2) (from the l.h.s.) plus O(h2) + O(τ 2) (from the r.h.s.), resulting in the overall value

O(τ 2) + O(h2).

Implicit and semi-implicit methods for (1) and for similar

coupled systems

Let us first show how the idea of the previous paragraph can be used to obtain a numerical

method for a single equation (1) where the coefficients D, g, and f depend only on x and t

(i.e., do not depend on the unknown u). Equations with this property are referred to as linear.

Generalizations to nonlinear equations and systems of linear or nonlinear coupled equations

will be considered later. The second-order accurate approximations to the terms in (1) at the

virtual node (xm, tn + (τ/2) ) are produced by the following discretization schemes:

u̇ → Un+1
m − Un

m

τ
,

D(x, t)uxx → 1

2

(
Dn

m

Un
m+1 − 2Un

m + Un
m−1

h2
+ Dn+1

m

Un+1
m+1 − 2Un+1

m + Un+1
m−1

h2

)
,

g(x, t)ux → 1

4h

(
gn

m(Un
m+1 − Un

m−1) + gn+1
m (Un+1

m+1 − Un+1
m−1)

)
,

f(x, t)u → 1

2

(
fn

mUn
m + fn+1

m Un+1
m

)
.

(17)

Putting these terms together produces an unconditionally stable (i.e., with no restriction on

τ for the stability) method with the overall accuracy O(τ 2) + O(h2). Naturally, it is assumed

that the coefficients D, g, and f change little over distances of order h and times of order τ .

Also, the above discretizations are not unique in the sense that replacing both Dn
m and Dn+1

m

with D
n+ 1

2
m = D(xm, tn + (τ/2)) (and similarly for g and f) yields another scheme with the

same accuracy and the stability property as (17).

When generalizing the previous technique to the case where D, g, and f depend on the u, one

faces the problem that the r.h.s.’s in (17) become nonlinear functions of the unknown variables

~Un+1 (see (10)) on the (n + 1)th time level. (If one uses D
n+ 1

2
m instead of Dn+1

m as suggested

above, one still needs to find U
n+ 1

2
n

m .) Solving systems of nonlinear algebraic equations requires

considerably more effort than solving their linear counterparts. A common approach is to do so

by the Newton-Raphson method, described in textbooks on numerical analysis. This approach

needs to be used when one wants to obtain an unconditionally stable method with the overall

accuracy O(τ 2) + O(h2) and, in addition, either of the following holds: (i) D depends on the

unknown u; or (ii) The reaction term f is stiff in the sense described in the companion article
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on ODEs. (The latter case may take place not for the single equation (1) but for two or more

coupled equations of that form.)

However, when both the diffusion coefficient D does not depend on the unknown variable

(although it may still depend on x and t) and the reaction term is not stiff, a simpler approach

can be used. Its idea is to use the CN method (or any method with analogous accuracy and

stability; e.g., (12)) to discretize the diffusion term, while using an explicit method to discretize

the other two terms on the r.h.s. of (1). Indeed, since the diffusion term is computed by the

unconditionally stable CN method, then the restriction on the time step is imposed by the

explicit calculation of the other two terms, which requires only that

τ < min[h/|g|max, 2/|f |max] (18)

and is much less restrictive than (8) when h is small. (In fact, as we noted earlier, the condition

τ < const · h needs to hold just to ensure good accuracy of the method.) Let us rewrite (1) as

u̇ = I + E , (19)

where the evolutions associated with I and E need to be computed implicitly and explicitly,

respectively. (In the case of (1), I = D∂2
xu and E = g∂xu + f .) Then a method that has the

accuracy O(τ 2) + O(h2) and the stability restriction of the form (18) is

Un+1
m − Un

m

τ
=

(
γIn+1

m +
[
3

2
− 2γ

]
In

m +
[
γ − 1

2

]
In−1

m

)
+

(
3

2
En

m −
1

2
En−1

m

)
, (20)

where 1/2 ≤ γ ≤ 1 and, in our example,

In
m = Dn

m

Un
m+1 − 2Un

m + Un
m−1

h2
, En

m = gn
m

Un
m+1 − Un

m−1

2h
+ fn

m , (21)

etc. Method (20) is an example of a semi-implicit, or IMEX, method. It is a two-step method

and, as (12 above, it needs to be started by computing U1
m by a single-step method (e.g., by (20)

with γ = 1/2 and the second parentheses on the r.h.s. being replaced with En
m). When γ = 9/16,

method (20) is most (among all γ’s) efficient for smoothing our nonsmooth initial confitions,

while when γ = 3/4, its stability boundary is most extended along the imaginary (τλ)-axis. As

shown in the companion article on ODEs, this feature of the method is essential for stability

when the explicitly treated terms in (1) describe no or little dissipation. Mathematically, this

is the case when, e.g., the advection coefficient g is on the order of or greater than the reaction

term f .

In connection with the last remark, let us also note that in that case, one should not use

IMEX methods where the E-term is computed by any method in the Runge–Kutta family. This

may sound surprising given that the latter methods were advocated in the companion article

on ODEs precisely because they have part of their stability region boundary extended along

the imaginary (τλ)-axis, which is required for successful numerical solution of ODEs with no

or little dissipation. However, when a Runge–Kutta method is used to compute the E-term

in an IMEX method, the stability region of such an IMEX method turns out to be close to

that of the explicit Euler method, and the latter region’s boundary does not extend along the

imaginary (τλ)-axis.
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In many cases one needs to deal not with a single reaction-advection-diffusion equation

but with a system of coupled such equations. However, in most applications, the diffusion

terms are decoupled. That is, a term proportional to ∂2
xuj enters only into the equation for

u̇j but not into the equations for other unknown variables ui with i 6= j. In such a case, one

can straightforwardly generalize method (20) (or any other IMEX method). Indeed, moving

the In+1
m -term to the l.h.s. of the equation for the jth variable yields a tridiagonal matrix

multiplying only that variable and not involving other unknown variables at the (n+1)th time

level. The r.h.s. of the equation does involve all of the variables (because they are coupled via

the E-term), but they are evaluated at the earlier time levels and therefore have been already

calculated at previous steps. Thus, each of the equations can be solved time-efficiently by the

Thomas algorithm. The above approach can be used for both linear and nonlinear equations of

form (1). For linear equations only, the block Thomas algorithm (described in more advanced

textbooks or in the Internet resources) can be used as an alternative. Finally, let us note that if

terms Dij∂
2
xuj enter into the equation for u̇i with i 6= j, where all of the Dij do not depend on x

and u (but are allowed to depend on t), the I-part of such a system can be made uncoupled by

a change of the unknown variables that diagonalizes matrix Dij. The corresponding methods

are considered in all textbooks on Linear Algebra.

Let us note that Matlab has a built-in solver for coupled equations of form (1) in one

spatial dimension and with arbitrary D, g, and f . Matlab’s setup allow one to also handle

radially symmetric solutions in regions with circular symmetry. The user must provide the set

of discretization points in the spatial interval and also code in the coefficients D, g, and f and

the boundary and initial conditions. See Matlab’s help for pdepe.

Operator-splitting methods

Suppose one has an evolution equation of a general form:

u̇ = A1 + A2, (22)

where each of A1 and A2 may depend on x, t, u, ∂xu, etc. The criterion by which the r.h.s. of

(22) has been broken down into the two terms is this: Each of the auxiliary problems

u̇ = Ak, k = 1, 2 (23)

can be solved easily. Then, to approximate the solution of (22), one solves the two individual

equations (23) in sequence over each time step. The global error generated by this splitting is

O(τ), in addition to any errors that may be introduced when solving each of the (23). More

accurate versions of this method are also available. However, we do not advocate for operator-

splitting methods because of their stability properties. Namely, although for linear equations

such methods are unconditionally stable, for nonlinear equations, in general, the stability of

operator-splitting methods is determined by a condition similar to (8), even if each of Eqs. (23)

is solved exactly. Hence, in such cases, operator-splitting methods offer no advantage over

explicit methods. Operator-splitting methods find their primary use in solving (nonlinear) wave

equations without dissipation, which, however, do not normally occur in ecological models.
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Flux and mixed boundary conditions

We now show a common trick that can be used to construct methods of the same accuracy as

above when boundary conditions other than (3) are used. Namely, while (3) specify the value

of the unknown at the boundaries (recall that it was set to 0 without loss of generality), in

some problems it may be the flux of u, or a linear combination of u and its flux, that are to be

specified. Since the flux of u is proportional to ∂xu, it is the calculation of ∂xu at the boundary

with accuracy O(h2) that requires special treatment. Thus, consider the condition at, say, the

left boundary, which replaces the first condition in (3):

∂xu(0, t) + q(t)u(0, t) = b(t) , (24)

where q(t) and b(t) are known for any t. When q(t) ≡ 0, this is called a Neumann boundary

condition, and when q(t) 6= 0, a mixed, or Robin, boundary condition. One discretizes (24) by

introducing a fictitious node at x = −h:

Un
1 − Un

−1

2h
+ q(tn)Un

0 = b(tn) , (25)

where Un
−1 = u(−h, tn); the accuracy of this approximation is O(h2) (compare with (14)).

This one equation introduces two new unknowns, Un
0 and Un

−1. Therefore, one more equation

involving these quantities must be supplied. Such an equation is given by the first equation

in (5) with m = 0 for explicit methods and by (9) with m = 0 for implicit ones. For explicit

methods, this concludes the treatment of (24). For implicit methods, one more step is needed.

Recall that to render the solution of the matrix equation (11) time-efficient, the matrix on its

l.h.s. must be tridiagonal. If (25) and (9) with m = 0 are both included separately into the

counterpart of (11) arising for boundary conditions (24), the resulting matrix is not tridiagonal.

To circumvent this problem, one should, instead of including the aforementioned two equations

separately, solve (25) for Un
−1 and substitute the result into (9) with m = 0. Then the matrix

in question becomes tridiagonal and the analogue of (11) can be solved time-efficiently.

Elementary spectral methods

The use of such methods for solving evolutionary PDEs has become increasingly common due

to the availability of the required built-in commands in major computational software such

as Matlab and Fortran. The idea of the method is based on the following property of the

Fourier transform of a function. If f̂(k) is the Fourier transform of f(x) with respect to x,

then (−i k)mf̂(k) is the Fourier transform of ∂m
x f(x). Here i =

√−1 and k is the parameter

of the Fourier transform, sometimes referred to as the wavenumber or frequency. For example,

in Matlab, fft and ifft are the commands of the Fourier transform and the inverse Fourier

transform. < EDITORS: Please don’t change the typesetter fornt for Matlab commands to the

regular font. Using the typesetter font in this case is not equivalent to italicizing, boldfacing, or

underlying a term. Rather, it is analogous to italicizing latin names, as shown in the example articles

you posted for the information of the authors. The use of such font for Matlab commands is accepted
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as a convention in the literature on computational methods. Thank you for not changing the font.

> (The entire acronym stands for Fast Fourier transform; similar commands are available in

Fortran and C.) Then if k is the transform parameter properly defined within the code, then ∂2
xu

can be computed for all x at once by a short command: real( ifft(-(k.^2).*fft(u)) ).

(Here the command real discards a very small imaginary part of the answer which arises from

the round-off error, and the period before the exponentiation and multiplication symbols is part

of Matlab’s syntax for array multiplication.) This command can be also used in, say, IMEX

methods. For example, method (20) can be programmed as follows:

K2=k.^2;

u=real( ifft( ( (1-T*(3/2-2*G)*K2).*fft(u) - T*(G-1/2)*K2.*fft(uold) ...

+ T*fft(3/2*E-1/2*Eold) )./(1+T*G*K2) ) );

where T≡ τ , G≡ γ, and uold and Eold are the stored values of U and E at tn−1. If ∂xu is

present in E , it can also be computed using fft and ifft, as explained above. In addition to

the coding simplicity, advantages of the above approach are that it is (i) fast (requires only on

the order of M log2 M operations for each of the fft and ifft, where M is the number of the

discretization points in ~U) and (ii) has very high accuracy in h provided that the solution is

smooth (see below).

The main limitation of this approach is that, by the very nature of discrete Fourier transform,

the discretized functions on which it is implemented must be periodic (or very close to periodic).

This means that not only the values of the function but also its slopes at the end points of the

interval must match each other. Thus, boundary conditions (3) are not periodic despite the fact

that u(0, t) = u(X, t); the reason is that ∂xu(0, t) and ∂xu(X, t) are not enforced to be equal.

(For example, sin(πx/X) satisfies (3), yet is not periodic on [0, X] since its slopes at x = 0 and

x = X are opposite.) If discrete Fourier transform is used to compute a derivative of a function

that is not periodic in the above sense, small-period but finite-amplitude oscillations arise at

the end points which then propagate inside the interval and destroy the numerical solution. (In

general, if ∂m−1
x u is continuous but ∂m

x u is discontinuous either at the end points or inside the

interval, then the spatial accuracy of the solution is O(hm).)

Problems with periodic boundary conditions rarely arise in ecological modeling. Yet, the use

of Fourier transform and its variant (see below) can be justified in the following two cases. First,

the solution may be localized within a central part of the interval and be virtually zero (or tend

to the same constant value) in some extended regions near the end points. Such a solution is very

close to periodic. Second, the problem may have zero flux boundary conditions, i.e. (24) with

q(t) = b(t) ≡ 0; also, it may asymptotically tend to different constants at the end points (as, for

example, the travelling wave in the Fisher–Kolmogorov–Petrovsky–Piskunov equation). The

(real-valued) variant of discrete Fourier transform called discrete cosine transform can be used

on such functions. The corresponding commands dct and idct are included in Matlab’s version

7.0.0 and beyond; earlier versions have them in the Signal processing toolbox. The key difference

from the Fourier transform commands is that only even derivatives can be computed with the

cosine transforms; e.g., ∂2m
x u is computed as idct( (-k.^2).^m .*dct(u) ), provided that u

satisfies the zero flux boundary conditions.

11



Problems with 2 spatial dimensions

Such problems are considerably more difficult than those with one dimension. First, if the

spatial region does not have rectangular or circular symmetry, the numerical modeling of the

problem requires the use of finite element methods. In circular regions, the problem needs to

be reformulated in polar coordinates. Below we consider only methods for rectangular regions.

As earlier, we explain the main issues using the two-dimensional Heat equation

u̇ = ∂2
xu + ∂2

yu (26)

with conditions along the boundary of the rectangle 0 ≤ x ≤ X, 0 ≤ y ≤ Y which will be

specified in each particular case. Generalizations to more realistic equations, such as a two-

dimensional counterpart of (1), can be made along the lines considered above. Withough loss

of generality we assume that the mesh size along the x- and y-directions is the same and equals

h; the numerical solution at node (xm = mh, yl = lh, tn = nτ) is denoted Un
m,l, 0 ≤ m ≤ M ,

0 ≤ l ≤ L. Two time levels for such a discretization are shown in Fig. 4, with the boundary

being shown by open circles. < EDITORS: Fig. 4 near here. >

First, the explicit Euler method for (26) is:

Un+1
m,l = (1− 4r)Un

m + r(Un
m−1,l + Un

m+1,l + Un
m,l−1 + Un

m,l+1) , (27)

where r is defined in (6) with D = 1. The stencil of this method is shown in Fig. 5. < EDITORS:

Fig. 5 near here. > The accuracy of this method is O(τ) + O(h2) and its stability condition is

r ≤ 1/4 . (28)

Any of the Dirichlet, Neumann, or mixed boundary conditions can be used with this method

similarly to how it was done in one dimension. In addition, if either periodic or zero flux (a

particular case of Neumann) boundary conditions can be used, one can use two-dimensional

built-in commands to approximate the r.h.s. of (26); in Matlab such commands are fft2 and

dct2. The stability condition in this case is more restrictive:

r ≤ 1/π2 . (29)

A naive generalization of the CN method has the form:

(1 + 2r)Un+1
m,l −

r

2

(
Un+1

m+1,l + Un+1
m−1,l

)
− r

2

(
Un+1

m,l+1 + Un+1
m,l−1

)

= (1− 2r)Un
m,l +

r

2

(
Un

m+1,l + Un
m−1,l

)
+

r

2

(
Un

m,l+1 + Un
m,l−1

)
.

(30)

To represent this as a systems of linear equations, one arranges the (L − 1) × (M − 1) two-

dimensional array Um,l into a (L−1)(M−1)-component vector using the lexicographical order,

an example of which is shown in the lower time level of Fig. 4. The reason we called this general-

ization “naive” is because although it has the same accuracy and stability as the CN method in

one dimension, the coefficient matrix on the l.h.s. of (30) is not tridiagonal. Therefore, it can-

not be inverted time-efficiently. There are two ways out of this difficulty. One and the standard
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in the community of computational scientists is to use any of Alternating Direction Implicit

(ADI) methods; two well-known representatives of this family are the Peaceman–Rachford and

Douglas–Rachford methods. Roughly speaking, these are special cases of operator-splitting

methods, which perform the operations ∂2
x and ∂2

y in sequence. These methods are optimally

time-efficient. However, both their programming and treatment of boundary conditions are

nontrivial and are better be left to experts. The other way is to attempt to invert the non-

tridiagoinal matrix in question using the fact that it is sparse (i.e. has nonzero entries only

on 5 (not adjacent) diagonals). Matlab has special algorithms for dealing with such matrices

(see the help entries for sparse and spdiags) which speed up the computations compared to

the case of nonsparse matrices. The time efficiency of such an approach is sub-optimal, but it

may be a worthwhile sacrifice for the ease of the programming. Alternatives to these include

using fft2 and dct2 when boundary conditions allow, or returning to the explicit method, also

sacrificing the computational speed for the simplicity of coding.

Note on hyperbolic problems

These are equations where advection strongly dominates diffusion. They occur when the un-

known variable is primarily influenced by, say, a flow that carries it. They also occur in

continuous age-structured models, where the role of the flow is played by the unidirectional

transition from a younger subgroup to the older one. In either case, the underlying equation is

(1) where D = 0, or its generalization for the case of two partial dimensions or several coupled

variables. (Therefore, in what follows we refer only to the case D = 0 without mentioning this

every time.) Each of such equations must have exactly one boundary condition specified at the

end point where the flow emanates. For example, when solved over an interval [0, X] with some

X > 0, (1) with g > 0 describes advection towards increasing values of x. Therefore, such an

equation must have one boundary condition at x = 0. For g < 0, the flow is in the opposite

direction, and hence the boundary condition must be specified at x = X.

For g > 0, the following simple upwind method can be used:

Un+1
m − Un

m

τ
= gn

m

Un
m+1 − Un

m

h
+ fn

m, (31)

while for g < 0 one needs to replace the numerator on the r.h.s with Un
m − Un

m−1. These

methods have accuracy O(τ) + O(h). For either sign of g, a method of accuracy O(τ 2) + O(h2)

results when one uses the central difference of the form (14) for both the temporal and spatial

discretizations. Note that using a wrong spatial discretization for a given temporal one (or vice

versa) will result in an unstable, and therefore useless, method. The reason for this is similar to

that why certain methods work well for ODEs with dissipation but do not work for conservative

ODEs, and vice versa; see the companion article on ODEs for more details. Upwind, downwind,

and central-difference schemes of higher accuracy can be found in textbooks. All such methods

are adequate when the solution does not have a sharp propagation front. For solutions with

abrupt changes either in their profile, the slope, or the curvature, it is more appropriate to use

the method of characteristics. The idea of this method is founded in the fact that in hyperbolic
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problems, the solutions propagate along certain lines in space and time called characteristics.

Then the evolution along a characteristic is governed by an ODE rather than a PDE. The

method of characteristics is easy to use either for a single equation (1) or when the coefficients

g’s in the system of coupled such equations do not depend on x and u’s (but may depend on

t).
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Figure 2: The schematical graph of the real part of the “fastest” spatial harmonic in (7). Its
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