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(Received 18 July 1991; accepted 26 September 1991) 

The formation of two-dimensional Turing patterns in nonequilibrium chemical systems is 
studied by numerical simulations with an activator-substrate depletion model. The relative 
stabilities of the different hexagonal patterns and the striped patterns are discussed, in 
particular in the vicinity of the transition, and compared with the present state theory. The 
generic instabilities of the striped patterns are evidenced. In particular, we report the formation 
of stable zigzag patterns which share features both of one-dimensional and two-dimensional 
patterns. We also provide examples of temporal evolution in a weakly confined system. 

I. INTRODUCTION 
In this paper, we shall be concerned with monophasic 

isothermal chemical systems kept far from equilibrium by a 
permanent supply of fresh reactants. The term "monopha
sic" rules out heterogeneous systems, surface reactions, and 
reactions involving precipitates. The transport processes are 
supposed to be limited to molecular diffusion, excluding 
convection effects. In these conditions the concentrations of 
the different species evolve in space and time according to a 
system of reaction-diffusion equations. Most systems 
asymptotically approach a stationary state which preserves 
the symmetries imposed by the feeding process. For the sake 
of simplicity, this state will be called "uniform" in the fol
lowing, by reference to the special case of a uniform feed. 
The latter assumption is commonly used in theoretical work. 
If appropriate kinetics, such as autocatalysis and substrate 
inhibition mechanisms, are involved, the uniform state can 
become unstable when a control parameter crosses a critical 
value and various structures can spontaneously develop. 1-5 

If, at the bifurcation point, the first unstable mode corre
sponds to a nonzero critical wave number k = kc' a spatial 
pattern of wavelength A = 21T / kc forms just above the tran
sition point. When the pattern resulting from this symmetry 
breaking instability is stationary, it is called a "Turing struc
ture." The emergence of such structures has been predicted 
almost forty years ag06 and thoroughly studied from a theo
retical point of view, in particular in relation with theirpossi
ble role in biological morphogenesis.4,7-9 In addition to spe
cial kinetics, another necessary condition for a Turing 
instability to occur is that the diffusion coefficients of at least 
two species be different. From a practical point of view, these 
are stringent conditions; they have precluded the production 
of these patterns in the laboratory until recently, when a 
stationary concentration pattern, with the expected char
acters, was obtained by Castets et al.,10-12 who studied the 
chlorite-iodide-malonic acid reaction in a film of inert gel. 
The observed pattern, localized in a narrow band orthogonal 
to the gradient induced by the feed, is made of stripes or 
hexagons. The distribution of concentrations in the direction 
of the observation, i.e., in the depth of the film, which is 
significantly larger than the wavelength (-0.2 mm), is still 
presently under investigation. Recently, these experiments 

have been repeated by Ouyang and Swinney, with a different 
reactor geometryY In the latter, the system is a thin film, 
uniformly fed through two large opposite circular areas; the 
direction of observation is the direction of the gradient in
duced by the feed, orthogonal to these circular areas. Ac
cording to the temperature, the systems exhibit stripes or 
hexagonal symmetry on extended domains and the transi
tion from the uniform state to hexagonal structures was 
quantitatively studied. The authors do not report any evi
dence of self-organization in the film depth, so that the pat
tern can be considered as two dimensional. A simplified but 
realistic model has been proposed by Lengyel and Epstein to 
account for the Turing instability for this specific reaction; 14 

in particular, the model provides an explanation for the ef
fective difference between diffusion coefficients. 

In regard to these important developments, it becomes 
useful to revisit the previous work on nonlinear patterning 
phenomena associated with the formation of Turing struc
tures in two-dimensional systems. This problem has been 
addressed in the field of biological growth processes,4 but a 
general nonlinear pattern selection theory has also been de
veloped, mainly in relation with hydrodynamics. The state 
of the art, in this particular context, is well reviewed in Ref. 
15. The formalism is based on the reduction to lowest orders 
of the reaction-diffusion equations to a set of ordinary differ
ential equations for the temporal evolution of the amplitUdes 
of the different unstable modes. The multiplicity of these 
modes results both from the degeneracy associated with ro
tational invariance in isotropic systems--only the modulus 
Ikc I is defined, not the orientation-and of the increasing 
finite bandwidth of permitted modes, when the distance to 
criticality increases. Selection of particular structures occurs 
both at the linear stage-the most unstable modes growing 
faster than the others-and at the nonlinear stage. The mu
tual nonlinear coupling of modes determines their satura
tion, imposes relations between wave vectors, and initiates 
secondary instabilities. Only a few papers apply this 
approach, on which we shall focus here, to chemical sys
tems. I

6-23 Unfortunately, a full derivation of amplitude 
equations from the original reaction-diffusion system is an 
extremely tedious procedure which has only been achieved 
in a small number of cases, 16,18,20,22,23 often with additional 
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simplifications or with particular symmetries. The form of 
the equations is more commonly derived from the symme
tries of the anticipated structures, giving priority to the uni
versal properties. Thus, it is highly suitable to test their rel
evance to chemical patterns by solving the original system of 
reaction-diffusion equations. 

Here, we report a great number of numerical experi
ments on a particular two-dimensional model. In a finite 
system the spectrum of modes fitting the boundary condi
tions is discrete. The size of the studied systems was chosen 
large enough to minimize the effects of this quantification, 
and-except for a few experiments reported in Sec. IV
small enough to be spatially coherent and free of structural 
defects. We successively exhibit the expected conventional 
Turing patterns, i.e., hexagons and stripes, and perform a 
quantitative study of the bifurcations from the uniform to 
the patterned state. This study was initially motivated by the 
results of Ref. 13. Then, we shall report the numerical study 
of generic secondary instabilities. Finally, we show that the 
so-called zigzag instability can be saturated to provide an 
unconventional stable striped pattern. 

II. MODEL AND METHODS 

A. The model 

Since we are interested in universal generic patterning 
properties, we have preferred, for our purpose, a general ro
bust model to a more realistic one, like the scheme of Ref. 14, 
which is more suited to the discussion of a specific reaction. 
We have retained the Schnackenberg model,24 a simplified 
variant of the well-known "Brussellator". 2S This two-vari
able scheme has several major advantadges: (a) The Turing 
space, i.e., the domain of control parameters where the mod
el exhibits a Turing instability, is large and robust, which is 
difficult to meet with a realistic model. (b) Like for the 
"Brussellator," many properties have been previously calcu
lated analytically, in particular by Murray.4.26 (c) When 
performed in similar geometrical conditions, our previous 
numerical simulations l2 emulate well the qualitative behav
ior observed in the original experiments. 10.11 This model has 
been found especially convenient for this purpose, since the 
dynamics of the input species are independent of the inter
mediate species concentrations. Here, the computations 
should be more relevant to the experiments of Ref. 13. 

The reaction steps of the Schnackenberg model are 
kl 

A-+X, 

Ie., 

X --+ products, 

k3 

2X+ Y-+3X, 

Ie.. 
B--+ Y, 

where A and B are the pool species that will be assumed to be 
uniform and X and Yare the intermediate species. In the 
"Brussellator," the last step is replaced by B + X -+ Y. This 
scheme belongs to the class of the so-called "activator-sub
strate depleted" models:7

•
27 when a pattern emerges, the 

concentrations of X and Yare out of phase by 11'. Using the 
same character for the species and their concentration, we 
define the following dimensionless variables: 

• Dxt • r Dy 2 
t =--, r =-, d=- r=L k2/Dx, 

L2 L Dx' 

a=- - A, b=- - B, kl (k3 )112 k4 (k3 )112 
k2 k2 k2 k2 

U= - X, V= - Y. ( 
k3 )1/2 (k3 )1/2 

k2 k2 

It is suitable to choose the typical length scale L of the same 
order as the size of the system, but not necessarily this size 
itself. Alternative scalings, based on natural diffusion time 
scales and lengths would be possible. Nevertheless, we have 
retained this specific form to conform with the previous ana
lytical results of the literature.4 This form is actually conve
nient when the length scale change in time, e.g., when dis
cussing embryogenesis phenomena. 

From the mass action law, and with the above scaling, 
the reaction-diffusion equations can be reduced to the fol
lowing standard form:4.12 

au 2) A -=r(a-u+u v + LlorU, at 
au = reb - u2v) + dl::..rv, at 

(1) 

(2) 

where the asterisks were dropped for convenience and I::..r is 
the Laplacian operator. To sum up, the scaled quantities a, b, 
u, v are respectively proportional to the concentrations of A, 
B, X, Y, the constant r is the scaled global reaction rate and d 
is the ratio of the diffusion coefficient of the activator X to 
the diffusion coefficient of the substrate Y. In all subsequent 
computations, we shall use the values r = 10 000, d = 20, 
and a system size of order unity. 

From linear stability analysis one can show that, when 
d> I, a Turing pattern forms in the parameter region where 
the following conditions are simultaneously fulfilled:4.26 

0<b-a«a+b)3, d(b-a»(a+b)3, 

[deb - a) - (a + b)3p>4d(a + b)4. (3) 

The limits of this Turing space as a function of a and bare 
drawn on Fig. I when d = 20. In order to avoid spurious 
effects in the vicinity of unstationary regions, we shall focus 
on the transition located on the right side of the diagram. 

B. Boundary and Initial conditions 

All computations were performed with periodic bound
ary conditions in a square box, except for a few studies of 
regular hexagonal structures where a slight adjustment on 
one side was made necessary to satisfy simultaneously hex
agonal symmetry and boundary periodicity. The system size 
ranges from L = 1 to L = 2.56 (L = 4 for the studies of the 
Eckhaus instability) for a typical wavelength I!. ~ 0.1. The 
system size was chosen in accordance with the nature of the 
problem in order to minimize the effects of mode quantifica
tion. The largest sizes were mainly used to test the behavior 
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a 

0.2 

0.1 

G 
o~~~~~~~~~~~~~~--~ 

o 0.5 1.5 2 
b 

FIG. 1. Turing space. Path EFGE encloses the Turing patterns domain in 
the (a,b) parameter space. Nature and stability of computed patterns (~: 
stable hexagons HI; ... : stable hexagons H2; .: stable stripes; 0: hexagons 
H I and stripes are both stable; .: hexagons H2 and stripes are both stable). 

of weakly confined systems. Actual sizes are given in the 
corresponding figure captions. 

The choice of initial conditions is consistent with the 
nature-generic or specific-of the tested instabilities. A 
spatial perturbation is added to a basic state. The basic state 
was either a uniform state, in general the unstable steady 
state, or a structured state (striped or hexagonal symmetry) 
obtained from former computations or by superposition of 
elementary sinusoidal modes. In some studies of the stability 
of the striped patterns, the basic pattern was previously ob
tained, when possible, in a one-dimensional computation. 
Three types of perturbation were used: (a) random noise, all 
points of space being uncorrelated, (b) superposition of a set 
of different sinusoidal modes with random phases and ran
dom noise added. This process introduces long wavelength 
modes in the noise, (c) small amplitude patterns resulting 
from a superposition of sinusoidal modes, similar to a basic 
state. This allows, in particular, for checking the stability of 
a structure against another one. 

C. Numerical techniques 

All numerical experiments were performed by finite dif
ference methods with spatial stepsize Ax = 0.0 1. The few 1 D 
computations were carried out by the method oflines with a 
fourth order, semi-implicit, variable time step Rosenbrock 
integrator.28 The integration of two-dimensional systems 
was achieved with an odd-even implicit hopscotch meth
od,29-31 modified to account for the nonlinear terms. The 
stepsize was generally fixed to III = 5.10 - 6, to be compared 
with the typical reaction time r -1 = 10 - 4. An explicit Euler 
method is used during the first steps, with Ilt = 4.10 - 7 to 
relax random noise. 

D. Display of results 

Most of our results are displayed as images of the sta
tionary patterns, obtained asymptotically. We always repre
sent concentration u; the corresponding patterns of v are 

similar with inversion of density. The concentrations are 
represented on laser prints with 32 grey scale levels, using 
full scale between the absolute minimum (black) and the 
absolute maximum (white). Thus, the density correspond to 
relative variations, not to absolute concentrations. 

III. CONVENTIONAL PATTERNS: HEXAGONS VERSUS 
STRIPES 

A. Nature of patterns 

The basic patterns that tesselate the plane are, respec
tively, parallel stripes (frequently referred as "rolls" in hy
drodynamics), patterns with hexagonal symmetry (trian
gles, hexagons), and rhombs. Hexagonal and striped 
patterns were observed in early work on models relevant to 
biological systems. 16,32 

Several authors have discussed the respective stabilities 
of these patterns on the basis of amplitude equa
tions.2o,23,33-35 Let us summarize the results of the theory, as 
gathered in Ref. 34. Hexagons should appear first via a sub
critical bifurcation, while stripes arise supercritically but are 
unstable, becoming stable only at larger values of the control 
parameter. Hexagons become unstable at still higher values; 
there is a region ofbistability where both patterns are stable. 
Stable rhombs can form in place of stripes for smaller values 
of the-angular dependent-cubic term in the amplitUde 
equations. Like stripes, they first arise as unstable patterns 
via a supercritical bifurcation. Some symmetries set the qua
dratic term to zero; 15,23,33-35 then, only stripes are stable and 
arise via a pitchfork-type bifurcation, but, except for very 
peculiar models,23 regular chemical systems have a quadrat
ic term and hexagonal patterns should always bifurcate first. 
The theory has been extended to three-dimensional systems 
by Walgraef et a1. 18,20-22 The patterns appear successively 
through subcritical bifurcations with decreasing dimension
ality-body centered cubic (3D), hexagonal prisms 
(2D)-, while the last structure-parallel planes (1D)
arises supercritically. The stability properties are a straight
forward extension of the two-dimensional case. Recent sim
ulations by De Wit et al. with the Brussellator model support 
these calculations.22 Although not enough emphasized, for 
a given wavelength, there are two different branches with 
hexagonal symmetry, corresponding to a phase shift of 1r. 

Both are unstable in the vicinity of the bifurcation point. On 
the first one, referred further as HI, the maxima of u (in 
white) form a honeycomb lattice, the minima (in black) 
form a triangular lattice. On the second branch, referred as 
H2, the maxima of u form a triangular lattice, the minima 
form a honeycomb lattice. The reverse situation holds for v. 

We have observed striped and hexagonal patterns, start
ing from a uniform state with random noise added (Fig. 2). 
The nature of the patterns obtained in a series of experiments 
is indicated in the diagram in Fig. 1. At large values of a, 
hexagonal symmetry of type H2 prevails; at small values of 
a, the system exhibits predominantly stripes but a few hexag
onal structures of type HI are observed in the vicinity of the 
bifurcation. We have also observed regions where both types 
of structures are stable, which defines a bistability range, 
but, when a increases, the change between the two main do-
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(a) (b) (c) 

FIG. 2. Striped and hexagonal patterns. (a) striped pattern (a = 0.14, b = 1.41, size: 1.1 X 1.14, grid: 1l0X 114); (b) hexagonal pattern type H2 (a = 0.21, 
b = 1.1222, size: 1.1 X 1.14, grid: 110X 114); (c) hexagonal pattern type HI (a = 0.14, b = 1.421, size: 1.06 X 1.06, grid: 106 X 106). 

mains is surprisingly sharp. Rhombs were never observed 
with these initial conditions. 

B. Bifurcation analysis 

In order to characterize the bifurcation, we studied very 
finely the nature of the patterns and the amplitude of the 
spatial oscillations of the variable u as a function of 
Db = be - b for a = 0.14. 

We start far from the bifurcation point, inside the Tur
ing space, with a stable hexagonal structure of type H2. 
When decreasing be - b, the hexagonal structure becomes 
unstable, and the system jumps to a striped pattern (Fig. 3). 
The reverse transition occurs with hysteresis when b is de
creased. The striped organization persists up to the vicinity 
of the bifurcation point with strongly decreasing amplitude. 
In order to avoid spurious effects due to mode quantification 
(Ref. 1, p. 113), we have carefully studied the amplitUde and 
stability of stripes with k = ke in this region (Fig. 4). Very 
close to the bifurcation point the striped pattern becomes 
unstable [Fig. 4(a)]. Instead of the stripes, a stable hexag-

2 • II> • • '0 .. 
:E • • -a • .Hm e 1.5 • 
-< •••• ••••• • • • • • 

0.5 .., 
0 

-0.3 -0.2 -0.1 
b-bc 

0 

FIG. 3. Bifurcation diagram: amplitudeofu pattern vs (b - be)' a = 0.14, 
be = 1.4224, size: 1.lOX 1.14 (grid:lOOX 114) .... : stable hexagons; e: sta
ble paralIel or undulated stripes; for point Hm see Fig. II (Sec. IV D). 

onal pattern of type Hi is observed in a tiny region around 
the bifurcation point. The bifurcation from the uniform state 
to this hexagon's branch is subcritical, with a finite ampli
tude as shown in Fig. 4(b), but the hysteresis range is ex
tremelysmall (Db /b-2X 10 - 4). Except for this region, the 

0.5 

II> 
'0 

:a -a 
~ 0.4 

0.2 

(bl 

-0.015 

Hl ----. 

-0.01 -0.005 o 

FIG. 4. Bifurcation diagram (mode k"""ke): amplitude of u vs (b - be)' 
a = 0.14, be = 1.4224, size: 1.06 X 1.06 (grid:106X 106). (a) Striped pat
tern (e: stable stripes; 0: unstable stripes). The domain where the H I hexa
gons are stable [see (b) 1 is reported. (b) Hexagonal pattern HI ( .... : HI 
stable; b.: HI unstable). 
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-0.3 -0.2 -0.1 o 
b-bo 

FIG. 5. Bifurcation diagram: ampJitudeofu pattern vs (b - be)' a = 0.20, 
be = 1.1704, size: 1.10 X 1.14 (grid: lOOX 114). 

striped pattern remains stable far from the bifurcation point 
[Fig. 4(a)]. The unstable states (computed in one dimen
sion) indicate the supercritical character of this branch. 

In another series of experiments, with a = 0.20, we have 
followed the transition from a uniform state to an hexagonal 
pattern (Fig. 5). Surprisingly, only hexagons of type H2 
have been observed. Within the limitations of our numerical 
experiments, no other type of state has been evidenced close 
to the critical point. The bifurcation is subcritical as expect
ed for an hexagonal branch, but the subcritical range is again 
extremely small (ob /b-1O- 3); the amplitude remains fi
nite but decreases to values near zero. 

C. Discussion 

The results of the detailed study for a = 0.14 are in 
agreement with the theoretical schemes, if we assume that 
the quadratic term in the amplitude equations is small. The 
bifurcation scheme is represented in Fig. 6. To make these 
results easily understandable, the figure is not at scale and 
the bifurcation direction is reversed as usual. The first state 
has hexagonal symmetry (HI) and appears through a sub
critical bifurcation, but since the quadratic term is small, the 
domain of hysteresis with the uniform state is very small, 
and the branch loses its stability close beyond the critical 
point (the stability domain strictly vanishes when the qua
dratic term is zero). The unstable supercritical branch of 
stripes recovers stability close to the critical point (the 
branch is stable at this point when the quadratic term is 
zero). Far from the bifurcation point the hexagon branch 
H2 also regains stability and prevails at large values of the 
bifurcation parameter. This is in agreement with recent com
putations and analytical calculations of the Brussels group 
on the Brussellator [Borkmans and Dewel (private commu
nications) ]. 

The behavior at a = 0.20 is less clear. Again, the first 
arising pattern is hexagonal, but with type H2, which seems 

H1 -- s 

, , , 

FIG. 6. Schematic bifurcation diagram at a = 0.14.-: stable states; - - -: 
unstable states. 

to indicate a change of sign for a value 0.14 < a < 0.20. Al
though the subcritical domain is slightly wider than in the 
case a = 0.14, it is yet very small. It is thus surprising that 
the branch does not lose its stability when the distance from 
the bifurcation point increases. A possible explanation is the 
shape of the Turing space limit which present a turning point 
(horizontal tangent) for a = 0.24. This maintains the system 
in the vicinity of the bifurcation even at large values of lob I. 

According to the theory of pattern formation, beyond 
the bifurcation point, an increasing number of modes can 
become unstable. Nevertheless, only a limited range of the 
corresponding wave vectors can be selected. The other grow
ing modes are destabilized through nonlinear coupling. In 
the context of fluid mechanics, the secondary instabilities of 
striped patterns have been investigated starting from the rel
evant amplitUde equation, the Newell-Whitehead-Segel 
equation.36 (For a review, see Ref. 15.) We shall now sys
tematically consider these generic instabilities and show that 
they actually occur in our system, leading eventually to regu
lar stripes, but also to less conventional systems of stripes, 
the zigzag patterns. We have seen, that except for a tiny 
region, just beyond the bifurcation point, we have observed 
stable stripes for a = 0.14. Neglecting the effects of the small 
quadratic term, we return to these patterns for our present 
study. 

IV. STRIPES INSTABILITIES AND ZIGZAG PATTERNS 

A. Stability diagram 

For a = 0.14, the critical parameters are: 
be = 1.42241..., ke = 59.1072 .... Just beyond the bifurca
tion point, the real part of the eigenvalue associated with the 
unstable mode isiS 

(4) 

where ob = be - b, ok = k - ke' 'T is a typical characteristic 
time, and 50 is the coherence length. Developing the eigen-
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-0.15 

-0.1 

-0,06 

-10 

;;Sf 
cte ! , 
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o 
k-kc 
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10 

FIG, 7. Stability diagram. a = 0.14, be = 1.4224, ke = 59.107; MS: exact 
marginal stability curve; MSO: marginal stability curve from Eq. (5); EI: 
Eckhaus stability limits t:.: Eckhaus unstable modes; .: Eckhaus stable 
modes. Points R,CI,C2,E,Z define conditions for experiments in Sees. IV B 
toIVD. 

value of the Schnackenberg model with help of a symbolic 
analyzer, we found the following values for the considered 
bifurcation: 1" = 2.62 X 10 - 4, go = 0.028, ... , and on the mar
ginal stability curve a = 0, 

8b=8.184XlO- 48k 2
• (5) 

af 
t
a2 

•••• 

This parabola and the exact stability curve are represented 
on Fig. 7. They will be used further to locate different experi
mental points and stability domains. 

B. "Cross rolls" and similar Instabilities 

This "amplitude" instability corresponds to large wave 
numbers and develops over a short time scale. Since for a 
given b, the oscillation amplitudes are larger for modes with 
k ~ kc than for marginal modes, the system tends to destroy 
the latter in order to develop the former. We start from a 
striped pattern with a linearly unstable but far from kc wave 
number. We add a small amplitude perturbation (not visible 
on the figures), made of a system of stripes with k - kc at a 
different orientation. The perturbation grows and imposes 
its own wavelength and orientation (or a close one) to the 
eventual pattern. Two examples, respectively those of a 
"cross roll" and of an "oblique roll" instability are given in 
Fig.8. 

At smaller values of b, and with the same type ofpertur
bation, we have also observed a surprising transition to a 
stable rhombic pattern. [Fig 9(a)]. The angle of the dia
mond formed by the two basic wave vectors is 50 degrees. 
[Fig. 9 (b) ]. This is the only example of a rhombic pattern 
obtained in our simulations. 

111.1 .. JI.III.I.II.I.I. 1.111 .. 111111 III III 
II '1111 I III' I III IIIIIIIIP ... , .. n flu III' Iff fllff'" .. Ilun 
111111'11111111111 n"lIIl1l II I!II 1II!!III!I!l.llIfllIlIIlII.!!!UI.!II! 

JtJJ J.iI.I.I.JJ..II. 
III . III II II 

1111111 . "I 1111 1111 
T' . 

I 11111 
IInlllf . I '1' 111:1'1 Ill'll I 11111 1111 
'I' 'rrfHIlII1ff' ro"ln Iflnm 

... I.i ......... ' ...... 1..1.11111 11. .. 1 
lin . I ,. 111'11'11 1111 1111 1111 1111 111111 

lit . II 

: a3 ,t ..... ::· III'" "1111 
• IIfUlllllllflllllllll1 111111111 IIlI 11111111111111 

hl , b 2 :1· fB~IIII:llljIlB 
III ·.:llK 

FIG. 8. Amplitude instabilities. Size: 2X 2 (grid: 200X200). (a) "Cross·roU" instability (point CIon Fig. 7). a = 0.14, b = 1.2224 al: initial pattern 
(vertical stripes with smaU amplitUde horizontal stripes added); a2: transient pattern obtained at time t = 0.01; a3: final pattern (t = 0.0668). (b) "oblique· 
roll" instability (point C20n Fig. 7). a = 0.14, b = 1.3 b I: initial pattern stripes with smaU amplitude oblique stripes added; b 2: transient pattern (t = 0.02); 
b 3: final pattern (t = 0, 118). 
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FIG. 9. Rhombic pattern. (a) Final pat
tern (point R in Fig. 7). Initial pattern: 
vertical stripes with small amplitude 
oblique stripes added; a = 0.14, b = 1.3; 
size: 2X2 (grid: 200 X 2(0); (b) Fourier 
transform ofthe pattern; main peaks and 
secondary peaks with relative amplitude 
larger than 1 %. 
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c. Eckhaus instability 

The Eckhaus instability is a slow phase instability aris
ing in the direction of the wave vector. This instability results 
from the symmetry breaking of translational invariance and 
governs the selection process in one-dimensional sys
tems.37

•
38 The unstable modes are (at lowest order) located 

between the marginal stability curve ob = 5 ~ ok 2 and the 
curveob = 35~ok2 (Fig. 7). We neglect here, the small uni
versal corrections due to the quantification of modes, recent
ly calculated by Tuckerman and Barkley.39 The creation or 
annihilation of stripes38.39 necessary to adjust the wave num
ber corresponds to local compressions and dilatations of the 
pattern. We have checked the stability of all permitted 
modes of our model at several values of ob in 1D computa
tions. The results reported in Fig. 7 are in excellent agree
ment with the predictions. A two-dimensional example is 
given in Fig. 10. We have chosen a narrow box to avoid the 
development of long range transverse parasitic instabilities. 

11111111111111111111111111111111 
a 

IIIIIIIIIIIIIIIIIIIIIII'I:~IIIIIIII 
b 

11111111111111111111111111111111111 
c 

FIG. 10. Eckhaus instability (point Eon Fig. 7). (a) Initial state: vertical 
stripes with small amplitude and large wave vector modulation added; (b) 
transient pattern (t = 0.0408); (c) final pattern (t = 0.0902); (d) spatial 
profile of pattern lO(b). a = 0.14, b = 1.3224; size: 4. X 0.4 (grid400X40). 

D. Zigzag Instability and zigzag patterns 

The zigzag instability is a phase instability induced by 
perturbations transverse to the wave vector. It is associated 
with the symmetry breaking of rotational in variance. The 
instability occurs (at lowest order) for all modes with ok < 0 
and takes the form of a large undulation of stripes. The effect 
is to decrease the mean wavelength favoring modes with 
k~kc (at higher orders, slightly negative ok are also al
lowed), but, since it generates transverse modes, the final 
pattern may exhibit different orientations or symmetry. In 
Fig. 11, we present two examples of a zigzag instability, lead
ing respectively to a different system of stripes and to a sys
tem of hexagons. 

Actually, the most remarkable property of the zigzag 
instability is its capability to saturate without further change 
of orientation or change of symmetry. Thus, stable zigzag 
patterns are indeed observed in large domains of parameters. 
In Fig. 12, zigzags arise from the destabilization of the paral
lel stripes by a small perturbation made of oblique stripes, 
with a wavelength large with respect to the critical wave
length (phase modulation). Note the difference from the 
oblique roll instability, where the perturbation wave vector 
belongs to the range oflinearly unstable modes. In the bifur
cation diagram of Fig. 3, we did not distinguish between 
parallel and undulated patterns but a number of the striped 
pattern were of zigzag type. At the transition from the hex
agonal branch, the resulting stripes were truly zigzags, not 
parallel stripes. This structure persisted in the range 
1.28 < b < 1.40. These zigzag patterns are somewhat uncon
ventional since they share features both of one-dimensional 
and two-dimensional structures. Actually, as shown in Fig. 
11, when the instability is not "self-saturated," they are just 
transients in the formation of stripes (1 D case) or of hexa
gons (2D case). Moreover, we commonly obtained zigzag 
patterns, starting from uniform conditions with random 
noise. They do not develop only from a specific perturbation. 

The zigzag patterns also arise spontaneously in textures 
that form in weakly confined systems from a uniform state. 
In Fig. 13, we present the spontaneous emergence of struc
tures in a weakly confined system, i.e., a system large enough 
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FIG. II. Zigzag instability. (a) Transition from unstable striped state to stable striped pattern. a = 0.14, b = 1.32; size: 1.28x 1.28 (grid 128X 128); al: 
initial pattern: stripes with small amplitude oblique stripes added; a2: transient pattern (t = 0.2); a3: final pattern (t = 0.6363). (b) Transition from unstable 
striped pattern to a hexagonal pattern. The final pattern corresponds to point H m in Fig. 3 (the discontinuity with the other branch H2 results from a small 
change of wavelength). a = 0.14, b = 1.28; size: 1.20 X 1.20 (grid 120X 120); b I: initial striped pattern with random noise added; b 2: transient pattern 
(t = 0.037); b 3: final pattern (t = 0.2284). 

to cause the structure to nucleate at various locations. Start
ing from a uniform state with random noise, the concentra
tions slowly evolve to form a system of well organized do
mains, separated by lines of defects. In this example, the 
stripes are not parallel, but clearly form local zigzag pat
terns. 

For information, we also report (Fig. 14) the temporal 
evolution of a weakly confined system when the parameters 

FIG. 12. Zigzag pattern (point Z on Fig. 7). Initial state: vertical stripes 
with small oblique amplitude stripes added a = 0.14, b = 1.34, size: 2X2 
(grid: 200 X 200). 

correspond to prevailing hexagonal symmetry. They are in 
good qualitative agreement with the experimental patterns 
of Ref. 13. 

v. CONCLUSION 

We have systematically compared the 2D Turing struc
tures obtained in direct simulations of the dynamics of a 
typical model reaction-diffusion scheme with the general 
theoretical predictions. 

We observe conventional striped and hexagonal pat
terns, with large domains of bistability. Nevertheless, the 
striped patterns appear to be more general than expected for 
systems without particular symmetry. Moreover, the bifur
cation to hexagonal branches is only slightly subcritical; 
thus, the system behaves as if the quadratic term were small. 
Similar behavior were observed with the Brussellator as 
shown in Refs. 21 and 22 and could be a common situation in 
chemical systems. In practice, it is difficult to distinguish 
such a subcritical discontinuous transition from a contin
uous one, which very likely explains the experimental obser
vations of Ref. 13 where the authors report a quasicontin
uous transition from a uniform to an hexagonal state. Their 
experimental results can be compared with our bifurcation 
diagram of the Fig. 5. Like in our numerical studies, hexag-
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(a) (b) (e) 

FIG. 13. Formation of zigzag domains in a weakly confined system. a = 0.14, b = 1.4, size: 2.5X2.5 (grid: 250X250). Initial pattern was uniform state with 
random noise added. Different stages of the evolution (a: t = 0.05; b: t = 0.15; c: t = 0.35). 

onal symmetry generally prevails but large regions of stripe 
patterns are also observed. In our simulations, the last type 
of regular patterns, rhombic patterns, has only been ob
served once, for parameters which also lead to stable stripes. 

All the generic instabilities of striped pattern predicted 
in hydrodynamics, and experimentally observed, are well 
reproduced with the chemical scheme: "cross rolls" or 
"oblique rolls," Eckhaus and zigzag instabilities. The zigzag 
instability leads to ubiquitous stable zigzag patterns, includ
ing within weakly confined systems. The exact nature of pat
terns is important in biological applications and many ef
forts have been devoted to their precise design. Thus, the 
zigzag patterns, which introduce an additional intrinsic 
wavelength, must be distinguished from regular stripes. As 
we have shown, they share some features of higher dimen
sionality structures. In three dimensional systems, one ex
pects additional complexity when the planes (i.e., stripes in 
three dimensions) are destabilized by a zigzag instability. 
The resulting substructure in the planes is presently under 
investigation. 

To conclude, we want to emphasize the interest of chem
ical systems for the study of nonlinear patterns. The recent 
experimental success in the search for Turing patterns opens 
new perspectives in this field. 

FIG. 14. Hexagonal domains 
in a weakly confined system. 
a=0.14, b= 1.14, size: 
2.5X2.5 (grid: 250X250). 
Initial pattern was uniform 
state with random noise add
ed. 
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