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Abstract. Two pulse solutions play a central role in the phenomena of self-replicating pulses in
the one-dimensional (1-D) Gray–Scott model. In the present work (part I of two parts), we carry out
an existence study for solutions consisting of two symmetric pulses moving apart from each other
with slowly varying velocities. This corresponds to a “mildly strong” pulse interaction problem in
which the inhibitor concentration varies on long spatial length scales. Critical maximum wave speeds
are identified, and ODEs are derived for the wave speed and for the separation distance between the
pulses. In addition, the formal linear stability of these two-pulse solutions is determined. Good
agreement is found between these theoretical predictions and the results from numerical simulations.
The main methods used in this paper are analytical singular perturbation theory for the existence
demonstration and the nonlocal eigenvalue problem (NLEP) method developed in our earlier work
for the stability analysis. The analysis of this paper is continued in [A. Doelman, W. Eckhaus, and
T. Kaper, SIAM J. Appl. Math., to appear], where we employ geometric methods to determine
the bifurcations of the slowly modulated two-pulse solutions. In addition, in Part II we identify
and quantify the central role of the slowly varying inhibitor concentration for two-pulse solutions in
determining pulse splitting, and we answer some central questions about pulse splitting.
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1. Introduction. Self-replicating spots and pulses have been observed in ex-
citable reaction-diffusion systems [18, 14, 20, 19, 13, 9, 2, 3, 4, 21, 17, 16, 15, 8]. Spots
and pulses are regions in which the concentrations of some of the species exhibit
large amplitude perturbations from a surrounding homogeneous state. Depending on
system parameters, these regions can enlarge and split so that the spots and pulses
replicate in a complex, and as yet incompletely understood, manner.

Two-pulse patterns play a fundamental role in the phenomenon of pulse splitting
in one-dimensional (1-D) systems; see [20, 19, 2, 17]. To understand this phenomenon,
it is necessary to study the evolution of solutions consisting of pairs of pulses in which
the pulses move apart from each other; see Figure 1. Outside the parameter domain
in which the splitting process takes place, the pulses settle down, eventually, in a
stationary two-pulse pattern (on a bounded domain). See Figure 2(a). In the critical
regime where splitting is first observed, the two pulses (or spikes) are observed to

∗Received by the editors April 26, 1999; accepted for publication (in revised form) April 10, 2000;
published electronically October 31, 2000.

http://www.siam.org/journals/siap/61-3/35492.html
†Korteweg-deVries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018TV

Amsterdam, the Netherlands (doelman@wins.uva.nl). The research of this author was supported by
the Organization for Scientific Research (NWO).

‡The author is deceased. Former address: Mathematisch Instituut, Universiteit Utrecht, P.O.
Box 80.010, 3508TA Utrecht, The Netherlands (eckhaus@math.uu.nl).

§Department of Mathematics and Center for BioDynamics, Boston University, 111 Cummington
Street, Boston, MA 02215 (tasso@math.bu.edu). The research of this author was supported by the
National Science Foundation through CAREER grant DMS-9624471 and a Sloan Research Fellowship
(1995–1998).

1080

D
ow

nl
oa

de
d 

04
/1

0/
22

 to
 1

32
.1

98
.1

1.
62

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1081

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(a)

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(b)

Fig. 1. (a) A two-pulse solution shown at time t = 500 obtained from numerical simulations
of the PDE (1.1) with A = 0.01, B = 0.0696, and D = 0.01. The U component is shown dashed,
with U reaching a local maximum in between the V pulses (solid curve) at Umax ≈ 0.194. The two
pulses move apart from each other with slowly varying speeds c(t), and the U component is an O(1)
distance away from the homogeneous state in between the pulses, even though the pulses are quite
far apart. (b) The solution (U, V ) from the same initial data shown at a later time (t = 5, 000), and
the value of Umax has slowly risen to ≈ 0.730.

move apart from each other with a slowly decreasing velocity and then to undergo
the splitting process when they are nearly stationary. See Figure 2(b). Further
from critical, the pulses are observed to propagate with constant speed in between
successive splittings.

In this work, we carry out an existence and stability analysis for two-pulse patterns
in the irreversible 1-D Gray–Scott model [10] (see also the references in [10, 18, 19, 2]
for the derivations and early studies of this model):

∂U

∂t
=
∂2U

∂x2
− UV 2 +A(1− U),

∂V

∂t
= D

∂2V

∂x2
+ UV 2 −BV.(1.1)
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Fig. 2. (a) Time evolution of the V component of a modulating two-pulse solution of (1.1)
with A = 0.01, B = 0.0696, and D = 0.01, i.e., below εsplit. (b) A numerical simulation of pulse
splitting in (1.1), showing V pulses with slowly decreasing speeds which split when the speeds are
small. The parameter values are A = 0.01, B = 0.0674, and D = 0.01. In both plots, the vertical
axis is 1, 400V + t (where by default we use Tend/10 as the multiple of V ), and L = 100.

For all positive values of the parameters A,B, and D, the background homogeneous
state (U ≡ 1, V ≡ 0) is stable. The two-pulse solutions considered here are asymptotic
to it as x → ±∞. The pulses correspond to excursions of the V -components away
from V ≡ 0 on narrow intervals in which U is approximately constant. Outside of
these intervals, U varies significantly, while V is exponentially small.

We focus here on solutions of (1.1) in which the pulses are symmetric about x = 0.
Motivated by numerical simulations (see Figures 1 and 2), we specifically allow the
pulse velocities, −c(t) and c(t), to vary slowly in time. We find that the slowly varying
wave speeds c(t) are determined self-consistently by certain ODEs that give the time
courses of both c(t) and 2Γ(t), the separation distance between the two pulses. The
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1083

speeds scale as A
√
D/B3/2, in agreement with the numerical simulations in [2] and

those carried out here. Furthermore, the ODEs predict an algebraic rate of decay to
zero as t → ∞, in agreement with time courses observed numerically.

Two parameter groups,
√
A/B and

√
BD, arise naturally from scaling analysis of

(1.1), and they were already identified, for instance, in [11] in a different parameter
regime from that studied here. In this paper, our construction of the slowly modulated
two-pulse solutions is carried out with the primary conditions

A/B2 � 1 and B3D/A ≤ O(1).(1.2)

The first condition in (1.2) corresponds to the case in which the spatial rates of change
of U and its first spatial derivative are significantly slower than those of V and its
first spatial derivative. Therefore, in this primary regime, there is an asymptotic
separation that we exploit in the construction. Moreover, the second ratio in (1.2),
related to the ratio of the second and first parameter groups, corresponds to the square
of the relative size of U at the pulse center.

It turns out, however, that the first condition in (1.2) is sufficient but not neces-
sary. The slowly modulated two-pulse solutions also exist on the boundary:

A/B2 = O(1),(1.3)

and the other condition in (1.2) holds. However, the technique needed to demonstrate
this is different, since there is no longer a natural separation of time scales for the
dependent variables. In fact, our work with a topological shooting method in [3],
in which we establish the existence of stationary pulse solutions, extends to show
that modulating two-pulse solutions also exist when (1.3) holds. Moreover, that same
analysis also applies nearly verbatim to show that there is a critical curve in this
scaling such that the two-pulse solutions do not exist on the other side, a curve called
a disappearance bifurcation for the stationary pulse solutions in [3]. Therefore, there
is a large, closed parameter region in which these solutions exist.

The existence analysis in this work is formulated in the framework of a lead-
ing order quasi-stationary approximation. In particular, focusing first on the right-
traveling pulse on the half-line x ≥ 0, we work in a moving coordinate system given
by ξ(t) = x − Γ(t), where x = Γ(t) is the time-dependent location of the pulse’s
center. In this coordinate system, the leading order quasi-stationary approximation
entails assuming that the solutions (U(ξ(t), t), V (ξ(t), t)) depend only on t through
ξ(t). Hence, it is assumed that c(t) is a slowly varying parameter and that the explicit
time derivatives of U and V are neglected to leading order. This solution on the right
semi-infinite line x ≥ 0 is then reflected to obtain also the solution for the left-moving
pulse on x ≤ 0. Moreover, by including higher order terms, it can be shown (see
section 3.4 of Part II of this paper [1]) that these two pieces hook up smoothly and
that the entire quasi-stationary approximation method is self-consistent.

In this paper, we also study the linear stability of the slowly modulating two-
pulse solutions using the nonlocal eigenvalue problem (NLEP) method developed in
[3]. We find that the two-pulse solutions undergo subcritical Hopf bifurcations at a
certain critical parameter combination, CHOPF, for A = O(B2

√
D). For parameter

combinations above CHOPF, the solutions are (formally) linearly stable with respect to
perturbations that evolve on time scales that are shorter than that of the rate of change
of c = c(t), while for parameters just below CHOPF, their instability is manifested by
large-scale oscillations in the pulse amplitudes. The NLEP method was developed in
[3] to analyze the stability of the stationary one-pulse patterns of (1.1) in the special
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1084 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

scaling of [2] (see also Remark 2.2 below). Moreover, the validity of this method for
stationary solutions has been established by a stability index analysis in [4], and [5]
showed that this method applies to many reaction-diffusion (R-D) equations.

The slowly modulated two-pulse solutions constructed in this paper and their
continuations into the splitting regime where A/B2 = O(1) play central roles in the
splitting and self-replication processes. One aspect of this role is studied here in
section 3.4. In particular, it is shown here that, as the ratio A/B2 approaches the
critical regime in which it becomes O(1), the structure of the slowly modulating two-
pulse solutions naturally suggests a possible mechanism for their splitting. In Part
II of this work (see [1]), the role of these two-pulse solutions in pulse splitting is
further quantified and explained. It is shown there that the two-pulse solutions can
be interpreted as governing the transition between a one-pulse solution that has just
split into two and a time-asymptotic state in the splitting regime, which is a stable
stationary periodic multipulse pattern. See Figure 2(b) and [20, 19, 2, 21, 3, 17, 16].
In particular, we analyze the dynamics of the slowly varying U component in between
the pulses.

In Part II, we also use geometric singular perturbation theory to identify the sad-
dle node bifurcations in which the slowly modulated two-pulse solutions constructed
here are created and annihilated, as well as to determine the bifurcations they undergo
to traveling waves with constant wave speed. Moreover, it is shown in Part II that
the geometric theory also provides a natural interpretation of the critical (maximum)
allowable speeds c(t) found here. Finally, in Part II, we relate the results obtained in
both Parts I and II to the literature, especially [20, 21, 17].

Overall, our study of slowly modulating pulses in Parts I and II of this work
may be classified as a treatment of the “mildly strong” pulse interaction problem. A
crucial aspect of the analysis here is that the “slow” U component undergoes O(1)
changes away from U ≡ 1 over large intervals on both sides of a pulse; see Figure 1.
Weak pulse interactions, by contrast, occur when both the U and the V components
are close to the background, homogeneous, stable state in between the two pulses
(see, for instance, [8]). The case of weak pulse interactions can be obtained from the
analysis here by taking the limit t → ∞, so that the pulses are so far apart that U ≈ 1
in between.

This paper is organized as follows. Sections 2 and 3 contain the analytical per-
turbation method for stationary one-pulse solutions and slowly modulating two-pulse
solutions, respectively. The linear stability analysis of the two-pulse solutions is pre-
sented in section 4. Finally, in section 5, we compare to the weak interaction problem.

Remark 1.1. The conditions (1.2) are the most important conditions on the pa-
rameters A, B, and D of (1.1). There is one additional condition, D � 1, that will
appear in the stability analysis of section 4 here and in the validity analysis of section
3.4 of Part II [1]. The case D ≥ O(1) turns out to be of little interest since here the
pulse solutions cannot be stable; see Remark 4.2. Note, however, that there certainly
are stable “localized” patterns for D = O(1) in a parameter regime that differs from
the regime studied here, AD = O(B2) (conditions (1.2) implies that AD � B2); see
[11, 12] for the case AD = B2, D = 1.

2. Stationary single-pulse solutions. We present an asymptotic analysis of
the stationary single-pulse solutions of the PDE (1.1); see Figure 3. The existence
of these solutions was proven in [2] for a special choice of parameters using methods
from geometric singular perturbation theory. Our purposes here are to briefly revisit
the existence result from a different perspective, to derive the broader scalings for
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1085
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Fig. 3. A stationary one-pulse solution of (1.1) whose existence is demonstrated in section 2
and in [2]. The parameter values are A = 0.01, B = 0.1423, and D = 0.01.

which pulse solutions exist, and to preview the method that will be used in section 3
on the full problem. The extension of the existence results was briefly announced in
Remark 1.1 of [3] (see also [16] for a construction of the stationary spikes).

2.1. Analytical perturbation theory. Stationary solutions of (1.1) are func-
tions (u(x), v(x)) for x ∈ R satisfying the coupled ODEs

∂2u

∂x2
− uv2 +A(1− u) = 0, D

∂2v

∂x2
+ uv2 −Bv = 0.(2.1)

A,B, and D are independent parameters. Eventually, it will be useful to make choices
about their orders of magnitude, but we postpone this as long as possible.

Let u0 ≡ [u]x=0 be the value of u at the center of the pulse (see Figure 1). The
v-problem for the pulse is made more transparent by introducing new variables

ξ̂ =

√
B

D
x and v̂(ξ̂) =

u0

B
v(x).(2.2)

Hence,

∂2v̂

∂ξ̂2
+

(
u(x)

u0

)
v̂2 − v̂ = 0.(2.3)

The main goal is to determine the values of u0 for which stationary single-pulse
solutions exist, and the basis of the analytic approximation method to be developed
in this section is that there is a disparity between the rates of change of u and v. We
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1086 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

will see that v̂ varies on an O(1) interval in the ξ̂ variable, while significant variation
in u only occurs over much longer intervals.

The first step in the analytical method is to derive an approximation for u(x)
along a single-pulse solution. Treating v(x) in (2.1) as if it were a known function,
and putting the v term on the right-hand side, one gets, by a standard procedure,

u(x) = 1− 1

2
√
A

{∫ x

−∞
e
√
A(x′−x)u(x′)v2(x′)dx′ +

∫ ∞

x

e
√
A(x−x′)u(x′)v2(x′)dx′

}
.

(2.4)
Formula (2.4) is an integral equation for u(x) that may be solved for a given v(x). A
pulse-like function v2(x) should be expected to have a substantial magnitude inside
the pulse interval, which is an order

√
D/B neighborhood of the origin (by virtue of

(2.2) and (2.3)), and it should be virtually zero for x outside this same neighborhood.

Also, inside this neighborhood, the functions u(x′) and e±
√
Ax′

are assumed to be
slowly varying (see the end of this section for a consistency condition), and it suffices

to keep the first (constant) term in their Taylor expansions about x′(= ξ̂) = 0 in order
to obtain the leading order terms for the integrals in (2.4). Hence,

u(x) = 1− u0

2
√
A

{
e−

√
Ax

∫ x

−∞
v2(x′)dx′ + e

√
Ax

∫ ∞

x

v2(x′)dx′
}
.(2.5)

Higher order terms in an asymptotic expansion for u(x) can be constructed by itera-
tion and by Taylor expanding u(x′) and the exponential functions in the integrals.

This first approximation (2.5) can be simplified one step further by evaluating the
integrals. Since v(x) is insignificant outside a vanishingly small interval about x = 0,
the integrals are given to leading order asymptotically by the integrals over the entire
real line. Hence,

u(x) ∼ 1− ku0

2
√
A
e
√
Ax for x < 0; u(x) ∼ 1− ku0

2
√
A
e−

√
Ax for x > 0,(2.6)

k =

∫ ∞

−∞
v2(x′)dx′.(2.7)

Note that the v-component acts as a delta function in this approximation. Finally,
evaluating (2.5) at x = 0, one obtains u0 = 1− ku0

2
√
A
. Hence, for a given k

u0 =
2
√
A

2
√
A+ k

.(2.8)

Thus, the values of the unknown u0 that correspond to stationary single-pulse solu-
tions can be determined when one knows the associated values of the integral k.

In this second step, we derive an approximation for the v(x) component of a
single-pulse solution that will in turn enable us to determine k. Write (2.3) as

∂2v̂

∂ξ̂2
+ v̂2 − v̂ =

[
u0 − u(x)

u0

]
v̂2.(2.9)

The function u(x) varies little near u0 within the region of the pulse ξ̂ = O(1), so
that the right-hand side of (2.9) acts as a perturbation. This suggests approximating
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1087

v̂(ξ̂) by the function

v̂0(ξ̂) =
3

2
sech2

(
ξ̂

2

)
,(2.10)

which is the solution of (∂2v̂0/∂ξ̂
2) + v̂2

0 − v̂0 = 0, with v̂0 → 0 as ξ̂ → ±∞.
Substituting (2.10) into (2.7) and recalling (2.2), one finds

k = 6
B3/2

√
D

u2
0

.(2.11)

Hence, by (2.8), the allowable u0 for stationary one-pulse solutions are given by

u0(1− u0) = 3
B3/2

√
D√

A
.(2.12)

Upon examining (2.12) for u0, one sees that there are two cases to consider.

Case I: B3/2
√
D/A � 1; Case II: B3/2

√
D/A = O(1) and B3/2

√
D/A < 1/12.

(2.13)
In Case I, we may Taylor expand both roots of the quadratic (2.12). One solution is

u0 ∼ 3B
√
BD/A.(2.14)

Clearly, in this case, u0 is asymptotically small, and it is precisely in this case that the
existence of one-pulse stationary solutions was proven for a special scaling of A,B,
and D in Theorem 4.1 of [2]; see Remark 2.2 below. Moreover, in [3] these solutions
were shown to be stable, gaining their stability through a Hopf bifurcation, in a large
region of the parameter space.

Remark 2.1. The other root corresponds to a “weak” pulse solution with maxi-
mum value for v(x) of O(B). We expect that this “weak” pulse is unstable, since with
u0 ∼ 1 − 3B

√
BD/A, it is a small perturbation of the globally stable homogeneous

steady state (U = 1, V = 0).
In Case II, both roots of (2.12) are O(1). The existence of the two associated

stationary single-pulse solutions was established in Theorem 4.3 of [2], and both have
peaks of height O(B). Moreover, it was shown (again in the special scaling, though
the same analysis can be carried out here) in Theorem 4.3 of [2] that they are born
in a saddle node bifurcation when B

√
BD/A = 1/12.

Having shown how to construct the stationary solutions with u(x = 0) = u0 in
both Cases I and II, we conclude by showing that the perturbation analysis is self-
consistent. An important condition emerges that will be imposed globally, except
where noted, in the rest of the paper. If one scales the u variable by the size of u0

(2.14), u = B3/2
√
D/Aû, and then substitutes this scaling and those (2.2) of ξ and v

into the quasi-stationary ODE for u, one gets

∂2û

∂ξ̂2
=

A

B2

[
ûv̂2 − A√

B
(1−B3/2û)

]
.(2.15)

Hence, we must impose the following global condition so that û evolves slowly:

A

B2
� 1.(2.16)
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1088 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

Hence, û evolves slowly in ξ̂ relative to the O(1) rate of change of v̂.
Remark 2.2. In order to compare our results with [2], we set (for this remark

only) D = δ2, where 0 < δ � 1, A = δ2a, and B = δ2α/3b with α = 1 (α ∈ [0, 3/2)
in the analysis in [2], α = 1 in most of the numerical simulations in [2]). With
these special relations, one solution of (2.12) is u0 = (3B3/2/

√
a)δ[1 +O(B3/2)]. The

corresponding “strong” pulse is then approximated by v(x) = (1/3)
√
a/Bδ−1/3v̂0(ξ).

For this solution, u0 is small, and the maximum value of v(x) is large. The results of
the asymptotic analysis carried out here for this pulse solution fully agree with the
results of Theorem 4.1 in [2], obtained by geometric methods and the Fenichel theory.

Remark 2.3. The heuristic approximations (2.5) and (2.10) can be made rigorous,
under a number of conditions on A,B, and D, by converting the full problem (2.9)
into an integral equation. Setting v̂ = v̂0 + v̂1, it follows that v̂1 satisfies the ODE(

∂2

∂ξ̂2
+ 2v̂0(ξ̂)− 1

)
v̂1 =

u0 − u(x)

u0
(v̂0 + v̂1)

2 − v̂2
1 ≡ R(v̂0, v̂1).(2.17)

Letting G(ξ̂, ξ̂′) denote the Green’s function (computed explicitly from the solutions

ψ1(ξ̂) = (dv̂0/dξ̂)(ξ̂) and ψ2(ξ̂) of the homogeneous equation) (2.17) is equivalent to

v̂1(ξ̂) =

∫ ∞

−∞
G(ξ̂, ξ̂′)R(v̂0(ξ̂

′), v̂1(ξ̂′))dξ̂′.(2.18)

Higher approximations for v̂(ξ̂) can be computed iteratively from this integral equa-
tion. Furthermore, viewing (2.4) and (2.18) as a pair of integral equations, one can
envision the proof of validity of the first approximations (2.5) and (2.10) by using the
contraction mapping principle in a suitably defined Banach space. Such techniques
have been used successfully in other nonlinear problems in [7] and [22]; see [22] for a
general development of the method.

2.2. The effects of a finite interval for a stationary single pulse. In [2],
the numerical simulations were done on a finite interval, say, x ∈ [−L,L], and it was
shown experimentally that, if the interval is large enough, changing the length does
not affect the numerical solution.

We analyze here the finite-interval problem (with Dirichlet boundary conditions)
by the same method used in section 2.1. The main task is to solve the equation (2.1)
for u(x) with boundary conditions u = 1 for x = ∓L. This is an elementary exercise,
but the formulas are lengthy. We introduce the abbreviation

f(x′) = u(x′)v2(x′).

Instead of (2.4), one gets

u(x) = 1− 1

2
√
A

{
e−

√
Ax

[
C1 +

∫ x

−L

e
√
Ax′

f(x′)dx′
]

(2.19)

+ e
√
Ax

[
C2 +

∫ L

x

e−
√
Ax′

f(x′)dx′
]}

,

C1 =
1

2sinh2L
√
A

[
e−2L

√
A

∫ L

−L

e
√
Ax′

f(x′)dx′ −
∫ L

−L

e−
√
Ax′

f(x′)dx′
]
,(2.20)
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1089

C2 =
1

2sinh2L
√
A

[
e−2L

√
A

∫ L

−L

e−
√
Aεx′

f(x′)dx′ −
∫ L

−L

e
√
Ax′

f(x′)dx′
]
.(2.21)

In terms of the same approximations used in section 2.1, these formulas greatly sim-
plify. One obtains C2 = C1, where

C1 =
ku0

2sinh2L
√
A

[
e−2L

√
A − 1

]
.(2.22)

Furthermore,

u(x) ∼= 1− 1

2
√
A

{
e−

√
Ax

[
C1 +

∫ x

−L

v2(x′)dx′
]
+ e

√
Ax

[
C2 +

∫ L

x

v2(x′)dx′
]}

.

Thus, we directly find the following leading order result for u0:

u0 = 1− ku0

2
√
ε

[
1 +

e−2L
√
A − 1

sinh2L
√
A

]
.(2.23)

Therefore, when L is large enough, the correction due to the finite interval is
exponentially small. In addition, we performed numerical simulations of (1.1) for
this paper with the typical values A = O(D) � 1 and 2L = 100, so that 2L

√
A =

O(1/
√
D) � 1. All of these simulations confirmed that the effect of having a finite

(as opposed to an infinite) interval was indeed negligible. Finally, the simulations
reported in [20, 2, 21, 3] are also consistent with this analysis.

3. Traveling two-pulse solutions. In this section, we present the analytical
perturbation theory for the slowly modulated two-pulse solutions for which c(t) is a
slowly varying function of t.

3.1. The quasi-stationary approximation. Because of the symmetry about
x = 0, the analysis can be restricted to half the picture (however, see section 3.4 of
Part II). We chose the right-moving pulse on x > 0 (see Figure 1). At time t, the
center of the pulse is at

x = Γ(t), where Γ(t) =

∫ t

0

c(s)ds.(3.1)

We also introduce a coordinate attached to the pulse

ξ = x− Γ(t).(3.2)

By (1.1), the equation and boundary conditions for U(ξ(t), t) take the form

∂U

∂t
− c

∂U

∂ξ
=
∂2U

∂ξ2
− UV 2 +A(1− U),(3.3)

U → 1 as ξ → ∞ and
∂U

∂ξ
= 0 for ξ = −Γ(t).(3.4)

The second condition in (3.4) arises due to the symmetry of the full problem for
x ∈ (−∞,∞): here the right-moving pulse must “match” with the left-moving pulse.
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1090 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

The quasi-stationary approximation consists of imposing the ansatz that the so-
lution (U(ξ(t), t), V (ξ(t), t)) depends only on t through ξ(t): (U(ξ(t), t), V (ξ(t), t)) =
(u(ξ(t)), v(ξ(t))), where (u, v) does not depend explicitly on t. Thus, the derivative
∂U
∂t disappears from (3.3): the equation for u is an ODE in which t is a parameter
that appears in c = c(t) and in the position of the boundary condition (3.4). We will
see that the construction of singular solutions (in the spirit of the previous section)

will imply a relation between c(t) and Γ(t) =
∫ t

0
c(s)ds.

In the quasi-stationary approximation, the equation for v(ξ) becomes

−c∂v
∂ξ

= D
∂2v

∂ξ2
+ uv2 −Bv.(3.5)

As in section 2, this equation becomes transparent in the new variables (2.2). Recall

ξ̂ =

√
B

D
ξ, v̂(ξ̂, t) =

u0

B
v(ξ, t),(3.6)

where u0 is again u at ξ = 0, but now u0 depends on the “parameter” time. Hence,

−c√
BD

∂v̂

∂ξ̂
=
∂2v̂

∂ξ̂2
+

(
u

u0

)
v̂2 − v̂.(3.7)

We look for pulse-like solutions for v̂(ξ̂, t), i.e., solutions that tend rapidly to zero

when |ξ̂| is large. Hence, the boundary condition for all t is v̂(ξ̂, t) → 0 as |ξ̂| → ∞.

3.2. Approximate solutions for u(ξ). Let

µ± ≡ 1

2

(
−c±

√
c2 + 4A

)
,(3.8)

and note for later reference that when c2 � A,

µ± ∼ ±
√
A.(3.9)

The general solution of (3.3) in the quasi-stationary limit is now at hand by elementary
procedures:

u(ξ) = 1− 1

(µ+ − µ−)

{
eµ−ξ

∫ ξ

−Γ(t)

e−µ−x′
u(x′)v2(x′)dx′

+ eµ+ξ

∫ ∞

ξ

e−µ+x′
u(x′)v2(x′)dx′

− µ+

µ−
e(µ−−µ+)Γ(t)eµ−ξ

∫ ∞

−Γ(t)

e−µ+x′
u(x′)v2(x′)dx′

}
.(3.10)

Matters simplify considerably when one observes, as in section 2, that the pulse-
like function v(x′) is expected to be virtually zero outside an O(

√
D/B) neighborhood

of x′ = 0. Taylor expanding u(x′) and the exponential functions, one obtains

u(ξ) ∼ 1− u0

(µ+ − µ−)

{
eµ−ξ

∫ ξ

−Γ

v2(x′)dx′ + eµ+ξ

∫ ∞

ξ

v2(x′)dx′

− µ+

µ−
e(µ−−µ+)Γeµ−ξ

∫ ∞

−Γ

v2(x′)dx′
}
.(3.11)
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1091

As noted in Remark 2.3, one can envision a procedure for the construction of
higher approximations. Fortunately, the results of Part II make this unnecessary.

For values of ξ outside the small interval where v(ξ) is nonzero, further simplifi-
cation follows:

u(ξ) ∼ 1− ku0

(µ+ − µ−)

{
eµ−ξ −

(
µ+

µ−

)
e(µ−−µ+)Γ(t)eµ−ξ

}
for ξ > 0,(3.12)

u(ξ) ∼ 1− ku0

(µ+ − µ−)

{
eµ+ξ −

(
µ+

µ−

)
e(µ−−µ+)Γ(t)eµ−ξ

}
for ξ < 0,(3.13)

where, as before,

k =

∫ ∞

−∞
v2(x′)dx′.(3.14)

Finally, by evaluating (3.11) at ξ = 0, it also follows that to leading order

u0 = 1− ku0

(µ+ − µ−)

{
1−

(
µ+

µ−

)
e(µ−−µ+)Γ(t)

}
,(3.15)

which relates the unknown u0 and the integral k, which is also unknown at this stage.

3.3. Approximate solutions for v̂(ξ̂). Following the same procedure used in
section 2 for the stationary single-pulse solutions, we now develop an approximation
for the v-component of a slowly modulated, traveling single pulse. We begin by
rewriting the problem (3.7) in the quasi-stationary approximation:

∂2v̂

∂ξ̂2
+ v̂2 − v̂ =

(
u0 − u

u0

)
v̂2 − c√

BD

∂v̂

∂ξ̂
with v̂ → 0 as |ξ̂| → ∞.(3.16)

The full equation (3.16) is not invariant under the transformation ξ̂ → −ξ̂, and
therefore, the existence of solutions that tend to zero for ξ̂ → −∞ and ξ̂ → +∞ is
a nontrivial matter. To see this more clearly, we compute an integral of (3.16), as

follows. Multiplication by ∂v̂/∂ξ̂ yields

1

2

∂

∂ξ̂

(
∂v̂

∂ξ̂

)2

+
1

3

u

u0

∂(v̂3)

∂ξ̂
− 1

2

∂(v̂2)

∂ξ̂
=

−c√
BD

(
∂v̂

∂ξ̂

)2

.(3.17)

Next, we integrate (3.17) and impose the boundary condition in (3.16) for ξ̂ → +∞:

1

2

(
∂v̂

∂ξ̂

)2

+
uv̂3

3u0
− v̂2

2
=

−c√
BD

∫ ∞

ξ̂

(
∂v̂

∂ξ̂

)2

dξ̂ +
1

3

∫ ∞

ξ̂

v̂3 ∂

∂ξ̂

(
u

u0

)
dξ̂.(3.18)

Finally, by imposing the boundary condition in (3.16) for ξ̂ → −∞, one obtains the
following nontrivial condition for the existence of a homoclinic orbit:

−c√
BD

∫ ∞

−∞

(
∂v̂

∂ξ̂

)2

dξ̂ +
1

3

∫ ∞

−∞
v̂3 ∂

∂ξ̂

(
u

u0

)
dξ̂ = 0.(3.19)

In the analysis here we treat the right-hand side of (3.16) as a perturbation and
approximate the function v̂ by the unperturbed solution (2.10). The first term can
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1092 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

be expected to be small, because u(x) varies little in the pulse interval, which is of

O(1) width in ξ̂. The second term is small if c√
BD

� 1. The pulse velocity c is,

of course, unknown yet; naturally, in the final results, c will depend on A,B, and
D. Our strategy will be to determine c under the assumption that the right-hand
side of (3.16) is a perturbation and then verify a posteriori (section 3.5) under what
conditions on the parameters the perturbation assumption is satisfied.

3.4. Computation and analysis of the pulse velocity. In order to carry out
a leading order asymptotic analysis of the condition (3.19), v̂(ξ̂) may be replaced by

the presumed first approximation v̂0(ξ̂) given in (2.10). Also, for a single stationary

pulse solution centered at ξ̂ = 0, it may be readily shown, via a calculation in the
original ξ variable, that the term involving the derivative of u has the following form:

∂

∂ξ̂

(
u

u0

)
=

[
∂

∂ξ̂

(
u

u0

)]
ξ̂=0

+ f̃(ξ̂) + h.o.t.,(3.20)

where f̃(ξ̂) is an odd function of ξ̂. In particular, for ξ = O(
√
D/B), the by now

standard approximations imply that (3.10) yields to leading order:

∂u

∂ξ
(ξ) =

−u0

(µ+ − µ−)

{
µ−
∫ ξ

−Γ(t)

v2dx′ + µ+

∫ ∞

ξ

v2dx′ − µ+e
−(µ+−µ−)Γ

∫ ∞

−Γ

v2dx′
}
.

(3.21)

The higher order terms introduce a relative error of O(
√
AD/B). Then,

∫ 0

−Γ
v2 ∼∫ 0

−∞ v2 and
∫ ξ

−Γ
v2 ∼ ∫ ξ

−∞ v2, since the tails
∫ −Γ

−∞ v2 are exponentially small. Also,

the function v̂0(ξ̂) is symmetric about ξ̂ = 0, so that
∫ 0

−∞ v2dx′ =
∫∞
0

v2dx′ to leading
order. Hence, (3.21) reduces to

∂u

∂ξ
(ξ) =

ku0

(µ+ − µ−)

[ c
2
+ µ+e

−(µ+−µ−)Γ(t)
]
+ u0f̃(ξ),(3.22)

where f̃(ξ) ≡ 1
2

∫ ξ

−∞ v2(x′)dx′ − 1
2

∫∞
ξ

v2(x′)dx′ and where k is defined in (3.14).

Clearly, f̃(ξ) is antisymmetric about ξ = 0. Finally, using (2.11) to evaluate k,

recalling the definitions (3.8) of µ±, converting to ξ̂, and dividing both sides by u0,
we get to leading order

∂

∂ξ̂

u

u0
(ξ̂) =

3BD

u2
0

{
e−

√
c2+4AΓ(t) +

c[1− e−
√
c2+4AΓ(t)]√

c2 + 4A

}
+ f̃(ξ̂).(3.23)

Hence, we arrive at (3.20): the first term in (3.23) is (∂/∂ξ̂)(u/u0) at ξ̂ = 0, and the

second term is antisymmetric about ξ̂ = 0, as claimed above.
Since f̃ is odd, the integral of v̂3f̃ in (3.19) vanishes to leading order, and the

condition for the existence of one-pulse solutions simplifies to

−c√
BD

∫ ∞

−∞

(
∂v̂0

∂ξ̂

)2

dξ̂ +
1

3

[
∂

∂ξ̂

(
u

u0

)]
ξ̂=0

∫ ∞

−∞
v̂3
0(ξ̂)dξ̂ = 0.(3.24)

Evaluating the integrals using (2.10), one obtains

−c√
BD

+ 2

[
∂

∂ξ̂

(
u

u0

)]
ξ̂=0

= 0.(3.25)
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1093

Next, the values of u0 can be determined. Using (3.15) and (2.11), we find

u0(1− u0) = 6
B3/2

√
D

(µ+ − µ−)

[
1−

(
µ+

µ−

)
e−(µ+−µ−)Γ

]
.(3.26)

Now, just as in the analysis of (2.12) in section 2, there are two cases to consider:

Case I: B3/2

√
D

A
� 1; Case II: B3/2

√
D

A
= O(1).(3.27)

Moreover, in both cases, one needs to consider two possibilities: c2 � A and c2/A =
O(1). We will refer to these as subcases a and b, respectively. We analyze Case Ia in
this section and Cases Ib and IIa geometrically in section 4 of Part II [1].

In Case I, the quadratic (3.26) has two real solutions, and we are interested in
the smaller one:

(u0)− ∼ 6B3/2
√
D

(µ+ − µ−)

{
1−

(
µ+

µ−

)
e−(µ+−µ−)Γ

}
.(3.28)

This solution clearly reduces to (2.14) obtained in section 2 for the case of a stationary
single pulse (take t → ∞, where c = 0). Moreover, it indicates that the method
employed here, which is based on the separation of scales, is consistent if we impose
the global condition A � B2 given in (2.16). See Remark 2.1 for the interpretation
of the other root u0 just below one.

Specializing to Case Ia, we see by (3.8) that (3.23) and (3.28) simplify (to leading
order) to[

∂

∂ξ̂

(
u

u0

)]
ξ̂=0

=
3BD

u2
0

e−2
√
AΓ(t), (u0)− = 3

√
D

A
B3/2

{
1 + e−2

√
AΓ(t)

}
.(3.29)

Hence, by using (3.29) in (3.25), we get to leading order

c =
2A

√
D

3B3/2

e−2
√
AΓ(t)[

1 + e−2
√
AΓ(t)

]2 ,(3.30)

where we recall (3.1) in which Γ(t) is defined as Γ(t) =
∫ t

0
c(s)ds. Since B3/2

√
D/A �

1 (Case I) and A � B2 (by (2.16)), we find c(t) � 1 for (3.30). Thus, c(t) corresponds
to a slowly propagating pulse solution whose wave speed decreases slowly in time.

Finally, recalling (3.1), we see that (3.30) is also a differential equation:

dΓ

dt
=

2

3

A
√
D

B3/2

e−2
√
AΓ

[1 + e−2
√
AΓ]2

.(3.31)

There are no critical points for finite Γ in (3.31), and hence Γ grows without bound.
Equation (3.31) can be solved in an implicit form, but not much insight is gained.

Instead, we finish with an ODE for c(t) that can be obtained by differentiating (3.30)

by t and by a little algebra (in particular, view (3.30) as a quadratic in e−2
√
AΓ and

solve it, taking the root with the minus sign; then, plug this root into the right-hand
side of the formula for dc/dt):

dc

dt
= −2

√
Ac2

√
1− 6cB3/2

A
√
D

.(3.32)
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1094 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

Hence, c(t) decreases algebraically until the wave is asymptotically stationary. In
addition, there is an upper bound for c(t), whose origin is geometric (see Part II).

Remark 3.1. The existence of the pairs of slowly modulated two-pulse solutions
is consistent with results from [2], where it was proven that traveling waves that
are stationary in a frame moving with constant nonzero speed cannot exist in the
parameter regime studied there (see Remark 2.2): if the two pulses would travel
forever (without splitting), then each would look like a single traveling pulse. Thus,
c(t) must approach 0 as t → ∞.

Remark 3.2. In the numerical simulations for [2], D = δ2, A = O(δ2), B =
O(δ2α/3), and typically α = 1. Hence, (3.30) satisfies c(t) = O(A

√
D/B3/2) = O(δ2),

as observed in Figure 9 of [2].

3.5. Consistency of the approximations and a mechanism for the pulse-
splitting bifurcation. In this section, we analyze the conditions under which the
right-hand side of (3.16) is indeed a perturbation. There are two terms to consider.
By (3.30), it follows that c/

√
BD = (A/B2)ĉ, where ĉ = O(1), and hence the second

term on the right-hand side of (3.16) is a perturbation when (2.16) holds.

To analyze the first term, we expand u(ξ̂) in a Taylor series:

u0 − u

u0
= −

[
∂

∂ξ̂

(
u

u0

)]
ξ̂=0

ξ̂ − 1

2

[
∂2

∂ξ̂2

(
u

u0

)]
ξ̂=0

ξ̂2 − · · · .(3.33)

The coefficient of the first term in (3.33) is given by (3.29). Next, the coefficient of
the second term is readily computed to leading order from the quasi-static limit of
the differential equation (3.3):

[
∂2

∂ξ̂2

(
u

u0

)]
ξ̂=0

=
A

4B2

1[
1 + e−2

√
AΓ
]2 .(3.34)

This leading order term comes directly from the uv2 term in (3.3), and we note that
the A term in (3.3) is higher order, because

√
AD/B � 1 in Case I by (2.16). Hence,

condition (2.16) also ensures the smallness of the first term on the right of (3.16).

To conclude this section, we venture an explanation for the numerically observed
phenomenon that, in a suitably chosen regime of the parameter space, a traveling
pulse, after some time, splits into a right and a left traveling pulse. Consider B as a
bifurcation parameter by setting B2 = O(A1−ν) with ν > 0. The right-hand side of
(3.16) ceases to be a perturbation as ν → 0, and our construction breaks down. So, let
us suppose now that we take ν positive but small, yet such that all coefficients on the
right-hand side of (3.16) are still numerically sufficiently small for the perturbation
assumption to be valid. Then, as time goes on, the coefficient on the first term in the
Taylor expansion becomes even smaller because ĉ → 0 (3.30); however, the coefficient
(3.34) of the second term in the Taylor expansion grows as t → ∞, and in fact can
grow up to four times its initial value. Moreover, the leading order coefficients on
all terms of fourth, sixth,. . . order in the Taylor expansion will also grow. Therefore,
it can happen that, after some time, the perturbation assumption is no longer valid.
See also section 5 of Part II for a more detailed discussion.

The time needed for the pulse to break up is smaller if ν is smaller, and hence B is
closer to

√
A, which is precisely the threshold case discovered in [3] and observed there

to agree with the splitting bifurcations in simulations. The time scale for break-up
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1095

can be estimated by the equation for Γ(t), (3.31): the time-dependent factor in (3.34)
decreases from being near 1 to being � 1 when

√
AΓ � 1 on a time scale

τ = (A
√
AD/B

√
B)t(3.35)

(see also section 3.4 of Part II). However, Γ(t) only grows logarithmically slow on this
time scale (by (3.31)). Therefore, the actual splitting will occur after a very long,
but O(1), time Tsplit on this τ time scale. For instance, with A, B, and D as in the
simulations of Figure 2(b), we find that t ≈ 175τ so that Tsplit ≈ 40τ . This agrees
qualitatively with the dynamics of (3.31).

4. Stability analysis for slowly modulated two-pulse solutions. This sec-
tion is organized as follows. In section 4.1, we state the scaled fourth-order eigenvalue
problem. In section 4.2, we treat Case I by reducing the full problem to a second-order
nonlocal eigenvalue problem and analyzing this reduced system.

4.1. The scaled fourth-order eigenvalue problem. The Gray–Scott model
(1.1) written in the unscaled modulated traveling wave variable is

Ut = Uξξ + c(t)Uξ − UV 2 +A(1− U), Vt = DVξξ + c(t)Vξ + UV 2 −BV.(4.1)

Let (u0(ξ), v0(ξ)) denote a quasi-stationary, slowly modulated two-pulse solution,
where the c(t) dependence is implicit. Stability with respect to small perturbations
is determined by setting

U(ξ, t) = u0(ξ) + u(ξ)eλt and V (ξ, t) = v0(ξ) + v(ξ)eλt,(4.2)

and then by studying the linearized eigenvalue problem

λu = uξξ + cuξ − v2
0u− 2u0v0v −Au,

λv = Dvξξ + cvξ + v2
0u+ 2u0v0v −Bv.(4.3)

As was shown in [3] for the stability of the stationary solutions, the significant
scaling of the variables in this eigenvalue problem is the same as that used in the
existence analysis. Recalling (2.15), (3.30), and (3.6), let

ξ =

√
D

B
ξ̂, u(ξ) = B3/2

√
D

A
û(ξ̂), v(ξ) =

√
A

BD
v̂(ξ̂), c =

A
√
D

B3/2
ĉ,(4.4)

so the eigenvalue problem (4.3) becomes

ûξ̂ξ̂ =
A

B2

[(
v̂2
0 û+ 2û0v̂0v̂

)
+BD

(
1 +

1

A
λ

)
û−Dĉûξ̂

]
,

v̂ξ̂ξ̂ +

[
2û0v̂0 −

(
1 +

λ

B

)]
v̂ = −v̂2

0 û− A

B2
ĉv̂ξ̂,(4.5)

where we have used the same scalings for u0 and v0. Finally, we scale the eigenvalue

λ = Bλ̂(4.6)

(see the appendix of [3]), and, in the stability analysis, we use

ε =
√
A/B � 1 and δ =

√
BD � 1(4.7)

with δ/ε ≤ O(1). Therefore, dropping hats, we arrive at the final form of the eigen-
value problem to be studied in this section:

(a) uξξ = ε2
(
v2
0u+ 2u0v0v

)
+ ε2δ2u+Dλu− ε2Dcuξ,

(b) vξξ + [2u0v0 − (1 + λ)] v = −v2
0u− ε2cvξ.(4.8)
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1096 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

4.2. Transformation of (4.8) to a second-order NLEP. In this section, we
reduce the full fourth-order eigenvalue problem (4.8) to a second-order NLEP. This
analysis extends to the c(t) > 0 case the procedure for deriving an NLEP previously
introduced in [3] for the c = 0 case. In this section we will assume that D � 1; as a
consequence we will find that the first derivative terms with factors of c(t) in them
are of higher order. This simplifies the analysis considerably. The case D ≥ O(1) is
discussed in Remark 4.2.

The essence of the procedure for deriving the NLEP is to exploit the fast/slow
structure of the underlying quasi-stationary solution to determine the fast/slow struc-
ture of the eigenfunctions. We recall that v0(ξ) is exponentially small in the slow
regimes. Hence, (4.8)(a) reduces to

uξξ = ε2δ2u+Dλu− ε2Dcuξ + expo. small.(4.9)

Therefore, the u component of the eigenfunction consists of slow segments along which
u undergoes slow exponential decay as |x| → ∞, and there is also a jump discontinuity
in uξ across ξ = 0, since there is a difference between the slopes of the right and left
slow solutions as |ξ| approaches zero. We label this jump discontinuity in the slow
field by ∆suξ, and it plays an essential role, as we saw in [3].

To determine the leading order behavior of ∆suξ, we analyze the terms in the slow
u equation (4.9). The third term on the right is always subdominant to the second,
because ε � 1. The dominant term is then either the second or the first term, or
both, depending on whether one is in

Regime 1: ε2δ2 � D, Regime 2: ε2δ2 � D, or Regime 3:
ε2δ2

D
= O(1),

Remark 4.1. It must be noted that ε2δ2 = AD/B. In other words, these three
regimes are more simply defined by A � B, A � B, and A/B = O(1).

Next, we recall that the fast regime is a narrow interval about ξ = 0 and, in
this interval, v0(ξ) possesses a pulse, while u0 is an O(1) constant as function of
ξ, at leading order (see (3.29) and use (4.4)). Hence, to leading order in the fast
regime, uξξ = ε2(v2

0u + 2u0v0v) + Dλu, which implies that the u component of the
eigenfunction is constant to leading order for ε � 1 and for small D. We label this
constant κ. Moreover, the derivative uξ has a jump discontinuity:

∆fuξ = ε2
∫ ∞

−∞

(
uv2

0 + 2u0v0v
)
dξ +Dλ

∫ ∞

−∞
udξ + h.o.t.(4.10)

Here, we note that the limits have been obtained from the appropriate (exact) ε- and
δ-dependent times at which the pulse enters and exits the fast field and from then
sending ε and δ → 0. Hence, the integral of the constant has a finite value (see [3, 4]).

Finally, the transformation to the NLEP is completed by determining the constant
κ. This is now done on a regime-by-regime basis for different regimes in the ε-δ-
D parameter space. We will match the jump discontinuities ∆sux and ∆fuξ, as
computed in the slow and fast fields, respectively, and obtain formulae for κ. Different
terms will be of leading order in different regimes.

Remark 4.2. The stability of the stationary one-pulse patterns (see section 2)
follows immediately from the results in this section by setting c ≡ 0. As a consequence,
we do not have to assume that D � 1 when studying these one-pulse patterns. The
case D ≥ O(1) is a subcase of Regime 1. We will find in section 4.2.1 that the pulse
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1097

patterns are always unstable for ε2 � √
D, i.e., that there cannot be stable pulse

solutions when D ≥ O(1) (in the parameter regime studied in this paper; see Remark
1.1). By construction, the modulated two-pulse solutions evolve toward two copies
of these stationary one-pulse solutions as t → ∞. Therefore, it is of only limited
relevance to consider the case D ≥ O(1) for the modulated two-pulse patterns, since
these solutions cannot be stable (at least not for t large); see also section 3.4 of Part
II [1].

4.2.1. Regime 1. In this section, we treat Regime 1 in detail. Since ε2δ2 � D,
(4.9) implies that the left and right slow segments of u are given (in terms of the fast
variable) to leading order by

u(ξ) = κe±
√
Dλξ.(4.11)

Hence, between the left and right slow solutions, ∆suξ is to leading order:

∆suξ = lim
ξ→0−

uξ − lim
ξ→0+

uξ = −2
√
Dλκ.(4.12)

In order to match this slow jump discontinuity to the fast jump discontinuity ∆fuξ
given by (4.10), we first assume ε2 � D, so that the first term in the right-hand side
of (4.10) is the dominant term. This is done largely to facilitate the analysis, and the
complementary regime (ε2/D ≤ O(1)) will be treated at the end of this section. The
explicit leading order matching condition needed to determine κ is

−2
√
Dλκ = ε2

[
κ

∫ ∞

−∞
v2
0dξ + 2u0

∫ ∞

−∞
v0vdξ

]
.(4.13)

Since the scaling included the assumption λ = O(1), there are three subregimes
to consider:

1a: ε2 �
√
D, 1b: ε2 = O(

√
D), 1c: ε2 �

√
D.(4.14)

In subregime 1a, the matching condition (4.13) directly yields κ = O(ε2/
√
D) � 1;

i.e., the constant value of u to leading order during the fast jump is asymptotically
small. Hence, the coupling of the slow field to the fast field is weak (i.e., of higher
order), and the leading order fast eigenvalue problem is precisely that associated with
a single isolated fast homoclinic pulse,

vξξ + [2u0v0 − (1 + λ)] v = 0,

which has a (scaled) positive eigenvalue at λ = 5/4. Therefore, since the higher
order terms will displace this eigenvalue only by a small amount, there exists an
eigendirection along which small perturbations lead to exponential growth, and these
solutions are formally unstable in subregime 1a.

In subregime 1b, where ε2 = O(
√
D), we introduce the new O(1) parameter,

d =

√
D

ε2
,(4.15)

and remark that d =
√
DB2/A in the original parameters. All of the terms in the

leading order matching condition (4.13) are now retained, and one finds

κ =
−u3

0

3 + d
√
λu2

0

∫ ∞

−∞
v0(ξ)v(ξ)dξ.(4.16)
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1098 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

Here we have again used
∫∞
−∞ v2

0(ξ)dξ = 6/u2
0. Clearly, this value of κ is of O(1),

since d, u0, and λ are O(1). Hence, by replacing the variable u with its leading order
constant value κ over the fast field on the right-hand side of the second equation in
(4.8), by neglecting the higher order cvξ term, and by recalling κ from (4.16), we find
that the leading order eigenvalue problem becomes

vξξ + [2u0v0 − (1 + λ)] v = −κv2
0 .(4.17)

This turns out to be exactly the same NLEP analyzed in Case II of section 5.2
in [3] (β = 1/2), which is the significant scaling in which the solutions gain stability
through a Hopf bifurcation. (This is not surprising since the parameters A,B,D are
also related by ε2 = A/B2 = O(

√
D) for β = 1/2 in [3].) To make this correspondence

precise, we introduce a new parameter ' = '(t) via u0 = 3', where u0 = (û0)− is given
by (3.29) and (4.4). This new parameter will help greatly to keep the algebra to a
minimum. Explicitly,

' = 1 + e−2
√
AΓ(t).(4.18)

Hence, we know ' ∈ (1, 2) for all 0 < Γ(t) < ∞, since ' → 2 as Γ ↓ 0, ' → 1 as Γ → ∞,
and ' is a monotonically decreasing function of Γ.

Next, we follow the procedure used in section 5 in [3] and change the independent
and dependent variables and parameters in the NLEP (4.17). Let t = ξ/2, y(t) = v(ξ),

P 2 = 4(1 + λ) and C =
9

1 + 3d'2
√
λ
.(4.19)

The NLEP (4.17) then becomes

ÿ +
[
12sech2(t)− P 2

]
y = Csech4(t)

∫ ∞

−∞
y(t)sech2(t)dt,(4.20)

where ˙ = d/dt, and we used v0(ξ) = (3/2u0)sech
2(ξ/2) and u0 = 3'. Inverting the

formula for C, we get

d'2(t) =
2

3
√
P 2 − 4

[
9

C(P )
− 1

]
,(4.21)

where C(P ) is an explicitly known expression in terms of integrals over hypergeometric
functions; see section 5.1 in [3] for the derivation of C(P ). This formula should be
interpreted as follows: An eigenvalue λ of (4.8) corresponds by (4.19) to a solution
P of (4.21). Note that this implies that λ = λ(t), i.e., that the eigenvalues λ of the
linearized stability problem (4.8) vary on the same slow time scale τ (3.35) as (half)
the distance between the pulses Γ.

Formula (4.21) is identical to formula (5.15) from [3] with a = σ = m = 1 and
b2 = d'2(t). Therefore, it follows from the hypergeometric functions analysis in [3]
(see (5.16) and Figure 5 in [3]) that there are no eigenvalues λ with Re(λ) > 0 when

d'2(t) ≤ dH ≈ (0.66)2 ≈ 0.44.(4.22)

Since '(t) decreases monotonically from 2 to 1, we can conclude that the modulated
two-pulse solutions are formally stable for all t when

d ≤ dH
4

≈ 0.11, i.e., D < 0.012 . . . ε2 or DB4 < 0.012 . . . A(4.23)
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1099

(by (4.15), (4.7)). Moreover, all modulated two-pulse solutions (including the limiting
stationary one-pulse solutions) are unstable when

d ≥ dH ≈ 0.44, i.e., D > 0.19 . . . ε2 or DB4 > 0.19 . . . A.(4.24)

For 0.11 < d < 0.44, i.e., 0.012ε2 < D < 0.19ε2, the situation is more “dynamic.” We
know from [3] that there are no eigenvalues λ(t) with Re(λ(t)) > 0 when d'2(t) ≤ dH
(4.22); moreover, there are two unstable eigenvalues when d'2(t) > dH . Therefore, we
define for a given d ∈ (dH/4, dH) ≈ (0.11, 0.44) a critical value of ', 1 < '∗ < 2, such
that d'2∗ = dH ≈ 0.44. The modulated two-pulse solution is then stable for all t > t∗,
where t∗ is defined by '(t∗) = '∗, since both eigenvalues have crossed the imaginary
axis at t = t∗. Equivalently, it is unstable for t < t∗. Note that this implies that
the limiting solutions, the stationary one-pulse solutions, are stable for all d < dH .
However, a pair of two-pulse solutions will be stable (i.e., numerically observable) only
for d ∈ (dH/4, dH) when the distance between the two pulses is “large enough.”

The bifurcation at which the two eigenvalues cross the imaginary axis is a Hopf
bifurcation: the eigenvalues are a complex conjugate pair and purely imaginary at the
bifurcation. These two eigenvalues merge and become real as d, or d'2, is increased;
see again [3] for explicit calculations. In the limit d � 1, i.e., in the transition from
Regime 1b to Regime 1a, one of these eigenvalues will approach 5/4 and the other
decreases towards 0. Thus, we have recovered the instability result of Regime 1a
and deduced the existence of a second unstable eigenvalue near 0 in this case. Using
(4.21) we can write an explicit approximation for this eigenvalue using the fact that
C(P ) → 9/2 as P → 2, i.e., that λ → 0 by (4.19) (see [3]): for d � 1 to leading order,

λ(t) =
4

9d'4(t)
� 1 or λ(t) =

4

9'2(t)

ε4

D
� 1.(4.25)

This eigenvalue will yield the instability result when D ≥ ε2 (see below).
Next, we turn to Regime 1c. The stability result of Regime 1b, (4.23), can be

extended into this regime in a natural fashion, since d � dH/4 in Regime 1c. Thus,
since

√
D � ε2 we can take the limit d → 0 in (4.16) and derive

κ =
−u3

0

3

∫ ∞

−∞
v0(ξ)v(ξ)dξ;(4.26)

i.e., the left-hand side of (4.13), the slow jump in uξ, has become of higher order
compared to the right-hand side, the fast jump in uξ. It follows from the analysis in
[3] that both eigenvalues that crossed the imaginary axis in Regime 1b remain at the
stable side of this axis in this limit. In fact, with this value of κ, the NLEP (4.17) is
the same as that derived in Case III of section 5.2 in [3], namely, in the regime where
the parameter β satisfies 1/2 < β < 1. Hence, we may conclude directly that all the
slowly modulated two-pulse solutions are formally stable.

Finally, in Regime 1, we skipped the case D ≥ O(ε2), which includes the case
D ≥ O(1). Here, we do get the same instability result as in Regime 1a. However, the
instability is not caused by the unstable eigenvalue found near 5/4. This eigenvalue
cannot exist when D � ε2, since then the u-component of the eigenvalue problem
(4.8) is given by uξξ = Dλu at leading order, both in the fast field and in the slow field.
Therefore, there are for λ = O(1) no eigenfunctions that are bounded as |x| → ∞.
Nevertheless, the eigenvalue of O(ε4/D) � 1 with λ � 1, (4.25), is still there. It
is not influenced by the fact that D � ε2 since the term Dλu is once again only

D
ow

nl
oa

de
d 

04
/1

0/
22

 to
 1

32
.1

98
.1

1.
62

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1100 ARJEN DOELMAN, WIKTOR ECKHAUS, AND TASSO J. KAPER

of higher order (in the fast field) for a λ of this magnitude. We may conclude that
the unstable eigenvalue (4.25) exists for all D ≥ O(ε2) and thus that the slowly
modulating two-pulse solutions are also formally unstable in this part of Regime 1.

4.2.2. Regime 2. In this regime, D � ε2δ2, so that the first equation (4.9) is
to leading order uξξ = ε2δ2u. Hence, the left and right slow segments (expressed in
terms of the fast variable) are to leading order u(ξ) = κe±εδξ, and the leading order
jump discontinuity in uξ at x = 0 between them is

∆suξ = −2εδκ.(4.27)

The corresponding jump discontinuity at x = 0 in the fast field is given by the first
term in (4.10):

∆fuξ = ε2
∫ ∞

−∞

(
κv2

0 + 2u0v0v
)
dξ.(4.28)

Finally, matching these leading order jump discontinuities, i.e., equating (4.27) and
(4.28) and recalling δ/ε � 1, we recover (4.26). This is not surprising since, as in
Regime 1c, ∆suξ � ∆fuξ. Thus, as in Regime 1c, we can immediate conclude that
the slowly modulating two-pulse solutions are linearly stable in Regime 2 by referring
to the analysis for Case III in section 5.3 of [3].

4.2.3. Regime 3. In this final regime, ε2δ2/D = O(1), and we introduce the
new O(1) parameter s = ε2δ2/D. The slow eigenvalue problem (4.9) becomes to
leading order uξξ = D(s+ λ)u, and hence the relevant jump discontinuity is

∆suξ = −2
√
D(s+ λ)κ.(4.29)

The jump in uξ in the fast field is still given by (4.10). Therefore, the matching
condition is

−2
√
D(s+ λ)κ = ε2

∫ ∞

−∞

(
uv2

0 + 2u0v0v
)
dξ +Dλ

∫ ∞

−∞
udξ + h.o.t.(4.30)

There are three subregimes (as in Regime 1), and the analysis proceeds in the same
fashion. The results from Regime 1 may be applied directly here after taking into
account the shift in the spectrum by the parameter-dependent amount s.

Remark 4.3. Although we divided the parameter space into (sub)regimes, there
is only one, namely, Regime 1b, where ε2 = O(

√
D) and in which there is a transition

from stable to unstable. Hence, we have the curve CHOPF in Figure 2 of Part II [1].

5. Discussion. The analysis of two-pulse solutions in this paper can be inter-
preted as a study of “mildly strongly” coupled pulses in singular perturbed R-D
equations. This coupling is “mildly strong,” since the U -components of the solutions
are not assumed to be close to the trivial state U = 1 and, in fact, vary by O(1)
amounts. Hence, the interaction between the two modulating pulses is stronger than
that which occurs only via exponentially small “tail interactions.”

As was shown in section 3 for Case Ia, the separation distance 2Γ(t) obeys a
highly nonlinear ODE (3.31) that is valid for any O(1) Γ. The denominator of the
vector field in (3.31) is important for accurately describing the rate of change of Γ for
small to medium values of Γ, while the numerator captures the long-term dynamics
to leading order after Γ has become sufficiently large. In terms of the scaling (3.35),
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SLOWLY MODULATED TWO-PULSE SOLUTIONS I 1101

Γ(τ) has become sufficiently large already when Γ(τ) = O(ln τ) with τ � 1. In this
regime, the ODE (3.31) reduces to

dΓ

dτ
=

2

3
√
A
e−2

√
AΓ(τ),(5.1)

which is precisely the equation that is appropriate for describing weakly coupled
pulses, since Umax(τ) has approached U = 1 and c(t) has become � 1. Moreover,
translating this equation for the weak interaction limit into an equation written in
terms of the scaled speed ĉ(τ), one gets to leading order dĉ/dτ = −2ĉ2, which is a
significantly simplified version of (3.32), for mildly strong interactions.

Remark 5.1. Equation (5.1) valid for sufficiently large Γ agrees with the equation
determined concurrently in [8] for pulse interactions in (1.1). The results in [8] apply
to more general equations which satisfy the requirement that the separation distance
between the two pulses exceeds some threshold so that the concentrations of all species
are exponentially close to their homogeneous steady state values.
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