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I show that it is straightforward to derive numerical methods that conserve the energy of nonlinear

oscillators. The derivation is first done for a single particle and then extended to multiple particle

systems. Examples considered include the pendulum, the H�enon-Heiles model, and the Fermi-Pasta-

Ulam problem. Numerical experiments are shown and comparisons are made with nonconservative

methods. VC 2020 American Association of Physics Teachers.
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I. INTRODUCTION

One of the more important properties a system can possess
is conservation of energy. Although there has been consider-
able effort to derive numerical methods that preserve this
property, progress has been uneven. As an example, after
finding that standard numerical methods are capable of con-
serving energy only after making several questionable ad
hoc modifications, one author concluded that maybe
“energy-conserving schemes do not necessarily capture all
relevant qualitative features” of the problem.1 Nevertheless,
conservative methods have been found, the most well-known
of which are discrete variable methods and the average vec-
tor field method.2–6 Although the first energy conserving
methods were derived almost 40 years ago, most computa-
tional physics textbooks have little, if any, discussion of
them or conservative methods in general.

The purpose of this paper is to show that it is fairly simple to
derive conservative methods and to provide a derivation for
examples often considered in introductory mechanics and
dynamics courses. These methods will be compared to sym-
plectic methods,6–8 as well as more general purpose solvers.
For a fixed time step, symplectic methods typically do not con-
serve the energy,9,10 but can provide an approximate solution
that is close to being conservative over a very long time inter-
val.6 There are adaptive methods that are both conservative and
symplectic, but they will not be considered here.11

II. BACKGROUND

We start by considering the single particle problem of
solving m€yðtÞ ¼ FðyÞ, where y(0)¼ a and _yð0Þ ¼ b. These
equations can be rewritten as

_y ¼ vðtÞ; (1)

m _vðtÞ ¼ FðyÞ: (2)

Single step numerical methods used to solve this problem
have the form

ynþ1 ¼ yn þ ~vDt; (3)

vnþ1 ¼ vn þ
Dt

m
~F; (4)

where yn � yðtÞ; ynþ1 � yðtþ DtÞ; vn � vðtÞ, and vnþ1 � vðt
þDtÞ. The choice of the transitional velocity ~v and transitional
force ~F depends on the method. As an example, the average
of two time steps is taken for the trapezoidal method,
and ~v ¼ ðvnþ1 þ vnÞ=2 and ~F¼½Fðynþ1ÞþFðynÞ�=2. For
brevity of notation, we will write Fn�Fðyn;vnÞ and Fnþ1

�Fðynþ1;vnþ1Þ in the following.
Even for a linear force for which FðyÞ ¼ �ay, most meth-

ods are not conservative. One exception is the trapezoidal
method. To show this property, note that the current value of
the energy is Hn � Hðyn; vnÞ ¼ mv2

n=2þ ay2
n=2, and its value

at the next time step is Hnþ1 � Hðynþ1; vnþ1Þ ¼ mv2
nþ1=2

þay2
nþ1=2. Therefore,

Hnþ1 � Hn ¼
1

2
mðv2

nþ1 � v2
nÞ þ

1

2
aðy2

nþ1 � y2
nÞ; (5a)

¼ 1

2
mðvnþ1 þ vnÞðvnþ1 � vnÞ

þ 1

2
aðynþ1 þ ynÞðynþ1 � ynÞ; (5b)

¼ 1

2
mðvnþ1 þ vnÞ

Dt

m
~F þ 1

2
aðynþ1 þ ynÞ~vDt;

(5c)

¼ � a
4
ðvnþ1 þ vnÞðyn þ ynþ1ÞDt

þ a
4
ðynþ1 þ ynÞðvnþ1 þ vnÞDt ¼ 0: (5d)

One approach to solving nonlinear problems is to take
methods that have a given property for linear problems and
form their convex combination. There are several ways to do
this. One way involves a convex average of forces, which is
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the hallmark of the Newmark family of methods,12 and
another averages positions, as is used in what is called the
variational method.13 For example, in Eq. (4), both the trape-
zoidal choice ~F ¼ ðFnþ1 þ FnÞ=2 and the implicit midpoint
choice ~F ¼ Fð�yÞ with �y ¼ ðynþ1 þ ynÞ=2 yield a conserva-
tive method for the linear problem. Their convex combina-
tion yields

~F ¼ a
1

2
ðFnþ1 þ FnÞ þ ð1� aÞFð�yÞ; (6)

where a is a parameter. Unfortunately, this combination is
not conservative for most nonlinear problems. However, this
approach can be used to derive symplectic methods.13

III. SINGLE PARTICLE

The assumption is that a conservative numerical method
for a nonlinear problem can be found by modifying a method
that is known to be conservative for the linear case. For the
trapezoidal method, the question is whether it is possible to
find a conservative producing transitional force ~F in Eq. (4).
In particular, the starting assumption is that a conservative
method can be found of the form

ynþ1 ¼ yn þ
1

2
vnþ1 þ vn½ �Dt; (7)

vnþ1 ¼ vn þ ~Fðynþ1; ynÞ
Dt

m
: (8)

The Hamiltonian for the single particle problem, Eqs. (1)
and (2), is

Hðy; vÞ ¼ 1

2
mv2 �

ðy

0

FðsÞds: (9)

To determine ~F, note that

Hnþ1 � Hn ¼
1

2
mðv2

nþ1 � v2
nÞ �

ðynþ1

yn

FðsÞds; (10)

¼ 1

2
ðvnþ1 þ vnÞ ~Fðynþ1; ynÞ

�

� 1

ynþ1 � yn

ðynþ1

yn

FðsÞds

�
Dt: (11)

It follows that the method is conservative if

~Fðynþ1; ynÞ ¼
1

ynþ1 � yn

ðynþ1

yn

FðsÞds: (12)

The value at yn ¼ ynþ1 is defined using continuity, and hence
~Fðyn; ynÞ ¼ FðynÞ. This result shows that ~Fðynþ1; ynÞ is the
average force in moving from yn to ynþ1. Moreover, because
~Fðyn; ynþ1Þ ¼ ~Fðynþ1; ynÞ; ~Fðynþ1; ynÞ is the negative of the
average force in moving backward from ynþ1 to yn. As a
result, the method has time reversal symmetry. Time reversal
is a property of conservative systems, and numerical experi-
ments suggest that this property is important for preserving
the qualitative long-time behavior of the numerical
solution.6

The function ~F in Eq. (12) often appears when deriving
conservative numerical methods and has different names

depending on the application. For example, in numerical
fluid dynamics, it is related to the mean-value Jacobian.14,15

In computational dynamics, it appears in the expression for
what is called a discrete gradient.2,4 The reason for this ter-
minology is explained in Sec. IV.

With the derivation of Eq. (12), the resulting numerical
method,

ynþ1 ¼ yn þ
1

2
ðvnþ1 þ vnÞDt; (13)

vnþ1 ¼ vn þ
Dt

m

1

ðynþ1 � ynÞ

ðynþ1

yn

FðsÞds; (14)

is second order and conservative. The fact that it is conserva-
tive comes from the derivation. The proof that it is second
order involves substituting the exact solution into Eqs. (13)
and (14), and then expanding yðtþ DtÞ and vðtþ DtÞ using
Taylor’s theorem for small Dt. To be second order, it is
required that ~Fðyn; ynÞ ¼ FðynÞ, and

@ ~Fðynþ1; ynÞ
@ynþ1

����
ynþ1¼yn

¼ 1

2

dFðyÞ
dy

����
y¼yn

: (15)

It is easy to show that Eq. (12) satisfies both of these condi-
tions, and therefore the method is second order.

The usefulness of the result in Eq. (12) for obtaining a
conservative method depends on whether the integral can
be done analytically or evaluated exactly. A few examples
often studied in introductory courses are given in the
following.

A. Examples

Power law. For the choice F(y)¼ ayp, where p is a posi-
tive integer, Eq. (12) becomes

~Fðynþ1; ynÞ ¼
1

ynþ1 � yn

ðynþ1

yn

aspds; (16a)

¼ a
pþ 1

1

ynþ1 � yn
ðypþ1

nþ1 � ypþ1
n Þ; (16b)

¼ a
pþ 1

Xp

i¼0

yi
nþ1yp�i

n : (16c)

In particular, for p¼ 1, Eq. (16c) for ~F reduces to the expres-
sion used for the trapezoidal method.

Duffing’s equation. For €y ¼ �ay� by3, Eqs. (13) and
(14) reduce to

ynþ1 ¼ yn þ
1

2
ðvnþ1 þ vnÞDt; (17a)

vnþ1 ¼ vn � ðyn þ ynþ1Þ
a
2
þ b

4
ðy2

n þ y2
nþ1Þ

� �
Dt: (17b)

Note that this method, which is known as Simpson’s method,
can be obtained from Eq. (6) by taking a¼ 1/3.16 However,
Eq. (6) is not conservative if F(y) is a fourth-order polyno-
mial, for any value of a.

Pendulum. For the pendulum, F(y)¼�sin y, and Eq. (12)
becomes
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~Fðynþ1; ynÞ ¼
cosðynþ1Þ � cosðynÞ

ynþ1 � yn

¼ � 1

w
sin ðyn þ wÞ sin w; (18)

where w ¼ ðvnþ1 þ vnÞDt=4.

B. Stability

To obtain a convergent numerical method, it is required
that the method satisfies a stability requirement. The usual
approach is to determine how the method does on linear
problems. Because Eqs. (13) and (14) reduce to the trapezoi-
dal rule for linear problems, the method qualifies as being A-
stable. A-stability effectively means that if there is an
asymptotically stable steady state for the linear problem,
then it is also an asymptotically stable steady state for the
numerical method.17 This form of stability is mostly relevant
when studying problems with stable equilibrium points.

We are interested in nonlinear oscillatory motion, which
raises the question of what form of stability to consider. One
possibility is to use the fact that the solution of Eqs. (13)
and (14) is on the energy curve determined by the initial
conditions. What this means is that the values satisfy
Hðynþ1; vnþ1Þ ¼ Hðy0; v0Þ. The exact solution is also located
on this curve. If the curve is compact, then the distance
between the exact and numerical solution remains bounded
(which is a requirement for stability).

The complication is how fast the numerical solution trans-
verses this curve compared to the exact solution, which gives
rise to the idea of phase error. As an example, if the orbit of the
Earth is computed, then Eqs. (13) and (14) will find the correct
orbital path. But what is not obvious is how accurately the
method determines the speed at which the Earth moves along
this path. In many applications, the numerical solutions of these
oscillators are run over very long time intervals, and the con-
cern is how the phase error grows in such cases. For the Earth
orbit example, if the computed solution misses the terrestrial
year by one day, then the error in the angular position (the
phase error) is compounded if the computation is continued
and used to determine the orbital location over multiple years.
How to estimate the phase error analytically has been the sub-
ject of several studies.18–20 The approach used here is to dem-
onstrate convergence numerically.

C. Numerical experiments

The algorithm in Eqs. (13) and (14) is designed to con-
serve energy. One of the complications is that the method is
implicit and requires finding the value of vnþ1 that satisfies

vnþ1 ¼ vn þ ~F yn þ
1

2
ðvnþ1 þ vnÞDt; yn

� �
Dt: (19)

Accordingly, there are questions related to accuracy, both in
how the solution of Eq. (19) affects energy conservation as
well as the error in position and phase. There are also ques-
tions related to how Eqs. (13) and (14) compare to symplec-
tic methods and other commonly used methods to solve
initial value problems.

These questions will be addressed for the pendulum problem
€y ¼ �sin y, with yð0Þ ¼ 7p=8, and v(0)¼ 0. Conservation
of energy (H ¼ ð1=2Þv2 � cos y) means that the solution

periodically encircles the origin in the phase plane, following
the energy curve:

1

2
v2 ¼ cos y� cos 7p=8 ¼ cos yþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
pq

: (20)

The period of the oscillation is T ¼ 4Kðsin ðyð0Þ=2Þ2Þ � 12:16,
where K is the elliptic integral of the first kind.

The energy conserving method in Eqs. (13) and (14) for
the pendulum takes the form

ynþ1 ¼ yn þ
1

2
ðvnþ1 þ vnÞDt; (21a)

vnþ1 ¼ vn þ
cos ðynþ1Þ � cos ðynÞ

ynþ1 � yn
Dt: (21b)

We compare Eq. (21) to the velocity-Verlet method, which
is

ynþ1 ¼ yn þ vnDt� 1

2
Dt2 sin yn; (22a)

vnþ1 ¼ vn �
1

2
sin ynþ1 þ sin ynð ÞDt: (22b)

The velocity-Verlet method is a second-order symplectic
method, which is conditionally convergent.21 Another
numerical solution we will consider is obtained using
MATLAB’s ode45 command (using the default settings and
version 2017b). These choices were made for the following
reasons. Symplectic methods are used extensively for molec-
ular simulations,22 solar system dynamics,23 and numerous
other applications where Hamiltonian systems arise.6,8 The
velocity-Verlet algorithm is well known, and is often used in
these applications. The ode45 algorithm is a general purpose
solver, which makes it one of the most used initial value
problem solvers. It is based on an explicit Runge-Kutta
method, which involves the Dormand-Prince pair of orders 4
and 5,24 which is not symplectic and does not satisfy time
reversal symmetry.

The relative differences of the computed and exact values
for the energy are shown in Fig. 1. The curves shown are the
computed values of jH(t)=H(0)� 1j, where H(t)¼H(y(t),
v(t)). The time interval corresponds to 103 periods of the
exact solution. For Eqs. (21) and (22), 14,000 equally spaced
time points were used, which corresponds to approximately
14 time steps per period. The ode45 routine is adaptive, and
uses 53,753 points. Newton’s root finding method was used
to solve Eq. (19), with the stopping condition being an abso-
lute error less than 10�14. Note that 14,000 points were used
because the velocity-Verlet algorithm is only conditionally
convergent and is inaccurate with fewer points.

The maximum value of the relative energy error over the
interval 0 � t � 1000T for different values of Dt is shown in
Fig. 2. We see from Figs. 1 and 2 that the energy for the con-
servative method is significantly better than what is found
using velocity-Verlet or ode45.

In addition to the requirement that the computed solution
be on the curve in Eq. (20), there is also the question of
where the computed solution is on this curve relative to the
exact solution (that is, the phase error). One way to measure
this is to compare the exact and computed number of periods
over a given amount of time. So, the solution was computed
for 0 � t � 100T, where T is the period of the exact solution.
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Figure 3 shows the number of resulting periods for the
numerical solution as a function of T=Dt, which is the num-
ber of points per period. The conditional convergence of the
velocity-Verlet algorithm is evident, and requires at least 14
time steps per period to obtain an accurate value for the
period. In comparison, Eq. (21) yields a reasonable value for
the period over the entire interval.

IV. MULTIPLE PARTICLES

The key step in the derivation of a conservative numerical
method is the factorization of the difference in the
Hamiltonians. To demonstrate how this can be done for a
system of particles (or a single particle in more than one
dimension), assume that the equation of motion is €y ¼ FðyÞ.
We have _y ¼ v and

_y ¼ v; (23a)

_v ¼ FðyÞ; (23b)

where F ¼ �$V. The Hamiltonian is Hðy; vÞ ¼ v � v=
2þ VðyÞ.

As before, we assume that the numerical method has the
form

ynþ1 ¼ yn þ
1

2
ðvnþ1 þ vnÞDt; (24a)

vnþ1 ¼ vn þ ~Fðynþ1; ynÞDt: (24b)

In this case,

Hðynþ1; vnþ1Þ � Hðyn; vnÞ

¼ 1

2
ðv2

nþ1 � v2
nÞ þ Vðynþ1Þ � VðynÞ; (25a)

¼ 1

2
ðvnþ1 þ vnÞ � ðvnþ1 � vnÞ þ Vðynþ1Þ � VðynÞ;

(25b)

¼ 1

2
ðvnþ1 þ vnÞ � ~FDtþ Vðynþ1Þ � VðynÞ: (25c)

We assume that the potential energy difference can be fac-
tored as

Vðynþ1Þ � VðynÞ ¼ ðynþ1 � ynÞ �Qðynþ1; ynÞ: (26)

Hence,

Hðynþ1; vnþ1Þ � Hðyn; vnÞ

¼ 1

2
ðvnþ1 þ vnÞ � ~FDtþ ðynþ1 � ynÞ �Q; (27a)

¼ 1

2
ðvnþ1 þ vnÞ � ~FDtþ 1

2
ðvnþ1 þ vnÞ �QDt; (27b)

¼ 1

2
ðvnþ1 þ vnÞ � ~FþQ

� 	
Dt: (27c)

Fig. 1. The relative error jH(t)=H(0) – 1j of the energy of the pendulum for 0 � t � 1000T, where T is the period of the exact solution.

Fig. 2. Maximum relative error of the total energy as a function of the step

size Dt used to solve the pendulum equation.

Fig. 3. Number of periods for the numerical solution of the pendulum prob-

lem for 0 � t � 100T, where T is the period of the exact solution. The points

per period is T=Dt.
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To obtain a conservative method, we take ~F ¼�Q.
The factorization in Eq. (26) is the essential step in the

derivation. Equation (26) is required to hold for all ynþ1 and
yn, which means that it is also true that VðynÞ � Vðynþ1Þ
¼ ðyn � ynþ1Þ �Qðyn; ynþ1Þ. Together with Eq. (26), it fol-
lows that Q must satisfy the symmetry condition:

Qðynþ1; ynÞ ¼ Qðyn; ynþ1Þ: (28)

The value for ynþ1 ¼ yn is defined using continuity. One
way to determine this value is to use Taylor’s theorem for
ynþ1 near yn, which gives Vðynþ1Þ ¼ VðynÞ þ ðynþ1 � ynÞ
�$VðynÞ þ � � �. From this result, we conclude that

Qðyn; ynÞ ¼ $VðynÞ: (29)

The form of Eq. (29) explains why Qðynþ1; ynÞ is often
referred to as a discrete gradient.4

Coupled linear oscillators. For F ¼ �Ay, where A
is symmetric, the potential energy function is VðyÞ
¼ ð1=2ÞyTAy. In this case, from Eq. (26),

Vðynþ1Þ � VðynÞ ¼
1

2
yT

nþ1Aynþ1 �
1

2
yT

n Ayn; (30a)

¼ 1

2
ðynþ1 � ynÞ

T
Aðynþ1 þ ynÞ: (30b)

To obtain a conservative method, we take ~F ¼ �Aðynþ1

þynÞ=2. This result is not unexpected because the resulting
numerical method is the trapezoidal method for a linear
system.

Conservative central force. We take F ¼ �$VðjjyjjÞ.
Then Eq. (26) requires that Vðjjynþ1jjÞ � VðjjynjjÞ
¼ ðynþ1 � ynÞ �Qðynþ1; ynÞ. If we assume that Q ¼ aðynþ1

þynÞ, we find

~F ¼ �
Vðjjynþ1jjÞ � VðjjynjjÞ
jjynþ1jj

2 � jjynjj
2
ðynþ1 þ ynÞ: (31)

Van der Waals interaction. For a one-dimensional model
of interacting hydrogen atoms, the Hamiltonian is25,26

H ¼ 1

2
mv � vþ 1

2
x2

0 y � y

þ e2

4p
1

R
þ 1

Rþ y1 � y2

� 1

Rþ y1

� 1

R� y2

� �
;

(32)

where R is the atomic separation and v ¼ _y. In this case, let-
ting ynþ1 ¼ ðy1;nþ1; y2;nþ1Þ and yn ¼ ðy1;n; y2;nÞ,

Vðynþ1Þ �VðynÞ

¼ 1

2
x2

0 ynþ1 � ynþ1� yn � ynð Þ

þ e2

4p
1

Rþ y1;nþ1� y2;nþ1

� 1

Rþ y1;nþ1

� 1

R� y2;nþ1

� �

� e2

4p
1

Rþ y1;n� y2;n
� 1

Rþ y1;n
� 1

R� y2;n

� �
;

(33a)

¼ 1

2
x2

0 ynþ1 � ynð Þ � ynþ1 þ ynð Þ

þ e2

4p
y1;n � y1;nþ1 þ y2;nþ1 � y2;n

ðRþ y1;nþ1 � y2;nþ1ÞðRþ y1;n � y2;nÞ

þ e2

4p
y1;nþ1 � y1;n

ðRþ y1;nþ1ÞðRþ y1;nÞ

�

þ y2;n � y2;nþ1

ðR� y2;nþ1ÞðR� y2;nÞ

�
: (33b)

From Eq. (33b), it follows that ~F ¼ �x2
0ðynþ1 þ ynÞ=2

�e2P=4p, where P ¼ ðP1;P2Þ, with

P1 ¼
�1

ðRþ y1;nþ1 � y2;nþ1ÞðRþ y1;n � y2;nÞ

þ 1

ðRþ y1;nþ1ÞðRþ y1;nÞ
; (34a)

and

P2 ¼
1

ðRþ y1;nþ1 � y2;nþ1ÞðRþ y1;n � y2;nÞ

þ �1

ðR� y2;nþ1ÞðR� y2;nÞ
: (34b)

H�enon-Heiles model. The H�enon-Heiles model for the
planar motion of a star in a galaxy can be expressed as27

_x ¼ u; (35a)

_y ¼ w; (35b)

_u ¼ �ax� 2xy; (35c)

_w ¼ �by� x2 þ cy2: (35d)

The corresponding potential energy function is V ¼ 1=2ðax2

þby2Þ þ x2y� ð1=3Þcy3. Let yn ¼ ðxn; ynÞT be the current
value and ynþ1 ¼ ðxnþ1; ynþ1ÞT be the value at the next time
step. To find the factorization of the difference in the poten-
tial energies as required in Eq. (26), we have

Vðynþ1Þ � VðynÞ ¼ aðx2
nþ1 � x2

nÞ=2þ bðy2
nþ1 � y2

nÞ=2

� cðy3
nþ1 � y3

nÞ=3þ x2
nþ1ynþ1 � x2

nyn;

(36a)

¼ ðynþ1 � ynÞ � Rþ x2
nþ1ynþ1 � x2

nyn;

(36b)

where R¼ðaðxnþ1þ xnÞ=2; bðynþ1þynÞ=2� cðy2
nþ1þ ynynþ1

þy2
nÞ=3ÞT . It remains to find P and Q so that x2

nþ1ynþ1

�x2
nyn¼ðxnþ1� xnÞPþðynþ1�ynÞQ. After a short calcula-

tion, we find that Q¼ðx2
nþ x2

nþ1Þ=2 and P¼ðxnynþ xnynþ1

þxnþ1ynþxnþ1ynþ1Þ=2. The resulting conservative method
for solving the H�enon-Heiles model is

xnþ1 ¼ xn þ
1

2
Dtðunþ1 þ unÞ; (37a)

ynþ1 ¼ yn þ
1

2
Dtðwnþ1 þ wnÞ; (37b)
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unþ1 ¼ un �
1

2
Dt aðxnþ1 þ xnÞ þ xnyn þ xnynþ1½

þxnþ1yn þ xnþ1ynþ1�; (37c)

wnþ1 ¼ wn �
1

2
Dt bðynþ1 þ ynÞ þ x2

n þ x2
nþ1

h i
þ 1

3
ckðy2

nþ1 þ ynynþ1 þ y2
nÞ: (37d)

V. APPLICATION: CHAIN OF NONLINEAR

OSCILLATORS

An interesting system is the motion of a chain of identical
masses and springs. For nearest-neighbor interactions, the
equations of motion are

m€ya ¼ _Vsðyaþ1 � yaÞ � _Vsðya � ya�1Þ ða ¼ 1; 2;…NÞ;
(38)

where yaðtÞ is the displacement of particle a relative to its
equilibrium location, m is its mass, and Vs(y) is the interac-
tion potential. This system is illustrated in Fig. 4, where the
springs between the masses each have potential Vs.

The Hamiltonian for this system is

H ¼ 1

2
mv � vþ

XNþ1

a¼1

Vsðya � ya�1Þ; (39)

where v ¼ _y and y is the vector of particle displacements. It
is assumed in the following that, y0¼ yNþ1¼ 0, and m¼ 1.

To use the conservative method we have discussed, it is
necessary to find the factorization

XNþ1

a¼1

Vsðya;nþ1 � ya�1;nþ1Þ � Vsðya;n � ya�1;nÞ

 �
¼ ðynþ1 � ynÞ �Qðynþ1; ynÞ; (40)

where ya;n is the displacement of particle a at time tn. The
difficulty of finding the factorization depends on the form of
Vs. In what follows, we will assume that the potential func-
tion is

VsðyÞ ¼
1

2
k1y2 þ 1

4
k2y4: (41)

The quartic term in Eq. (41) leads to what is sometimes
called the b-model for the Fermi-Pasta-Ulam (FPU) prob-
lem, which has been used to study crystal dislocation, local-
ized excitations in ionic crystals, and thermal denaturation of
DNA.28,29

To find the factorization, it is convenient to write Vs¼V1

þ V2, where V1 ¼ k1y2=2 and V2 ¼ k2y4=4.
Note that

XNþ1

a¼1

V1ðya;nþ1 � ya�1;nþ1Þ � V1ðya;n � ya�1;nÞ

 �
¼ 1

2
k1

X
ðya;nþ1 � ya�1;nþ1Þ2 � ðya;n � ya�1;nÞ2
h i

;

(42a)

¼ 1

2
k1

X
ðya;nþ1 � ya;nÞð�ya�1;nþ1 þ 2ya;nþ1

� yaþ1;nþ1 � ya�1;n þ 2ya;n � yaþ1;nÞ; (42b)

¼ ðynþ1 � ynÞ �Q1; (42c)

where Q1 ¼ 1
2

k1Aðynþ1 þ ynÞ and A is the N�N tridiagonal
matrix with 2’s on the diagonal, and –1’s on the super- and
sub-diagonals. Also,

XNþ1

a¼1

V2ðya;nþ1 � ya�1;nþ1Þ � V2ðya;n � ya�1;nÞ

 �
¼ 1

4
k2

X
ðya;nþ1 � ya�1;nþ1Þ4 � ðya;n � ya�1;nÞ4
h i

;

(43a)

¼ 1

4
k2

X
ðya;nþ1 � ya;nÞ ðya;nþ1 þ ya;nÞBa þ Ca


 �
;

(43b)

¼ ðynþ1 � ynÞ �Q2; (43c)

where

Ba ¼ 2ðy2
a;nþ1 þ y2

a;nÞ

þ 3ðy2
a�1;nþ1 þ y2

a�1;n þ y2
aþ1;nþ1 þ y2

aþ1;nÞ; (44)

Ca ¼ �2 y3
a�1nþ1 þ y3

a�1;n þ y3
aþ1;nþ1 þ y3

aþ1;n

h
þðya�1;nþ1 þ ya�1;n þ yaþ1nþ1 þ yaþ1;nÞ

� y2
a;nþ1 þ ya;nþ1ya;n þ y2

a;n

� i
; (45)

and

ðQ2Þa ¼
1

4
k2 ðya;nþ1 þ ya;nÞBa þ Ca

 �

: (46)

The resulting conservative method is given in Eq. (24),
where

~Fðynþ1; ynÞ ¼ �
1

2
k1Aðynþ1 þ ynÞ �Q2ðynþ1; ynÞ:

(47)

The implementation of the conservative method, using the
force in Eq. (47), requires finding vnþ1 by solving

vnþ1 ¼ vn þ ~F yn þ
1

2
ðvnþ1 þ vnÞDt; yn

� �
Dt: (48)

In what follows, Eq. (48) is solved using Newton’s method.
Note that because of the assumption of nearest-neighbor
interactions, the Jacobian needed for Newton’s method is tri-
diagonal, which reduces the computational cost of solving
for vnþ1.Fig. 4. Chain of masses and springs.
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To explain some of the choices for computing the solution
of the nonlinear problem, we recall some properties of the
linear problem. Specifically, for k2¼ 0, the natural frequen-
cies of the problem are

xj ¼ 2

ffiffiffiffiffi
k1

m

r
sin ðjh=2Þ ðj ¼ 1; 2;…;NÞ; (49)

where h ¼ p=ðN þ 1Þ. The associated natural modes are

xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

Nþ 1

r
ðsin ðjhÞ; sin ð2jhÞ; sin ð3jhÞ;…; sin ðNjhÞÞT :

(50)

Note that the xj’s are an orthonormal basis for RN .
The initial condition to be used for the nonlinear problem

comes from the third natural mode, and so yað0Þ ¼ sin ð3ahÞ
and vað0Þ ¼ 0. We will take N¼ 32, m¼ 1, k1¼ 1, and
k2¼ 5. To determine the time step, note that the periods of
the linear modes vary from 2p=x1 � 2ðN þ 1Þ down to
2p=xN � p. To guarantee that there are at least three time
steps per linear period, we take Dt � 1. We use for the stop-
ping condition for Newton’s method that the error is less
than 10�14.

The solution is computed for 0 < t � 10;000 and the maxi-
mum relative energy error is determined over this interval. This
error is defined as maxjHðtÞ=Hð0Þ � 1j. The value of this error
as a function of the value of Dt is shown in Fig. 5. Also shown
are the values obtained using the velocity-Verlet algorithm.
Note that the latter method is only conditionally stable, and
requires a time step no larger than about 0.4.

The results in Fig. 5 are not surprising and show that Eq.
(24) produces a solution with an energy close to machine
precision. The velocity-Verlet algorithm gives an inaccurate
energy value for large step sizes but improves quickly as the
step size is decreased. For each value of Dt, velocity-Verlet
is significantly faster than Eq. (24). As an example, when
Dt ¼ 0:25, velocity-Verlet is about 100 times faster.
However, for velocity-Verlet to achieve the same error that
the conservative method has when Dt ¼ 1, it is necessary to
take a very small step size. Although the value of Dt can be
estimated from Fig. 5, we stress that there is a significant
increase in computing time to achieve an equivalent error. In
particular, even for Dt ¼ 0:001, velocity-Verlet takes
approximately 15 times longer than Eq. (24) using Dt ¼ 1
yet the energy error is several orders of magnitude larger.

Measuring the phase error in this problem is more chal-
lenging than for the single degree of freedom pendulum. One
possible approach is to use the orthonormal basis coming
from the linear problem. In particular, it is possible to write

yðtÞ ¼ c1ðtÞx1 þ c2ðtÞx2 þ � � � þ cNðtÞxN; (51)

where the xj’s are given in Eq. (50) and

cjðtÞ ¼ y � xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

N þ 1

r XN

a¼1

yaðtÞ sin ðajhÞ: (52)

The un-normalized first mode will be used for the initial con-
dition, so yað0Þ ¼ sin ðahÞ, and vað0Þ ¼ 0. The solution yðtÞ
is computed for 0 � t � 12;000, and then the basis coeffi-
cients cj(t) are found using Eq. (52). The resulting values for
c1(t), c3(t), and c5(t) are plotted in Fig. 6. It is seen that each
cj oscillates rapidly, corresponding to the frequency xj in Eq.
(49). We will concentrate on c1(t), because it is associated
with the initial condition. There is a slow periodic modula-
tion of c1(t), with a period of about 6500. In the early analy-
ses of the FPU problem, this period generated much
excitement and was termed a superperiod.30 This is often
seen in nonlinear oscillator motion, and it is possible to
derive expressions for the modulated period in certain cases
using the method of multiple scales.31

For the value of Dt used in Fig. 6, both Eq. (24) and the
velocity-Verlet algorithm determine the period of the fast
oscillation of c1(t) very well. The challenge lies in comput-
ing the value of the superperiod. The superperiod is deter-
mined here by computing the time between the local minima
in the envelope of c1(t) as shown in Fig. 6. The resulting val-
ues of the relative error in the period are given in Fig. 7 as a
function of Dt, obtained using Eq. (24) and velocity-Verlet.
It is seen that the two methods have similar accuracy.

VI. SUMMARY

The factorization in Eq. (26) has a long history, going
back to at least the work of LaBudde and Greenspan3,32 who
used it to derive Eq. (31). The general version was derived a
short time later.33 It is easy to generalize the method so that
it works for more general Hamiltonian systems,4,6,34 systems
with multiple invariants,6,34,35 and conservative partial dif-
ferential equations.36,37

The resulting numerical method is capable of producing a
conservative solution to machine precision, and is A-stable.
Its usefulness depends on finding the discrete gradient.
Several examples were given, but in many real world prob-
lems, it can be difficult to find Q. The other serious criticism
of the method is that it is implicit, which means longer
computing times for a given time step compared to explicit
symplectic methods. To quantify this point, computing an

Fig. 5. Relative energy error as a function of the time step used to solve the

FPU problem for 0 � t � 10; 000.

Fig. 6. The coefficients c1(t), c3(t), and c5(t) in Eq. (51) for the coupled oscilla-

tors with yað0Þ ¼ sin ðahÞ, and vað0Þ ¼ 0. In this calculation, Dt ¼ 0:1.
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accurate value for vnþ1 requires about four iteration steps in
Newton’s method. For the simple examples considered here,
the increase in computing time is minimal. For more physi-
cally realistic problems, evaluating the forcing term can be
very time consuming. In these cases, the implicit conserva-
tive method can take significantly longer than explicit sym-
plectic methods. It is possible that the time required for a
force evaluation can be appreciably reduced on a GPU, or a
multicore CPU, but whether this can be done effectively is
an open question.

To conclude, numerical methods have been derived that
satisfy conservation of energy to machine precision, albeit
with more computing time compared to explicit symplectic
methods. It is appropriate to end with a comment by
Seymour Cray. CRAY supercomputers at the time held the
computing speed record, but questions arose about the inac-
curacy of certain calculations on these machines. It turned
out that arithmetic error checks were not being made, which
helped speed up the computations. When asked about this,
his reply was “do you want it fast or do you want it
correct?”38

VII. SUGGESTED PROBLEMS

Problem 1. Suppose a mass is situated between two paral-
lel walls and is connected to the walls by springs as shown in
Fig. 8. The restoring force in this case has the form

FðyÞ ¼ �y 1� kffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
" #

; (53)

where 0 < k < 1.

(a) Show that Eq. (14) reduces to

vnþ1 ¼ vn � ðynþ1 þ ynÞ

� 1

2
� k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

nþ1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

n

p
2
4

3
5Dt

m
: (54)

(b) For k ¼ 0:5; yð0Þ ¼ 1, and v(0)¼ 0, the period is T � 8.
Compute the solution using the conservative method for
0 � t � 1000T, using 20 time steps per period. Then
plot the resulting relative Hamiltonian error jH(t)=H(0)
– 1j, similar to what was done in Fig. 1.

(c) The velocity-Verlet method for solving Eqs. (13) and
(14) is

ynþ1 ¼ yn þ vnDtþ Fn
Dt2

2m
; (55a)

vnþ1 ¼ vn þ Fnþ1 þ Fnð Þ Dt

2m
: (55b)

Redo part (b) using the velocity-Verlet method.
(d) How do the errors in parts (b) and (c) compare? If the

number of time steps per period is doubled or cut in
half, how do the methods compare?

Problem 2. Let V(y) be the associated potential for the single
particle problem in Eqs. (1) and (2), so that F(y)¼�V0(y).

(a) Show that Eq. (14) can be written as

vnþ1 ¼ vn �
Vðynþ1Þ � VðynÞ

ynþ1 � yn

Dt

m
: (56)

(b) The Toda potential is V (y)¼ ey� y. What is the corre-
sponding force F(y)? Show that the result in part (a)
reduces to

vnþ1 ¼ vn þ 1� eynþ1 � eyn

ynþ1 � yn

� �
Dt

m
: (57)

(c) Finding vnþ1 from Eq. (56) requires solving f(vnþ1)¼ 0,
where

f ðxÞ � x� vn þ
Vðynþ1Þ � VðynÞ

ynþ1 � yn

Dt

m
; (58)

and ynþ1 ¼ yn þ ð1=2Þðxþ vnÞDt. If Newton’s method
is used to solve this equation, it is necessary to find
f 0(x). Show that

f 0ðxÞ ¼ 1� Vðynþ1Þ � VðynÞ þ ðynþ1 � ynÞFðynþ1Þ
ðynþ1 � ynÞ2

Dt2

2m
:

(59)

(d) If y(0)¼ 1, and v(0)¼ 0 for the Toda potential in part
(b), the period is T � 6:7. Use the result from part (c)
and find y(t) and v(t) using the conservative method for
0 � t � 1000T with 10 time steps per period. Plot the
resulting relative error jH(t)=H(0) – 1j, as was done in
Fig. 1. The stopping condition for Newton’s method
should be an absolute error less that 10�12.

(e) Redo part (d) using the velocity-Verlet method. The
general form for velocity-Verlet is given in
Problem 1(c).

(f) How do the errors in parts (d) and (e) compare? If the
number of time steps per period is doubled, or cut in
half, how do the methods compare?

Fig. 7. Relative error of the computed value for the superperiod illustrated

in Fig. 6 as a function of the step size used to solve the FPU problem. Fig. 8. Oscillator studied in Problem 1.
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Problem 3. Two pendulums are coupled by a spring, as
shown in Fig. 9. The pendulums have the same mass m and
length L. Let k be the spring constant, and assume that the
spring is attached a distance ‘ from the upper pivot (as mea-
sured along the rod of each pendulum). The resulting equa-
tions of motion are

mL2 €h1 ¼ �mgL sin h1 þ k‘2f ðsin h2; sin h1Þ cos h1;

(60a)

mL2 €h2 ¼ �mgL sin h2 � k‘2f ðsin h2; sin h1Þ cos h2;

(60b)

where f ðsin h2; sin h1Þ ¼ sin h2 � sin h1. In this problem,
y ¼ ðh1; h2ÞT and v ¼ ð _h1 ; _h2ÞT . Show that Q ¼ ðQ1;Q2Þ,
where

Q1 ¼
1

h1;nþ1 � h1;n
�aðcos h1;nþ1 � cos h1;nÞ
�

þb
2

f ðh1;nþ1;h1;nÞðf ðh1;nþ1;h2;nþ1Þ þ f ðh1;n;h2;nÞÞ
�
;

(61a)

and

Q2 ¼
1

h2;nþ1 � h2;n
�aðcos h2;nþ1 � cos h2;nÞ
�

þb
2

f ðh2;nþ1;h2;nÞðf ðh2;nþ1;h1;nþ1Þ þ f ðh2;n;h1;nÞÞ
�
;

(61b)

where a ¼ g=L; b ¼ k‘2=ðmL2Þ, and h1;n is the value of h1 at
time tn, with similar meanings for the other angular
variables.
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