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A new systematic scheme of decomposition of exponential operators is presented, namely exp[x(4+B)]=S,,(x) +O(x™*!)
for any positive integer m, where S,,(x) =e"efe>ef. ™4, A general scheme of construction of {£} is given explicitly. The
decomposition exp[x(A4+B) ] = [S,.(x/n)]*+0(x™*!/n™) yields a new efficient approach to quantum Monte Carlo simulations.

In the present paper, we propose a new scheme of
decomposition of exponential operators, which will
be useful for quantum Monte Carlo simulations,
hopefully even in frustrated quantum spin and fer-
mion systems. In previous papers [1,2], we showed
that if we define the following approximant f,,({4;}),

exp(x ) A,)=fm({A,-})+0(xm+‘> , (1)

then we have

exp(x Zq:. Aj>= f({n='4, ) ]"+O0(x™* /n™) .
(2)

The previous choice [1,2] of the mth approximant
Jm({4;}) was not necessarily practical. Thus, it is es-
sential to find a new general scheme of construction
of f,.({4,}). From a practical point of view, we try
here to construct the mth approximant of the form

Sm(A, B) =¢"e2Bei2detB  ermd (3)

for the exponential operator exp[x(4+ B) ] with real
or complex numbers {#}. The above product decom-
position (3) is convenient when A4 and B are the sum
of commuting operators, respectively, because the
matrix elements of f,,(A, B) can be obtained easily
in these situations, and because it is easy to find an
equivalent classical lattice corresponding to the trace
of f,,(4, B) in (3).

The simplest decomposition of exp[x(4A+B)] is
fi(4, B)=e*e*?, (4)

as is well known. This is of the first order of x. The
second order decomposition is given by the follow-
ing symmetric product [1-3],

S(x) =g/ exBe(x/2)4 (5)
Clearly, we have [1-3]
exp[x(A+B)]=S(x)+0(x?). (6)

Now we try to find the third order decomposition
of the form (3). For this purpose, we express
exp[x(A+B)] as

exp[x(A+B)]=exp[sx(A+B)]
xexp[(1-2s)x(A+B)]exp[sx(A+B)]. (7)

Our new strategy of construction of decomposition
is to substitute the approximant S(x) into each fac-
torin (7) as

S3(x) =S(sx)S((1=25)x)S(sx), (8)

and to determine the parameter s so that the sum of
the uncontrollable third order terms in each Sin (8)
may vanish. This new scheme of construction can be
used repeatedly in higher order approximants as

S X) =Spm_1 (852 X)Sp_1 ({1=25,,)x)
X Sm_1(SmX) , (9
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and the parameter s,, can be determined in a similar
way.

More explicitly we explain our construction
scheme, called decomposition condition, first for the
third order approximant (8). Our possible decom-
position condition is that both the sum of the third
order terms of each exponential operator in (7)

517[2s3+(1—2s)3]x3(A+B)3 (10)
and the sum of the third order terms of each .Sin (8)
may vanish, namely we have
2534+ (1-25)3=0,

1

ie., s§= 2-3ﬁ=

Thus, the simples real decomposition of third order
is given explicitly by

1.35120719195965....  (11)

S3(x)=exp(}sxA4) exp(sxB) exp[3 (1 —s)x4]
Xexp[(1—2s)xB] exp[i(1—s)xA4]
Xexp(sxB) exp(isxA4), (12)

with sin (11). It is easily shown that there exists no
real decomposition of third order expressed by the
product of five exponential operators. It should be
also remarked that the above symmetric decompo-
sition S5(x) is correct even up to the fourth order of
x, as will be shown generally later. For practical ap-
plications, a value of s less than unity is more con-
venient. For this purpose, we consider the following
general decomposition,

explx(A+B)]= [] exp[xp/(4+B)]

=0{"(x)+0(x*), (13)

and
04 (x)= I_I S(px) (14)

with the decomposition condition that

1™~

p}=0 and Y p;=1. (15)
j=1

Jj=1

For any integer r (>3), egs. (15) have real roots
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less than unity. For example, we have the following
solution

1
Di=Dy=..=D,_ =pP= (r__l)_{/;j’

In fact, we have that p=0.641951355... for r=4.
By generalizing the above scheme, we obtain the
following fractal decomposition theorem.

Theorem 1 (construction theorem). For the expo-
nential operator exp[x(4,+A4,+..+A4,)], we con-
sider the following (m—1)th approximant,

exp(x ¥ A,):Q,,,_l(x)+0(x”’). (17)

Then, the mth approximant Q,,,(x) is constructed as
follows:

Om(x) = L”I]Qm_l(pme>, (18)

where the parameters {p,,;} are the solutions of the
following decomposition condition:

Y pmi=0 with 3 p,,;=1. (19)
j=1 j=1

The proof of this theorem is easily given by con-
sidering the following identity,

exp(x i Ak>= ]'r] exp(pm,,x Zq: Ak)
k=1 j=1 k=1
=0n(x)+0(x"*1), (20)

and substituting the (m—1)th approximant
QO 1(Pm;x) in each factor of (20). The decompo-
sition condition (19) is derived from the require-
ment that the uncontrollable mth order terms in (20)
should vanish.

For r=2 and m=3, we have the following
decomposition,

Q4»(x)=S(ax)S(ax) , (21)

where @=1—a is the complex conjugate of @, and a
and 4 are the solutions of the equation

3a2—3a+1=0, ie, a=3(3%./3i). (22)
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More explicitly we have
Q4§» (x) =exp(}axA4) exp(axB) exp(;xA4)
Xexp(dxB) exp(iax4) , (23)

with (22) for g=2. This third order complex de-
composition (23) was found ad hoc by Bandrauk
[4]. Next we obtain the fourth order decomposition

Q8 (x) =08 (pax) Q8P (Pax) , (24)
with the decomposition condition
pi+(1-ps)*=0, ie, ps=(1+e™*)~'.  (25)

In general, the mth order approximant is recur-
sively given by

QP (0)=Q52 1 (Pmx) Q5221 ((1=pm)X) , (26)
with the decomposition condition

prr:+(1“‘pm)m=0s i.C., pm=(1+ei“/m)_l'
(27)

Clearly, we have } < |p,,| <1 for m>2, and it is easy
to show that
lim p,,=1}. (28)
Consequently, our infinite product converges to the
original operator, namely
lim Q@ (x)=exp[x(4+B)]. (29)
m-—co
A more mathematical proof in the Banach space will
be given elsewhere. There are many other alternative
decomposition schemes, as is easily seen from theo-
rem 1 (construction theorem).

For g=2, r=3 and m=3, we have the following
decomposition,

0§ (x)=S(px)S((1-p—q)x)S(px)
=exp(3pxA) exp(pxB) exp[4(1—gq)xA4]
Xexp[(1-p—q)xB] exp[§(1—p)xA] exp(gxB)

xexp(igx4), (30)
where p and ¢ satisfy the condition
pi+qg3+(1-p—g)*=0. ‘ (31)

The above decomposition is a generalization of (12).
In fact, the symmetric case p=g=s of (30) reduces
to (12).

PHYSICS LETTERS A

4 June 1990

It should be noted that the general decomposition
condition (19) for = 3 has always real roots for odd
m, but only complex roots for even m. However, we
fortunately find that our general symmetric decom-
position S,,,_; (x) of the order 2m— 1 is correct even
up to the order 2m. Namely, we have

Sam(X) =Spm_1(x) . (32)

The proof was already given essentially by the
present author in 1985 [3]. First note that

SZm—l(-x)SZM--—l(_x)=l ’ (33)

for a symmetric decomposition such as (12), as in
ref. [3]. Then, we write S,,,_,(Xx) as

Som_1(x) =exp<x by Aj)+x2"‘R2m({Aj})

+O(xm+), (34)

where R,,,({4;}) is an operator independent of x.
From (33), we have

[exp(x Y A,) +x2mR2m({Aj})]

xl:exp< —-xY, A,)+x2mR2m({Aj})]

=14+0(x?"*") . (35)

That is, we get
Rom({4;}) exp( -X3 Aj)

+exp(xZAj>R2m({Aj})=O(x). (36)

Therefore, by putting x=0 in (36) we arrive at the
conclusion

Rom({4;})=0, (37)
namely,
Som(X) =S2pm_1(X) . (38)

Thus, from theorem 1, we obtain an infinite number
of real symmetric decompositions of the exponential
operator exp[x(A+A,+...+4,)] up to any order of
X.

For practical applications to Monte Carlo simu-
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lations including the range of large x, it will be more
convenient to use the following decomposition,

exp(x )3 A,-): [8%,.(x/n)]"+O(x¥"*1 /n?m) .
] (39)
Here, S%,.(x) is the symmetric decomposition
I (X)=8%m_1(x)
= [83n—3(PmX) 12833 ((1=4p,)x)
X [S3m_3(DmX)]?, (40)

with the first (or second) order symmetrized de-
composition [3]

T(x)=8(x)
=exp(ix4,) exp(ix4,)...
Xexp(3xA,_;) exp(xA,) exp(ixA,_y)...
Xexp(4xd,) exp(3x4,) , (41)

where the parameter p,, is the real solution of the
equation

4p2m=14 (1—4p,,)>"~'=0,
ie, pm=(4—41/C7=I0)=1, (42)

Clearly, in this scheme of decomposition, we have
i<p.<iand [1-4p,|<]1forallm (>2), as shown
in table 1 numerically for explicit applications. The
fractal structure of this decomposition is shown in
fig. 1. Strictly speaking, it is the “‘transient fractals™
introduced by the present author [5].

Thus, the parameters {#;} in (3) are expressed by
some fractal product of {p,,} in (42). Then, our gen-
eral decomposition may be called “fractal decom-
position” or “fractal path integral”. We call this new

Table 1
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approach to simulations “fractal time (or tempera-
ture) Monte Carlo” (FTMC).

In applying the above general decomposition to
quantum Monte Carlo simulations, we also have to
be careful about the length of the additional dimen-
sion, namely the number of products of partial
Boltzmann factors ¢4 and e¥2. It is estimated to be
(2r™=14+1)n for the approximant (39) with the r
decomposition in (20) for g=2, while it is 2n, for
the ordinary Trotter decomposition exp[x(4+
B)1=[exp(xA4/ny) exp(xB/ng)}™. At first glance
one might consider that our new scheme requires
more products than the ordinary one. However, for
the same number of products, the accuracy of our
new scheme is much better than the ordinary one;
namely the former is of the order of x2"*!/n2" from
(39), while the latter is of the order of

O(x?/ny) =0(x?/nrm-1) . (43)

Thus, our new scheme is much better than the or-
dinary one, when the criterion

(rx/n)*m"—t<rm (44)

is satisfied.

It i1s also remarked that the present scheme may
hopefully be effective in resolving the “negative sign
problem”, because the distances of path separation
are “fractal” even with respect to sign and because
only intrinsic non-commutative effects, namely cross
terms, are included in higher orders in our new
scheme. It should be noted that the present scheme
cannot be applied to a diffusion operator, because
there exists no inverse exponential diffusion opera-
tor. Finally it should be emphasized that our new
scheme is particularly useful in studying quantum
coherence.

A more detailed formulation of the present method

Numerical values of the decomposition parameters {p,,}; M=2X5m""'+1.

m Order M Dm

2 4 11 0.414490771794375737142354062860...
3 6 5t 0.373065827733272824775863041073...
4 8 251 0.359584649349992252612417346018...
5 10 1251 0.352924033444267716800194426588...
6 12 6251 0.348956404962246870510903637594...
7 14 31251 0.346324121534706553878042288665...
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Fig. 1. Fractal structure of the decomposition S%(x): (a) $3(x)=S35(x); ty=t1,=4ps, ts=t:=4(1=3p,), ts=1—4p,, others=p,; (b)

§3(x)=S5%(x): the. number j denotes ¢;

ta=ta=4p2(1=3p3), ty=tis=ty=

tzs—tzs— Lo=p2(1—-4p;), bs=

i h=tsi=4paps, =ty =tis=ty=tis=tyr=tas=laz =4 (1 = 3p2)P3, ls=tig=t3s=1lss= (1 —4P2) D3,
Ly=4(1-3p,) (1 -4p3), hs={(1—4p,) (1 —4p;), others=p, ps; (c)

%(x) =S%(x); repeated structure of (b) with the weights pa, ps, | —4ps, ps and p,. The four connection distances of five $*’s are given
by p2PaDa, $0203(1 =3ps), 4p203(1 —3p,) and pyp3ps, respectively. In general, S3,._, (x) and S%,,(x) have similar structures. The fractal
dimensionality [6] in the limit m—sco is given by D=log 5/log 3=1.46....

will be reported elsewher'e. The present idea of re-
cursive construction of successive approximants may
be extended to other approximative methods. Some
explicit applications of the present new scheme to
Monte Carlo simulations will be reported elsewhere
in the near future.

The present author would like to thank Professor
A.D. Bandrauk for informing his result (23) with
(22) prior to publication, and also to thank N.
Kawashima for a useful comment on the proof of
(38) and Y. Nonomura for accurate calculations of
the numbers {p,,} in table 1.

References

[1]1M. Suzuki, J. Stat. Phys. 43 (1986) 883, and references
therein.

[2] M. Suzuki, in: Quantum Monte Carlo in equilibrium and
nonequilibrium systems, ed. M. Suzuki (Spnnger. Berlin,
1987), and references therein.

[3] M. Suzuki, J. Math. Phys. 26 (1985) 601; Phys. Lett. A 113
(1985) 299.

[4] A.D. Bandrauk, private communication.

[5] M. Suzuki, Prog. Theor. Phys. 71 (1984) 1397.

{6] B.B. Mandelbrot, The fractal geometry of nature (Freeman
San Francisco, 1982).

323



