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A new systematicschemeofdecompositionof exponentialoperatorsis presented,namelyexp[x(A + B)] = S,,,(x)+ 0 (x’” + I)

for anypositive integerm,whereS,,,(x)=etIAet~e~e1~...etMA.A generalschemeof constructionof {t,} is givenexplicitly. The
decompositioncap[x(A + B)] = [S,,,(x/n) 1“+0 (x”’~In”) yieldsanewefficient approachto quantumMonteCarlosimulations.

In the presentpaper,we proposea new schemeof The simplestdecompositionof exp[x(A + B)] is
decompositionof exponentialoperators,which will f, (A, B) = e~exB, (4)
be useful for quantum Monte Carlo simulations,
hopefully evenin frustratedquantumspin andfer- as is well known.Thisis of the first orderof x. The
mion systems.In previouspapers[1,2], we showed secondorderdecompositionis given by the follow-
that if we definethe following approximantfm( {4}), ing symmetricproduct [1—3],

/ q \ S(x)=et2e~e~-”2~-4 (5)
exp(x~Aj)=fm({Aj})+O(xm+1), (1)

i=’ / Clearly,we have[1—3]

then we have exp[x(A+B)]=S(x)+O(x3). (6)

/ q Now we try to find the third orderdecomposition
exp(x ~ A~)= [f~,({n_IA

1})]n+O(xm+I/nm). of the form (3). For this purpose,we express
\ j=I

exp[x(A+B)J as
(2)

Thepreviouschoice [1,2] of the mthapproximant exp[x(A+B)] =exp[sx(A+B)]

wasnotnecessarilypractical.Thus, it is es- xexp[ (1 —2s)x(A+B)J exp[sx(A+B)] . (7)
sentialto find a newgeneralschemeof construction
offm({Aj}). From a practicalpoint of view, we try Our new strategyof constructionof decomposition
hereto constructthe mth approximantof the form is to substitutethe approximantS(x) into eachfac-

tor in (7) as

fm(~4,B) =ehIAet2Bet~et4B...etMA S3(x)_—S(sx)S((l—2s)x)S(sx), (8)
for theexponentialoperatorexp[x(A +B)] with real

andto determinethe parameters sothat thesumof
or complexnumbers{i~}.Theaboveproductdecom- the uncontrollablethirdordertermsineachSin (8)
position (3) is convenientwhenA andBarethesum
of commutingoperators,respectively,becausethe mayvanish.Thisnewschemeof constructioncanbe

usedrepeatedlyin higherorder approximantsas
matrix elementsof fm(A, B) canbe obtainedeasily
in thesesituations,andbecauseit is easyto find an Sm(x) Sm_i (SmX)Sm_i ((1 — 2Sm)X)
equivalentclassicallatticecorrespondingto thetrace

XSm_i(SmX), (9)
Offm(A, B) ~fl (3).
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and the parameter s,~can be determined in a similar less than unity. For example,wehave thefollowing
way. solution

More explicitly we explain our construction
scheme,calleddecompositioncondition, first for the Pi =P2 =~‘•=Pr- I

third order approximant(8). Our possibledecom-
position conditionis that both the sumof the third Pr= 1— (r— l)p. (16)
order termsof eachexponentialoperatorin (7)

In fact, we havethatp=O.64l95l355...for r=4.

[2s3+(l—2s)3]x3(A+B)3 (10) By generalizingthe abovescheme,we obtain the

following fractal decompositiontheorem.
and the sum of the third ordertermsof eachSin (8) Theorem1 (constructiontheorem). For the expo-
may vanish,namelywe have nential operatorexp[x(A

1 +A2+ ... +Aq)], we con-

2s
3+ (1 —2s)3=0, siderthe following (m—1 )th approximant,

i.e., s= =1.35120719195965.... (11) exp(x±Aj)=Qm_i(x)+O(xm). (17)
2—.~/~ \ j~~1

Thus, the simplesrealdecompositionof third order Then,themthapproximantQm(X) is constructedas
is given explicitly by follows:

S
3(x)=exp(~sxA)exp(sxB)exp[~(l—s)xA] Q(X)= fl Qm_i(Pm,1X), (18)
xexp[(l—2s)xB}exp[~(l—s)xA]

xexp(sxB)exp( ~sxA), (12) wherethe parameters{pmj} arethe solutions of the
following decompositioncondition:

with s in (11). It is easilyshownthatthereexistsno
realdecompositionof third order expressedby the ~ p ~ = 0 with ~ Pm,j = 1 . (19)
productof five exponentialoperators.It shouldbe -‘ ‘ I

alsoremarkedthat the abovesymmetricdecompo-
sition S3(x) is correctevenup to the fourthorderof The proofof this theoremis easily given by con-
x, as will be showngenerallylater. For practicalap- sideringthe following identity,
plications,a valueof s less thanunity is morecon-
venient.Forthispurpose,we considerthe following exp(x ~ ii,. = fj exp(pmix~ A,,,
generaldecomposition, \ k~l I j=1 k=l /

Qm(X)+0(Xml~), (20)
exp[x(A+B)]= fl exp[xp~,(A+B)]

and substituting the (m — 1 )th approximant
_Q~r)(x)+O(x

4) (13) Qm_i(PrnjX) in eachfactorof (20). Thedecompo-
sition condition (19) is derivedfrom the require-

and mentthat theuncontrollablemthordertermsin (20)
shouldvanish.

Q~r)(x) flS(p~x), (14) For r=2 and m=3, we have the following
J= 1 decomposition,

with the decompositionconditionthat Q~2~(x)~5(ax)S(~), (21)

~ p)=O and ~ p~,=l . (15) where ã=l—a is the complexconjugateofa, anda
j=1 i=’ anda are the solutions of the equation

For any integer r (>~3), eqs. (15) havereal roots 3a2— 3a+ 1 = 0, i.e., a= ~(3 ±,.,/~i). (22)
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Moreexplicitly we have It shouldbenotedthat the generaldecomposition
condition(19) for r~3 hasalwaysrealrootsforoddQ~2)(x) = exp( iaxA) exp( axB)exp( vA) m,but only complexroots forevenm. However,we

xexp(t~xB)exp( ~ax~4), (23) fortunatelyfind thatour generalsymmetricdecom-
position52m

1(x) of theorder2m — 1 is correct even
with (22) for q=2. This third order complex de-

up to the order2m. Namely,we have
composition(23) was found ad hoc by Bandrauk
[41.Next we obtainthe fourthorderdecomposition S2m(X) 52m— 1(x). (32)

Q~
2~(x)=Q~2>(p

4x)Q~
2~(j~

4x), (24) The proof was alreadygiven essentiallyby the
presentauthorin 1985 [3]. First note that

with the decompositioncondition
S2m_i(X)52m_i(X)1 , (33)

p+ (1 -.-p~)=O, i.e., p~=(l+e
1’~4)~. (25)

for a symmetricdecompositionsuchas (12), as inIn general,the mth order approximantis recur-
ref. [3}. Then, we write S2m_1(X) as

sively givenby

Qn(X)Q5n2!i(PmX)Q~n2±i((1Pm)X), (26) 5
2m_i(x)=exp(x ~ Aj)+X2mR2m({Aj})

\ j=1with the decompositioncondition
(34)

p~+(l—pm)
m=0, i.e., p

m(4i~m)~
(27) where R2m( {A1}) is an operatorindependentof x.

From (33), we haveClearly,wehave~< Ip,,~I<1 form~>2,andit is easy
to showthat

lim ~ (28) [exP(x~Aj)+x2mR2m({Ai})]
m-.oo

Consequently,our infinite productconvergesto the x [exp( — x ~ 4)+ X
2mR

2m( {A~}
original operator,namely

lim Q~(x)=exp[x(A+B)] . (29) l+O(x
2m~). (35)

m-.
That is, we get

A moremathematicalproofin theBanachspacewill
begivenelsewhere.Therearemanyotheralternative
decompositionschemes,asis easily seenfrom theo- ) exp(—x ~ A

3)R2,,,({A~}
rem 1 (constructiontheorem).

For q=2, r_—3 andm=3, we havethefollowing +exP(x~Ai)R2m({Ai})=O(x). (36)
decomposition,

Q~”(x)=S(px)S((l—p—q)x)S(px) Therefore;by putting x=0 in (36) we arrive at the

conclusion
=exp(~pxA)exp(pxB)exp[~(l—q)xA]
xexp[(l—p—q)xB]exp[~(l—p)xA]exp(qxB) R2m({Aj})0, (37)

namely,
xexp(~qxA), (30)

52m(x)52m_i(X) . (38)
wherep andq satisfy the condition

Thus,fromtheorem1, we obtainaninfinite number
p

3+q3+(l—p—q)3=0. (31)
of realsymmetricdecompositionsof theexponential

Theabovedecompositionis ageneralizationof (12). operatorexp[x(A +A
2+ ... +Aq)] up to anyorderof

In fact, the symmetriccasep = q= sof (30) reduces x.
to (12). For practicalapplicationsto Monte Carlo simu-
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lationsincludingtherangeof largex, it will be more approachto simulations“fractal time (or tempera-
convenientto usethe following decomposition, ture) Monte Carlo” (FTMC).

In applying the abovegeneraldecompositionto

exp(x ~ A~) [S~m(XIfl)1P~+O(X
2m+h/fl2m). quantumMonte Carlo simulations,we also haveto

J becareful aboutthe length of theadditionaldimen-
(39) sion, namely the numberof products of partial

* . . . . Boltzmannfactorset~ande~.It is estimated to beHere, S
2m(X) is the symmetric decomposition 1

(2rm_ + 1 )n for the approximant(39) with the r

S~m(x)=S~m_t(x) decomposition in (20) for q=2, while it is 2n0 for

— rs* ‘ ‘

2S~ ~ 4 the ordinary Trotter decomposition exp[x(A+
—L

2m_3~PmX)] 2m—3~~— Pm)X) B)]#[exp(xA/no)exp(xB/n0)]”°. At first glance
X [S~m_3(PmX) ]2 (40) one might consider that our new scheme requires

moreproductsthan theordinaryone.However,for
with the first (or second)order symmetrizedde- the samenumberof products,the accuracyof our
composition [3] new scheme is much betterthan the ordinary one;

St(x)= S(x) namelytheformeris oftheorderofx
2m+l /~2m from

(39), while the latter is of the order of
=exp(~xA,) exp(~xA

2)...
O(x

2/no)=O(x2/nrm~). (43)
Xexp(~xA~_,)exp(xAq) exp(~xA~_,)...

Thus, our new scheme is much betterthan the or-
xexp(~xA

2)exp(~xA,), (41) dinary one, whenthe criterion

where the parameter Pm 1S the real solution of the (rx/fl)
2m_l <<rm (44)

equation
is satisfied.

4p2~,m_l+ (1 _4p
m)

2m_l=0, It is also remarkedthat the presentschememay

i e p = (44~/(2m 1)) _1 (42) hopefullybeeffectivein resolvingthe “negativesignproblem”, becausethe distancesof pathseparation

Clearly, in this scheme of decomposition,we have are “fractal” evenwith respectto sign andbecause
~ <Pm< ~and I 1 — 4Pm I <1 for all m (>~2),asshown only intrinsic non-commutativeeffects, namelycross
in table 1 numericallyfor explicit applications. The terms, are included in higher orders in our new
fractal structure of this decomposition is shown in scheme.It shouldbe notedthat the presentscheme
fig. 1. Strictly speaking,it is the “transientfractals” cannotbe applied to a diffusion operator,because
introduced by the presentauthor [5]. there exists no inverse exponential diffusion opera-

Thus, the parameters { t~} in (3) are expressed by tor. Fiiially it should be emphasized that our new
somefractalproductof {p~}in (42). Then,ourgen- schemeis particularly useful in studyingquantum
eral decomposition may be called “fractal decom- coherence.
position” or “fractal pathintegral”.Wecall thisnew A moredetailedformulationof thepresentmethod

Table 1
Numericalvaluesofthedecompositionparameters{p,,,}; M= 2 x5” ‘+ 1.

m Order M

2 4 11 0.414490771794375737142354062860...
3 6 51 0.373065827733272824775863041073...
4 8 251 0.359584649349992252612417346018...
5 10 1251 0.352924033444267716800194426588...
6 12 6251 0.348956404962246870510903637594...
7 14 31251 0.34632412l534706553878042288665...
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Fig. 1. Fractalstructureof thedecompositionS~,(x):(a) S~(x)=S(x);t1=t11=~p2,t3=t7=l(l—3p2), t6=l—4p2,others=p2(b)
S~(x)=S~(x):thenumberjdenotest,; t,=t51=~p2p3,t,=t7=t,3=t,7=t35=t37=t45=t47=l(l —3p2)p3, t6=t,6=t36=t~=( 1 —4p2)p3,

S(x)=SI(x); repeated structureof (b) with theweightsp~,p4, 1 —4p4, p4 andp~.The four connectiondistancesoffive S
1,’s aregiven

by P2P3P4,1P2P3(1 —3p4),1P2P3(1— 3p4)andp
2p3p4,respectively.In general,S~,,,_ ~(x) andS”~,,,(x)havesimilar structures.Thefractal

dimensionality[6] in thelimit m—.mis givenby D=log 5/log3 = 1.46....
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