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Recently there has occurred a controversy between the semi-analytical prediction of linear stability of 
the soliton of the massive Gross–Neveu model and direct numerical observations of its instability for 
small values of the frequency. We revisit the problem of numerical computation of this soliton, find a 
mechanism behind the numerical instability observed in earlier studies, and propose methods to stably 
compute the soliton over long times. Thus, we confirm the semi-analytical prediction of the soliton’s 
being linearly stable.
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1. Introduction

Solitary wave solutions of the nonlinear Dirac equations have 
been extensively studied in the past. For brevity we will refer 
to those waves as Dirac solitons, even though their governing 
equations are not integrable by the Inverse Scattering Transform. 
Recently, there has occurred a controversy between theoretical 
and numerical studies of stability of Dirac solitons. The authors 
of [1] used the Evans function approach to prove that the soli-
ton of the Dirac equations with cubic nonlinearity in (1+1) di-
mensions, known as the massive Gross–Neveu model [2] (or the 
(1+1)-dimensional Soler model [3]), is linearly stable. The massive 
Gross–Neveu model has the form:

ψt + χx = i (|ψ |2 − |χ |2 − 1)ψ,

χt + ψx = −i (|ψ |2 − |χ |2 − 1)χ.
(1)

The standing soliton solution of this model is [4]:

{ψ, χ} = {�(x), X(x)} exp[−i�t], � ∈ (0,1); (2a)

�(x) =
√

2(1 − �) cosh(βx)

cosh2(βx) − μ2 sinh2(βx)
; X(x) = iμ tanh(βx)�(x);

(2b)
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with β = √
1 − �2 and μ = √

(1 − �)/(1 + �). Representative 
members of this family for different values of � are shown in 
Fig. 1. A moving soliton is obtained from (2) by a Lorentz trans-
formation; see, e.g., [5,6]. We omit the corresponding equations 
here because we focus on how stability of the soliton is affected 
by the frequency �, whereas the soliton velocity does not affect 
its stability due to the Lorentz invariance of model (1).

Two remarks are in order about the terminology that we will 
use. First, we will refer to the soliton as linearly stable whenever 
any initial perturbation to it does not grow exponentially in time. 
In [1], this was referred to as “spectral stability”, i.e. the absence 
of eigenvalues with a positive real part (that would lead to an ex-
ponential growth) in the spectrum of the linearized operator of 
system (1). In other studies of Dirac solitons (see, e.g., [7], Defi-
nition 3.4), linear instability included the possibility of a growth 
that is slower than exponential. We opted for including only an 
exponential growth into our definition of linear instability since 
a perturbation growing slower, say as t or t2, that starts some 
ten orders of magnitude below the size of the soliton (as in typ-
ical simulations of a soliton’s long-term evolution) would not be 
able to affect the numerical solution over the times feasible in 
our study. On the other hand, we did not use the term “spectral 
stability”, as in [1], because we are concerned with dynamical sim-
ulations rather than with the spectrum of an operator. Second, we 
will refer to the result of [1] as semi-analytical, as the Evans func-
tion, defined analytically, was computed there numerically.
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Fig. 1. Components � (solid) and X (dashed) of soliton (2). By symmetry, �(−x) = �(x) and X(−x) = −X(x). Note different axes scales in panels (a) and (b), which show 
the soliton for intermediate (a) and small (b) values of �.
For our study, it is important to note that linear stability of the 
soliton (2) was established in [1] for all values of the frequency �. 
In [8], the eigenvalue problem obtained from model (1) linearized 
on the background of the soliton (2) was solved (as a particular 
case of a more general problem) numerically by the Chebyshev 
interpolation method for � = 2/3 and � = 1/3. Eigenvalues cor-
responding to a linear instability of the soliton were found in both 
cases. However, they were declared to be spurious, based on the 
fact that the respective instability growth rates decreased (albeit 
slowly) with the refinement of the numerical grid. Also, those — 
said to be spurious — growth rates were about an order of magni-
tude greater for � = 1/3 than for � = 2/3. (It should be noted that 
earlier [9], spurious eigenvalues in the spectrum were found, by a 
numerical method similar to that used in [8], for another spinor 
model. However, a different numerical method established [9] the 
absence of those spurious “unstable” eigenvalues for that other 
model.) In this brief overview of (semi-)analytical results for linear 
stability (defined above) of Gross–Neveu solitons (2) it is appropri-
ate to mention that very recently [10], such stability was proved by 
purely analytical techniques, but only in the nonrelativistic limit 
(� → 1) and for nonlinearities between cubic and quintic (with 
the cubic one excluded) in system (1). Thus, there is still no ana-
lytical proof of linear stability of the massive Gross–Neveu soliton 
(2). Nonetheless, the conclusion from the semi-analytical study [1], 
supported by results of [8] (see also the above comment regarding 
[9]), is that this soliton is linearly stable for all values of its fre-
quency �.

However, this conclusion was recently questioned in a system-
atic numerical study [11]. That study, in its turn, was motivated 
by a discrepancy between, on one hand, the theoretical result of 
[1] and an early numerical study [12], which claimed stability of 
the soliton (2), and, on the other hand, another early numerical 
study [13], which reported instability of the soliton for � = 0.5. 
It should be noted that the simulation times in [12] were rather 
small, t < 300, which would not allow one to definitively state 
whether the soliton was stable or weakly unstable. Moreover, an 
unstable dynamics of solitons with � = 0.3 was also noted in [14], 
although there the Dirac equations contained an external potential. 
Thus, the numerical evidence that had existed prior to study [11]
suggested that the soliton (2) could actually be (possibly weakly) 
unstable for sufficiently small �, in contradiction to the semi-
analytical result of [1].

The authors of [11] presented results of their detailed and sys-
tematic numerical simulations for � as low as 0.1. They reported 
a weak instability, which developed for � < 0.56 over times on 
the order of a hundred (for � = 0.1) or ten thousand (for � = 0.5) 
time units and which could be mitigated by increasing the length 
of the computational domain. In [15] the numerical study of sta-
bility of soliton (2) was continued by three numerical methods dif-
ferent from that used in [11]. With their best-performing method 
and for the largest computational domain, the authors of [15] were 
able to defer the appearance (see the clarification below) of the 
instability of the soliton with � = 0.1 to t ∼ 3000. For � = 0.3
and 0.5 the instability took respectively longer times to develop. 
(It should be clarified that Refs. [11] and [15] defined the time of 
appearance of an instability as that when the L2-norm of the error 
in the charge density

ρ(x, t) ≡ |φ|2 + |χ |2 (3)

would reach 10−3.) The authors of [15] concluded that in the limit 
of very large domain length and very fine discretization in space 
and time, — even though these authors could not reach that limit 
— the soliton (2) is expected to be stable for all �, as predicted 
by [1]. Consequently, they pointed out that it would be important 
to design a numerical method that would be free of the weak in-
stability observed for soliton (2), as well as to understand a reason 
for that instability, produced by various numerical methods.

In this Letter we report progress in both of these directions. 
First, we found the main “culprit” for the (weak) instability of the 
soliton with sufficiently small �, observed in simulations. Second, 
we present two simple and well-known numerical methods which 
are able (after one modification) to simulate soliton (2) with values 
of � of an order of magnitude smaller than reported in [11] and 
[15], for significantly longer times, and with significantly smaller 
error.

We will now discuss the “culprits” behind the numerically ob-
served instability in [15] and [11]. In [15], this culprit is the 
dispersive waves “radiated” by the soliton due to discretization 
error. This radiation initially moves away from the soliton, but 
later re-enters the computational domain due to either periodic 
or (partially) reflecting boundary conditions (BC), such as the ho-
mogeneous Dirichlet BC. Let us note that all methods used in [15]
employed one of these two types of BC. Over long times, the ra-
diation proceeds to repeatedly propagate through the soliton and 
hence interacts with it. This weak interaction is what causes de-
struction of the soliton for sufficiently small �. In Section 2 we will 
demonstrate that when one prevents the radiation from affecting 
the soliton, the soliton remains stable, meaning that sufficiently 
small perturbation of its profile would not grow exponentially.

A culprit behind the instability observed in [11] was not the 
re-entering radiation. We will explain here why this is so, but will 
only comment briefly on the potential candidate for such a cul-
prit in an Appendix, as this is not directly related to our own 
results. The numerical method employed in [11] used so-called 
nonreflecting BC. This name refers to the fact that most of the 
field that reaches the boundary is allowed (by these BC) to leak 
out of the computational domain, so that only a small part of it 
will be reflected back into the domain (see Section 2.2 below). 
Having such nonreflecting boundaries is desirable in simulations 
of solitary waves, as a large percentage of the radiation leaving the 
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vicinity of the wave would exit the domain and thus would not be 
able to affect the solitary wave. As we will show in Section 2.2, 
the small part of the radiation that is reflected back into the do-
main would not be “harmful” to the soliton for not too small �
for times as short as those reported in [11] (see Fig. 9 there). Thus, 
interaction with dispersive waves would not explain most of the 
unstable simulations reported in [11]. We will present a hypothesis 
that might explain those instabilities in Appendix A. Such instabili-
ties were not observed in our simulations, and hence their detailed 
analysis is outside the scope of this work.

In Section 2 below we will present two numerical methods that 
allowed us to simulate soliton (2) with small � over times much 
greater than t = 1000. These methods are: a method of characteris-
tics (MoC) and a version of the split-step method where the linear 
evolution is performed by the MoC. In their original form, they are 
capable of simulating the soliton with the smallest value of the fre-
quency (� = 0.1) as, and over longer times than, reported in [11]
and [15]. However, the error in the numerical solution is seen to 
grow, and hence a definite conclusion about the soliton’s stability 
still cannot be made. We then show how absorbing BC can be used 
to eliminate that error. The results obtained with the absorbing 
boundaries show no sign of instability, and thereby confirm linear 
stability, of the soliton with � ≥ 0.01 in agreement with the semi-
analytical result of [1]. In Section 3 we will summarize this work. 
In Appendix A we will argue that the instability observed in [11]
could be a high-wavenumber instability of the numerical method 
rather than the property of the soliton itself. In Appendix B we will 
present a numerical evidence that the Fourier split-step method 
(as opposed to its version considered in Section 2) may be uncon-
ditionally unstable when applied to solitons (2) with sufficiently 
small �. This will justify our not using the Fourier version of the 
split-step method for the Gross–Neveu soliton.

2. Numerical methods and results

In Section 2.1 we will briefly review numerical methods that 
were previously used for the Dirac equations. Then in Section 2.2
we will present a MoC-based scheme for Eqs. (1). While it uses 
nonreflecting BC, we will demonstrate that part of the field gets 
reflected back into the computational domain. This phenomenon 
numerically destabilizes solitons (2) with sufficiently small �. Con-
sequently, in Section 2.3, we will present and justify our choice 
of absorbing BC and demonstrate that they will allow to simulate 
the soliton with � = 0.01 (ten times smaller than in [15]) up to 
t = 10,000 (over three times greater than in [15]) with an error 
smaller than in [15]. Finally, in Section 2.4, we will present similar 
results for a MoC-based version of the split-step method.

2.1. Review of earlier numerical studies of Eqs. (1)

Dynamics of solitons of the Gross–Neveu model has been ex-
tensively studied by various numerical methods: see, e.g., recent 
reviews [16,17] of those methods and Refs. [6,18]. Without try-
ing to provide a comprehensive discussion of the subject, we will 
briefly comment on these methods while focusing on their suit-
ability for, and results related to, our main purpose, which is sim-
ulation of solitons (2) with small � over long times.

The majority of those methods used finite differences to dis-
cretize the spatial derivatives in (1). With few exceptions [19], such 
methods lead to so-called “fermion doubling” and therefore are not 
suitable for long-time and high-accuracy simulations of Eqs. (1). 
“Fermion doubling” is caused by the numerical dispersion, which 
at high wave numbers k leads to the corresponding harmonics 
propagating with a group velocity that is opposite in sign to the 
group velocity of the physical, low-k harmonics. A problem occurs 
because the physical dispersion relation of the Dirac model (1) has 
two branches of opposite signs:

ω±(k) = ±
√

k2 + 1. (4)

Therefore, the high-k (i.e., purely numerical) harmonics of one 
branch have the same group velocity as low-k (i.e., physical) har-
monics of the other branch. Due to this group-velocity synchro-
nism, these two groups of harmonics would then interact with 
each other, which can lead to numerical instability. The finite dif-
ference staggered-grid scheme proposed in [19] for the linear Dirac 
equations reproduces the exact dispersion relations (4). However, 
it uses the leap-frog solver, which is known to suffer from a non-
linear numerical instability (see, e.g., [21,22]), unless a certain fil-
tering is implemented [23]. For this reason, we did not use that 
scheme.

Other numerical methods for model (1) include the Fourier 
split-step method (SSM) of second [24,17] and fourth order [16], 
exponential time-differencing (also called “exponential wave”) 
Fourier methods [6,17], and a wavelet-based method [18]. It should 
be noted that both Fourier methods — SSM and exponential time-
differencing — preserve the exact dispersion relation (4). However, 
their drawback is that they employ periodic BC, which allows dis-
persive radiation to repeatedly re-enter the computational domain 
and thereby, as we have pointed out earlier, to destabilize the soli-
ton. To prevent this from occurring, artificial numerical absorption 
is to be introduced at the boundaries. We have observed that while 
the so modified Fourier SSM can stably simulate the Gross–Neveu 
soliton with smaller values of the frequency than which was pre-
viously achieved in [11] and [15], its performance is significantly 
inferior to that of the two methods whose results we will present 
in this work. In Appendix B we will also report on instances of 
unconditional numerical instability of the Fourier SSM, which con-
tradicts the method’s stability property claimed in [24,16]. For 
these reasons, we did not use the Fourier SSM in this work.

It should be noted that, to our knowledge, most studies of the 
dynamics of soliton (2) were obtained for times that were less 
or on the order of 100 time units. Two exceptions (in addition 
to Refs. [11] and [15], which have been reviewed in detail above) 
are Refs. [5,25], which studied collisions of two and three solitons, 
reporting some of their longer simulations up to t = 500. In the 
subset of those studies which reported simulations of solitons with 
� < 0.7, higher sensitivity to perturbations of solitons with smaller 
values of the frequency was evident even for t ∼ 100. The methods 
that we will propose below are able to stably simulate solitons (2)
with significantly smaller values of the frequency (and hence more 
sensitive to perturbations) than what was done before, and over 
significantly longer times.

2.2. Method of characteristics (MoC) with nonreflecting BC for Eqs. (1)

By a change of variables

u = (ψ + χ)/
√

2, v = (ψ − χ)/
√

2, (5)

Eqs. (1) take on the form:

ut + ux = i( |v|2u + v2u∗ ) − iv ≡ f(u)(u, v),

vt − vx = i( |u|2 v + u2 v∗ ) − iu ≡ f(v)(u, v).
(6)

Since the computational domain x ∈ [−L/2, L/2] is typically taken 
to be so large that the field at its boundaries is smaller than the 
machine round-off error, it is appropriate to impose the nonreflect-
ing BC, mentioned in the Introduction:

u(−L/2, t) = 0, v(L/2, t) = 0. (7)
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In characteristic coordinates

ξ = (t − x)/2, η = (t + x)/2, (8a)

Eqs. (6) are rewritten as:

uη = i( |v|2u + v2u∗ ) − iv,

vξ = i( |u|2 v + u2 v∗ ) − iu.
(8b)

The idea of the MoC is that each of the equations in (8) is solved 
as an ordinary differential equation (ODE) with respect to the cor-
responding characteristic coordinate. Thus, the numerical MoC has 
different “flavors” depending on which ODE numerical solver is 
used. In [26] we showed that for a class of energy-preserving sys-
tems, to which the Dirac model belongs, the modified Euler (ME) 
solver with the nonreflecting BC (7) renders the corresponding MoC 
flavor almost (see below) stable, provided that

h econst·Lh < 1, (9)

where h is the discretization step in time and space (see text after 
(11)). The constant in the exponent in (9) has magnitude O (1) and 
depends on the right-hand side of (8b). Its general expression was 
not derived in [26], but in each particular case the length L of 
the computational domain can be adjusted by a quick trial and 
error to satisfy the stability condition (9). The word “almost” three 
sentences above means that a mild instability occurs only for a 
small number of lowest- and highest-wavenumber harmonics and 
has the growth rate

γME = O (h3). (10)

That is, the aforementioned modes grow as exp[γMEt], while 
modes in other parts of the spectrum remain stable, provided that 
(9) holds. This mild instability is well-known for the ME method 
applied to energy-preserving ODEs (see, e.g., [27]). By a proper 
choice of h it can be made weak enough so as not to affect the 
numerical solution over a given time.

The numerical scheme of the MoC with the ME solver (to be 
referred to as the MoC-ME) is:

um = un
m−1 + h f(u)

(
un

m−1, vn
m−1

)
,

vm = vn
m+1 + h f(v)

(
un

m+1, vn
m+1

); (11a)

un+1
m = 1

2

[
un

m−1 + um + h f(u)

(
um, vm

)]
,

vn+1
m = 1

2

[
vn

m+1 + vm + h f(v)

(
um, vm

)]
;

(11b)

Here {u, v}n
m ≡ {u, v}(xm, tn) and f{(u),(v)} are the functions on 

the right-hand side of Eqs. (6). The discretization steps in time 
and space are taken to be equal: t = x = h, so that the inte-
gration in (11) proceeds along the characteristic directions (8a). 
Namely, the first (second) equation in (11a) “predicts”, by the sim-
ple Euler method, the new value of u (v) along the characteris-
tic ξ = const (η = const), which connects node (xm−1, tn) (node 
(xm+1, tn)) to node (xm, tn+1). Then the first (second) equation in 
(11b) “corrects”, by the trapezoidal rule, the value of u (v) at node 
(xm, tn+1). Thus, the MoC-ME inherits the O (h2) accuracy from its 
counterpart for ODEs.

The BC for scheme (11) follow from (7):

un
1 = 0, vn

M = 0, n ≥ 0, (12)

where M is the number of grid points in space. As we noted in the 
Introduction, these BC allow most of the field that has propagated 
from inside the computational domain to its boundaries to leak out 
Fig. 2. Evolution of the L2-norm of the solution of a linear counterpart of system 
(6) with f(u) = −iv, f(v) = −iu with nonreflecting BC (7) and the initial condition 
u(x, 0) = v(x, 0) = exp[−x2 − iαx], where values of α are marked in the plot. Note 
that higher values of α correspond to a greater share of high-frequency harmonics 
in the initial condition. Length of computational domain is L = 64.

and not be reflected back into the domain. This is a desirable prop-
erty for simulations of solitary waves. However, BC (7) are truly 
nonreflecting only when f{(u),(v)} ≡ 0 and are almost nonreflecting 
for high-frequency harmonics, when each term on the left-hand 
side of (6) dominates the respective right-hand-side terms. In Fig. 2
we illustrate that in the general case, while these BC let some of 
the field leak out of the computational domain, such a leakage oc-
curs rather slowly after the instance when the field first reaches 
the boundary of the domain (which in Fig. 2 is for t ≈ L/2 = 32). 
It should be noted that the higher the frequency of the modes, the 
higher the rate of their leakage out of the computational domain.

Even this incomplete leakage of dispersive radiation out of the 
computational domain suffices to prevent it from destroying the 
Gross–Neveu soliton (2) with a “not too small” � over “not too 
large” times. Fig. 3(a) shows the numerical solution for � = 0.1
(the smallest value of the frequency reported in [11,15]) obtained 
by the MoC-ME (11) with nonreflecting BC (12) at t = 1,000 and 
t = 4,000. Note that the time t = 4,000 is about 30% greater than 
that reported in [15] for approximately the same error.

The amount of radiation emitted by the soliton, as seen in 
Fig. 3(a), may be used as an indicator of the soliton’s numerical 
stability. With this indicator, our simulations confirmed the ob-
servations of earlier numerical studies that the soliton becomes 
increasingly more (less) susceptible to the effect of a small but fi-
nite discretization error of the numerical scheme as one decreases 
(increases) �. For example, for the same simulation parameters as 
in Fig. 3 but for the soliton with � = 0.07, the radiation reaches 
the level of 10−4 already by t = 1,000. On the other hand, the ra-
diation from a soliton with � = 0.15 remains below 10−4 even for 
t = 10,000. In Fig. 3(b) we also show the time evolution of the 
L2-norm of the radiation, which for the purpose of this illustration 
we defined as

Q radiation =
⎛
⎜⎝

−L/4∫
−L/2

+
L/2∫

L/4

⎞
⎟⎠ (|u|2 + |v|2)dx, (13)

for three decreasing values of �. The increased rate, as � de-
creases, at which the soliton emits radiation and hence disin-
tegrates, is evident from Fig. 3(b). Conversely, the robustness of 
the soliton to the destabilizing effect of the radiation rapidly in-
creases with increasing �. For example, the radiation of solitons 
with � = 0.2 and � = 0.3 remains below 10−7 at t = 10,000, with 
other numerical parameters being the same as in Fig. 3. Thus, be-
low we will quote the results only for the soliton with the smallest 
� that we have simulated; the corresponding results for solitons 
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Fig. 3. Panel (a): Solution of (6) with the MoC-ME (11) and nonreflecting BC (12) at t = 1000 (thin line) and t = 4000 (thicker line). The initial condition is soliton (2) (see 
also (5)) with � = 0.1, depicted with the dashed line. (In linear scale this soliton is shown in Fig. 1(b).) Component |v| appears as a replica of |u| reflected about x = 0. 
Simulation parameters: L = 128, M = 3 · 213 ≈ 25,000, h ≈ 0.005. Panel (b): Time evolution of the field’s L2-norm outside of the soliton, as defined in (13). The simulation 
parameters are the same as in panel (a), except that the initial conditions are the solitons with the values of � listed in the legend.
with higher � do not need to be presented as they are guaranteed 
to be better.

At the same time, the radiation emitted by the soliton may also 
be an agent that destabilizes the soliton. Indeed, originally, the ra-
diation is produced by the soliton due to the discretization error 
of the numerical scheme However, a significantly greater amount 
of radiation appears to be produced at later stages of the evolution 
when part of the “original” radiation re-enters the computational 
domain and subsequently interacts with the soliton, causing it to 
radiate more. It is either this mechanism, or else a true linear 
instability of the soliton, that can explain a several hundred-fold 
increase of the amount of radiation, seen in Fig. 3(a), when the 
simulation time increases by a mere factor of four, from t = 1,000
to t = 4,000. To establish which of the two mechanisms takes 
place, and thus whether a small-� soliton is linearly stable, we 
need to eliminate the possibility for the radiation to re-enter the 
computational domain and see whether this would “stabilize” the 
numerically computed soliton. To that end we employed absorbing 
BC, whose choice is justified in the next subsection.

2.3. Absorbing BC, and simulations of a small-� soliton with the 
MoC-ME

We will begin by briefly reviewing three established techniques 
of imposing absorbing BC. Given their known drawbacks or similar 
issues, we will then present another, much simpler, technique and 
will demonstrate its effectiveness in “stabilizing” the numerically 
computed soliton with small � over long times.

One technique consists of explicitly requiring that all numer-
ically resolved modes propagating, say, to the left become zero 
at the left boundary (and similarly for the right boundary). Im-
position of this requirement results into so-called Dirichlet-to-
Neumann or Neumann-to-Dirichlet maps, which amount to solv-
ing an integro-differential equation in time which is also nonlocal 
in space. Explicit examples of using this technique can be found, 
e.g., in [20] for the simple, first-order wave equation and in [19]
for the staggered-grid leap-frog scheme for the linear Dirac equa-
tions; more references can be found in a review [28]. An obvious 
issue with this technique is that the solution of the aforemen-
tioned integro-differential equation at each time step increases 
the computational cost of the numerical scheme (not to men-
tion that it makes it conceptually more complex). Another issue is 
that the discretization of this integro-differential equation must be 
performed consistently with the finite-difference scheme for the 
evolution equations themselves; otherwise a weak numerical in-
stability may arise [20,19]. Ensuring this consistent discretization 
adds to the complexity of the scheme.

Another technique consists of introducing a so-called perfectly 
matched layer (PML) around the “useful” part of the computational 
domain. The role of the PML is to absorb the radiation which has 
entered the PML and not to have any part of that radiation to 
be reflected back into the “useful” computational domain. To that 
end, both the width of the PML and the “absorbing function” must 
be chosen carefully [28], by experimentation. While this is not a 
drawback, it does make the PML technique semi-empirical.

The third technique is to apply so-called (high-order) local non-
reflecting BC; see, e.g., [29] and a review [30]. This technique com-
pletely suppresses the re-entering of a small number of modes of 
the radiation while strongly suppressing the re-entering of most 
other modes. It requires the solution of a set of time-dependent 
ODEs at the boundaries, with certain parameters of this set being 
selected, in part, empirically (although general guidelines for that 
exist).

The common feature of all of these three techniques is that they 
require additional coding to ensure the desired properties at the 
boundaries. At least for the first technique, this additional coding is 
quite substantial. In the other two techniques, while the additional 
coding may be less complex, one requires an “educated guess” of 
certain parameters.

As a simple alternative to these techniques, we multiplied the 
solution at every time step1 by an “absorber” function:

a(x) =
{

1, |x| < L1;
exp

[ − (
(|x| − L1)/W

)2 ]
, |x| ∈ [L1, L/2];

W = (L/2 − L1)/B . (14a)

As the latter two of the above techniques, this requires some 
guesswork of the absorber’s parameters L1 and B . The non-
absorbing part, [−L1, L1], of the computational domain can be 
selected from the observation that the solution should not be mod-
ified only where the exact solution exceeds the discretization error. 
Using the t = 1000 data from Fig. 3(a), one concludes that one can 
take L1 � 0.3 · (L/2).

To select a value for B , note that it relates to the absorber’s 
value at the boundary as follows:

a(±L/2) = exp
[ − B2]. (14b)

Using a greater B does not necessarily result in stronger absorption 
because multiplication of the solution by an absorber gives rise to 
the introduction into the evolution equation of an effective “poten-
tial”, which usually leads to reflection of part of the radiation. The 
smaller B , the weaker this reflection. Thus, a balance between hav-
ing, on one hand, sufficient absorption at the boundaries and, on 

1 This could be changed, of course, resulting in a less aggressive imposition of 
absorbing BC.
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Fig. 4. Solution of (6) with the MoC-ME (11) (panels (a), (b), and (c)) or MoC-SSM (19b) (panels (c) and (d)), nonreflecting BC (12), and an additional absorbing boundaries 
imposed by (14a), (15) at every time step. Panel (a): The initial condition (dashed line) is soliton (2) (see also (5)) with � = 0.01; thin line — at t = 1000; thicker line — at 
t = 10,000. In linear scale the initial soliton is shown in Fig. 1(b). Other simulation parameters are the same as in Fig. 3. The numerical solution obtained with the MoC-based 
SSM looks similar and therefore is not shown. Panel (b): Relative deviation of conserved quantities (16b) and the L2-norm of the deviation of the charge density (17) for the 
solution obtained with the MoC-ME. A band, instead of a curve, appears for the ‖ρ‖ because that quantity oscillates with a period of order O (1). Panel (c): Spatial profiles 
of ρ at t = 10,000. The profile obtained by the MoC-SSM had to be magnified by the factor 10 to be clearly visible on the same scale as the other curve. Panel (d): Same 
quantities as in (b), but for the solution obtained by the MoC-SSM. Note that the charge stayed exactly constant, which is a well-known property of the SSM (see, e.g., [24]).
the other hand, small enough reflection inside the absorber, is to 
be achieved by properly selecting a value of B . There are no spe-
cific guidelines for choosing that value, but it can usually be found 
in each particular case by a quick experimentation. Thus, using the 
above observation for L1 and a trial and error for B , in the simu-
lations reported below we used

L1 = 0.4 · (L/2), B = 0.05. (15)

These values may not be optimal, but they were sufficient for our 
purpose.

Fig. 4(a) shows the result of simulating a soliton with � = 0.01
(ten times smaller than in [15]) by the MoC-ME (11) with non-
reflecting BC (12) and additional absorbing boundaries imposed by 
(14a), (15) at every time step. One can see that the amount of radi-
ation remains practically unchanged from t = 1,000 to t = 10,000
and stays below the 10−6 level. This proves that the soliton is 
linearly stable, and the instability of low-� solitons observed in 
previous numerical studies was due to the interaction of disper-
sive waves with the soliton.

In Fig. 4(b) we show the evolution of numerically computed 
quantities Q (t) (charge) and H(t) (Hamiltonian) that are con-
served in the exact Gross–Neveu model (1). In the original vari-
ables, they are:

Q =
∫ (|ψ |2 + |χ |2)dx;

H =
∫ [ − i(ψ∗χx + χ∗ψx) − 1

2
(|ψ |2 − |χ |2)2

+ (|ψ |2 − |χ |2) ]
dx;

(16a)

in the characteristic variables (5) they are:
Q =
∫ (|u|2 + |v|2)dx;

H =
∫ [ − i(u∗ux − v∗vx) − 1

2
(uv∗ + u∗v)2

+ (uv∗ + u∗v)
]

dx .

(16b)

We also plot the L2-norm of the deviation of the charge density, 
defined by

ρ(x, t) = ρ(x, t) − ρ(x,0), (17)

where ρ(x, t) was defined in (3). This deviation was used as the 
measure of error in [11,15]. A typical spatial profile of this devia-
tion is shown in Fig. 4(c).

The observed growth of Q , H , and ‖ρ‖ is due to the mild, 
low-wavenumber instability of the MoC-ME, “inherited” from the 
ME method for ODEs. According to (10), this growth rate of the 
deviations of Q and H from their initial values should scale as h3. 
We confirmed this by repeating the simulations with parameters 
of Fig. 4 except for doubling M to 3 · 214, resulting in halving h. 
The corresponding relative deviations of Q and H , multiplied by 8
(= 23), are almost indistinguishable from their respective counter-
parts in Fig. 4(b). The initial (at t = 1) value of ‖ρ‖ was found to 
be 4 (= 22) times smaller than that in Fig. 4(b); this is because this 
deviation is initially created by the discretization error of the 2nd-
order accurate MoC-ME. However, its growth rate over long times 
was found to be 8 (= 23) times smaller than for M = 3 · 213, in 
agreement with the growth rate of the low-k harmonics given by 
(10).

The method that we will present in the next subsection is free 
from this systematic growth of the above quantities.

Let us also remind the reader that, as we pointed out at the 
end of Section 2.2, solitons with � > 0.01 are even more robust 
than that with � = 0.01. For example, for � = 0.1 and 0.2 and for 
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other simulation parameters being the same as in Fig. 4, the radia-
tion outside of the soliton is below 10−11 and 10−12, respectively, 
i.e., more than four (respectively, five) orders of magnitude smaller 
than in Fig. 4(a).

2.4. Split-step method with MoC-based linear substep

The SSM, proposed for evolution equations in the 1960s, was 
first applied to nonlinear Dirac equations in [24]. The idea of the 
method is that the a time step is split into two types of substeps. 
In one type of substeps, one solves the evolution occurring only 
due to the x-derivative terms in (1), while in the other type of 
substeps one exactly solves nonlinear ODEs corresponding to the 
remaining terms. By alternating these substeps with specially se-
lected weights, one can construct SSMs of arbitrarily high orders 
in t (see, e.g., [31]).

The most common method to execute the substep with linear 
x-derivative terms is to use discrete Fourier transform (DFT). It is 
this version of the SSM that was proposed in [24] and later used 
in [16,17]. However, by virtue of its using the DFT, this version of 
the SSM imposes periodic BC. Such BC let the radiation re-enter 
the computational domain, which, as we have seen in previous 
subsections, leads to destabilization of solitons with sufficiently 
small �; therefore, the Fourier SSM is unsuitable for our purpose 
of long-time stability study of solitons. Moreover, as we demon-
strate in Appendix B, the Fourier SSM may become unconditionally
(i.e., for an arbitrarily small t) unstable, in contradiction to what 
was stated in [24,17].

Fortunately, it is easy to execute the substep which accounts for 
the linear x-derivative terms (1) by a different method. Namely, 
the change of variables (5) and (8a) shows that at this substep, 
u(lin)(x, t) = u(lin)(x − t) and v(lin)(x, t) = v(lin)(x + t). On a grid, 
this can be implemented as

(u(lin))n+1
m = (u(lin))n

m−1, (v(lin))n+1
m = (v(lin))n

m+1, (18)

where the notations were introduced after (11). To complete the 
numerical implementation of this substep, one inverts transforma-
tion (5) to obtain ψ(lin) and χ(lin) at the (n +1)th time level. Given 
an obvious relation of the implementation of this substep with 
the MoC, we will refer to this version of the SSM as the MoC-
SSM.

Let us note that the MoC-SSM is about twice as fast as the 
Fourier SSM because instead of using direct and inverse DFT, one 
needs to perform only the much simpler transformation (5) and 
its inverse and to re-assign values of the intermediate solution ac-
cording to (18). Much more importantly, however, the MoC-SSM can 
use the nonreflecting BC (12). This makes it less plagued by the 
problem of the re-entering radiation, just as this was the case for 
the MoC-ME in Section 2.2.

The MoC-SSM was mentioned in [16] and employed in the sta-
bility study of soliton (2) in [11]. Surprisingly in view of what we 
said in the previous paragraph, its performance was found to be 
inferior to the Fourier collocation method used in [15]. Moreover, 
the presence of numerically unstable highly-oscillatory modes can 
be discerned from Figs. 5 and 6 and their captions in [11]. In 
Appendix A we will argue that this could be the consequence of 
using a 4th-order accurate form of the SSM. Therefore, below we 
will report results only for the 2nd-order accurate form [32] of the 
MoC-SSM. Namely, if one writes Eqs. (1) as

�φ t = Lx �φ +N �φ, (19a)
where �φ = [ψ, χ ]T , Lx �φ represents the linear x-derivative terms, 
and N �φ represents all the terms on the right-hand side of (1), 
then one time step of the 2nd-order SSM is

�φ n+1 = eO1t/2eO2teO1t/2 �φ n. (19b)

Here O1,2 stand for the pair Lx, N taken in either order. Note that 
when two (or more) time steps are combined, the action of two 
consecutive exp[O1t/2]’s can be implemented as one exp[O1t]. 
Importantly, all substeps2 involving Lx �φ will require only the oper-
ation exp[Lx(1 ·t)], and therefore one can take t = x to facili-
tate the MoC-based implementation (18) of this substep. (The pres-
ence of the first and last exp[O1t/2] does not present a problem 
since one can either choose O1 = N or implement only those two
half-substeps by DFT or by interpolation of the grid.) In contrast, 
for 4th- and higher-order forms of the SSM, one would require 
substeps of the form exp[Lx(const · t)] with const �= 1, 1/2. This 
either is incompatible with the MoC-based implementation (18), 
unless at every time step one uses an interpolation (whose effect 
on the stability of high-wavenumber harmonics is unknown), or 
may lead to a numerical instability of those high-wavenumber har-
monics, as we will hypothesize in Appendix A.

We repeated the simulations for the parameters shown in 
Fig. 4, but using the MoC-SSM implemented as described above, 
with the Lx-substep using the nonreflecting BC (12). We also used 
the absorber (14a), (15) at every time step. The level of the radi-
ation was found to be below 10−6 and was essentially unchanged 
from t = 1,000 to t = 10,000, as previously for the MoC-ME. In 
fact, the solution looks very similar to that obtained by the MoC-
ME (see Fig. 4(a)) and hence is not shown. Evolutions of this nu-
merical solution’s charge and Hamiltonian, as well as the deviation 
of the charge density’s L2-norm, are shown in Fig. 4(d). Note that 
these quantities show no trace of a systematic deviation, unlike 
what one observes in Fig. 4(b) for the MoC-ME.

3. Conclusions

We have resolved the recent controversy between the semi-
analytical prediction [1] of linear stability of soliton (2) of the 
Gross–Neveu model (1) and the numerical observations of insta-
bility of that soliton with small values of the frequency [11,15]. 
We numerically demonstrated that the soliton is linearly stable up 
to the frequency values of � = 0.01, which is an order of magni-
tude below the previously studied value of � = 0.1, where earlier 
studies reported an instability. Using either of the numerical meth-
ods that we proposed, the MoC-ME or MoC-SSM with nonreflecting 
BC (12) and an absorber like (14a), it is possible to simulate soli-
tons with yet smaller values of � and over longer times than the 
t = 10,000 reported above. We did not find it necessary, however, 
as the reported simulations showed no change in either the soliton 
nor dispersive radiation over such long times.

The key ingredient that allowed us to carry out these accurate 
and long-term simulations was the uncovering of the main “cul-
prit” that caused the numerical instability of the soliton in some 
of the previous numerical studies. Once this culprit — the interac-
tion of the soliton with its own dispersive radiation emitted due 
to discretization error — had been identified, it became clear how 
to suppress it (by a combination of nonreflecting and absorbing 
boundaries). We believe that the numerical methods used in this 
work can be employed to study long-term stability of solitons of 
Dirac equations with higher-order nonlinearities or with a differ-
ent type of nonlinear field self-interaction [11], with an external 
potential [14], or of coupled Dirac equations [33].

2 Except possibly the first and last ones.
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Fig. 5. Spectra of the numerical solution of Eqs. (1) obtained with the Fourier SSM. Values of � and simulation times are shown in the plots. Simulation parameters are: 
L = 128, M = 3 · 212, x ≈ 0.01, t = 0.5x. An initial value of 10−10 was added to each harmonic so that the numerical error would grow from that, controlled, level rather 
than from the machine round-off error.
Thus, on one hand, we have confirmed the theoretical predic-
tion of the linear stability, as defined in the Introduction, of the 
Gross–Neveu soliton (2). On the other hand, we have also observed 
the previously reported increase of susceptibility of the soliton to 
small but finite perturbations, such a dispersive radiation, as � de-
creases. Finding a mechanism behind this increased susceptibility 
remains an open problem.
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Appendix A. Possible reason for numerical instability observed 
in [11]

Here we present a hypothesis as to why the 4th-order accurate 
MoC-SSM used in [11] exhibited a growth of highly oscillatory har-
monics (i.e., a high-frequency numerical instability), as is evident 
from the captions to Figs. 5 and 6 in that paper. There are two in-
gredients to our hypothesis. First, we will show in a separate pub-
lication [34] that the SSM (with any BC) applied to Dirac equations 
may, under certain conditions (stated below), have numerically un-
stable modes near wavenumbers k jπ = jπ/t , | j| = 1, 2, . . .. In 
[11], one had t = 12x, where the factor ‘12’ had to be used 
to implement a substep exp[Lxt/12], which was part of a 4th-
order accurate scheme, by the MoC. Thus, there were 12 potentially 
“dangerous” wavenumbers, |k jπ | ≤ kmax = π/x, near which nu-
merical instability could occur in [11].

Second, as we will also show elsewhere [34], the numerical in-
stability near k jπ of the 1st- and 2nd-order SSM can occur only 
if the soliton is physically (as opposed to numerically) unstable. 
However, for a higher-order SSM (such as the 4th-order one used 
in [11]), there is expected to be no relation between the physical 
stability of the initial soliton and the numerical stability of har-
monics with k ≈ k jπ . We have not performed a detailed analysis 
for higher-order versions of the SSM for the Dirac equations, but 
it is known from such an analysis for the nonlinear Schrödinger 
equation [35] that the growth rate of numerical instability for 
higher-order SSM schemes is, in general, different from that for the 
1st- and 2nd-order schemes. Therefore, even if there could be no 
high-frequency numerical instability of the 2nd-order SSM (19b), 
used in this work, there could be such an instability for higher-
order SSM schemes. We think that this could be the reason behind 
the high-k numerical instability observed in [11]. However, a de-
tailed investigation of this question is outside the scope of this 
work, whose focus is on demonstrating a long-term stability of 
Gross–Neveu solitons with small �.
Appendix B. Unconditional instability of the Fourier SSM for 
soliton (2)(2)(2) with small �

The purpose of this Appendix is to justify our not using the 
Fourier version of the SSM in this work.

The implementation of the Fourier SSM follows the outline for 
the MoC-SSM in Section 2.4, except that the operation exp[Lxt]
is performed by the DFT and its inverse; see [24,16,17] for more 
details. Let us recall that the use of DFT forces the BC to be peri-
odic, and this is the only difference3 between the Fourier SSM and 
the MoC-SSM which uses the nonreflecting BC (12).

This difference in BC, which may seem to be inconsequential for 
simulations of a soliton, which is zero to machine precision at the 
boundaries, leads to a dramatic difference in the behavior of high-
wavenumber harmonics between the two versions of the SSM. In 
Fig. 5 we show the Fourier spectra of the numerical solution ob-
tained with the Fourier SSM for two initial solitons, whose profiles 
are shown in Fig. 1. The soliton with � = 0.3, which could eas-
ily be simulated by the MoC-ME even without the absorber (14a)
(see the end of Section 2.2) up to t = 10,000, is destroyed before 
t = 1, 500 when simulated by the Fourier SSM. The “culprit” is not 
only, and not primarily, the low-wavenumber radiation, discussed 
in Section 2.2, but the numerically unstable highest Fourier har-
monics. This numerical instability becomes dramatically stronger 
as � decreases. For example, the growing highest Fourier harmon-
ics destroy the soliton with � = 0.1 (see Fig. 5(b)) already before 
t = 200. This should be contrasted with the performance of the 
MoC-ME, which can simulate this soliton up to t = 1,000 with the 
error below 10−6: see Fig. 3.

Most unexpectedly, the observed numerical instability is un-
conditional [34]. That is, it persists for arbitrarily small t . For 
example, we obtained essentially the same results as those shown 
in Fig. 5 when we used t = 0.001x. This fact contradicts earlier 
statements about the stability of the Fourier SSM [24,17]. (Specif-
ically, in [24] the stability threshold was said to satisfy tthresh =
O (

√
x), while in [17] the method was claimed to be uncondi-

tionally stable.)
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