
SIAM REVIEW c© 2001 Society for Industrial and Applied Mathematics
Vol. 43, No. 3, pp. 525–546

An Algorithmic Introduction to
Numerical Simulation of
Stochastic Differential
Equations∗

Desmond J. Higham†

Abstract. A practical and accessible introduction to numerical methods for stochastic differential
equations is given. The reader is assumed to be familiar with Euler’s method for de-
terministic differential equations and to have at least an intuitive feel for the concept of
a random variable; however, no knowledge of advanced probability theory or stochastic
processes is assumed. The article is built around 10 MATLAB programs, and the topics
covered include stochastic integration, the Euler–Maruyama method, Milstein’s method,
strong and weak convergence, linear stability, and the stochastic chain rule.

Key words. Euler–Maruyama method, MATLAB, Milstein method, Monte Carlo, stochastic simula-
tion, strong and weak convergence

AMS subject classifications. 65C30, 65C20

PII. S0036144500378302

1. Introduction. Stochastic differential equation (SDE) models play a promi-
nent role in a range of application areas, including biology, chemistry, epidemiology,
mechanics, microelectronics, economics, and finance. A complete understanding of
SDE theory requires familiarity with advanced probability and stochastic processes;
picking up this material is likely to be daunting for a typical applied mathematics
student. However, it is possible to appreciate the basics of how to simulate SDEs
numerically with just a background knowledge of Euler’s method for deterministic
ordinary differential equations and an intuitive understanding of random variables.
Furthermore, experience with numerical methods gives a useful first step toward the
underlying theory of SDEs. Hence, in this article we explain how to apply simple
numerical methods to an SDE and discuss concepts such as convergence and linear
stability from a practical viewpoint. Our main target audience comprises advanced
undergraduate and beginning postgraduate students.

We have aimed to keep the theory to a minimum. However, we rely on a basic
assumption that the reader has at least a superficial feel for random variables, in-
dependence, expected values and variances, and, in particular, is familiar with the
concept of a normally distributed random variable. Our numerical experiments use

∗Received by the editors September 18, 2000; accepted for publication (in revised form) April 3,
2001; published electronically August 1, 2001.

http://www.siam.org/journals/sirev/43-3/37830.html
†Department of Mathematics, University of Strathclyde, Glasgow, G1 1XH, UK (djh@maths.

strath.ac.uk). Supported by the Engineering and Physical Sciences Research Council of the UK
under grant GR/M42206.

525

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

526 DESMOND J. HIGHAM

a Monte Carlo approach: random variables are simulated with a random number
generator and expected values are approximated by computed averages.

The best way to learn is by example, so we have based this article around 10
MATLAB [3, 13] programs, using a philosophy similar to [14]. The website

http://www.maths.strath.ac.uk/~aas96106/algfiles.html
makes the programs downloadable. MATLAB is an ideal environment for this type of
treatment, not least because of its high level random number generation and graphics
facilities. The programs have been kept as short as reasonably possible and are
designed to run quickly (less than 10 minutes on a modern desktop machine). To
meet these requirements we found it necessary to “vectorize” the MATLAB code. We
hope that the comment lines in the programs and our discussion of key features in the
text will make the listings comprehensible to all readers who have some experience
with a scientific programming language.

In the next section we introduce the idea of Brownian motion and compute dis-
cretized Brownian paths. In section 3 we experiment with the idea of integration with
respect to Brownian motion and illustrate the difference between Itô and Stratonovich
integrals. We describe in section 4 how the Euler–Maruyama method can be used to
simulate an SDE. We introduce the concepts of strong and weak convergence in sec-
tion 5 and verify numerically that Euler–Maruyama converges with strong order 1/2
and weak order 1. In section 6 we look at Milstein’s method, which adds a correction
to Euler–Maruyama in order to achieve strong order 1. In section 7 we introduce two
distinct types of linear stability for the Euler–Maruyama method. In order to em-
phasize that stochastic calculus differs fundamentally from deterministic calculus, we
quote and numerically confirm the stochastic chain rule in section 8. Section 9 con-
cludes with a brief mention of some other important issues, many of which represent
active research areas.

Rather than pepper the text with repeated citations, we will mention some key
sources here. For those inspired to learn more about SDEs and their numerical solution
we recommend [6] as a comprehensive reference that includes the necessary material
on probability and stochastic processes. The review article [11] contains an up-to-date
bibliography on numerical methods. Three other accessible references on SDEs are [1],
[8], and [9], with the first two giving some discussion of numerical methods. Chapters 2
and 3 of [10] give a self-contained treatment of SDEs and their numerical solution that
leads into applications in polymeric fluids. Underlying theory on Brownian motion
and stochastic calculus is covered in depth in [5]. The material on linear stability in
section 7 is based on [2] and [12].

2. Brownian Motion. A scalar standard Brownian motion, or standard Wiener
process, over [0, T] is a random variable W (t) that depends continuously on t ∈ [0, T]
and satisfies the following three conditions.

1. W (0) = 0 (with probability 1).
2. For 0 ≤ s < t ≤ T the random variable given by the incrementW (t)−W (s) is
normally distributed with mean zero and variance t− s; equivalently, W (t)−
W (s) ∼ √t− sN(0, 1), where N(0, 1) denotes a normally distributed random
variable with zero mean and unit variance.

3. For 0 ≤ s < t < u < v ≤ T the increments W (t) −W (s) and W (v) −W (u)
are independent.

For computational purposes it is useful to consider discretized Brownian motion,
where W (t) is specified at discrete t values. We thus set δt = T/N for some positive
integer N and let Wj denote W (tj) with tj = jδt. Condition 1 says W0 = 0 with

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 527

%BPATH1 Brownian path simulation

randn(’state’,100) % set the state of randn
T = 1; N = 500; dt = T/N;
dW = zeros(1,N); % preallocate arrays ...
W = zeros(1,N); % for efficiency

dW(1) = sqrt(dt)*randn; % first approximation outside the loop ...
W(1) = dW(1); % since W(0) = 0 is not allowed
for j = 2:N

dW(j) = sqrt(dt)*randn; % general increment
W(j) = W(j-1) + dW(j);

end

plot([0:dt:T],[0,W],’r-’) % plot W against t
xlabel(’t’,’FontSize’,16)
ylabel(’W(t)’,’FontSize’,16,’Rotation’,0)

Listing 1 M-file bpath1.m.

probability 1, and conditions 2 and 3 tell us that

Wj =Wj−1 + dWj , j = 1, 2, . . . , N,(2.1)

where each dWj is an independent random variable of the form
√
δtN(0, 1).

The MATLAB M-file bpath1.m in Listing 1 performs one simulation of discretized
Brownian motion over [0, 1] with N = 500. Here, the random number generator
randn is used—each call to randn produces an independent “pseudorandom” number
from the N(0, 1) distribution. In order to make experiments repeatable, MATLAB
allows the initial state of the random number generator to be set. We set the state,
arbitrarily, to be 100 with the command randn(’state’,100). Subsequent runs
of bpath1.m would then produce the same output. Different simulations can be
performed by resetting the state, e.g., to randn(’state’,200). The numbers from
randn are scaled by

√
δt and used as increments in the for loop that creates the

1-by-N array W. There is a minor inconvenience: MATLAB starts arrays from index
1 and not index 0. Hence, we compute W as W(1),W(2),...,W(N) and then use
plot([0:dt:T],[0,W]) in order to include the initial value W(0) = 0 in the picture.
Figure 1 shows the result; note that for the purpose of visualization, the discrete data
has been joined by straight lines. We will refer to an array W created by the algorithm
in bpath1 as a discretized Brownian path.

We can perform the same computation more elegantly and efficiently by replacing
the for loop with higher level “vectorized” commands, as shown in bpath2.m in
Listing 2. Here, we have supplied two arguments to the random number generator:
randn(1,N) creates a 1-by-N array of independent N(0, 1) samples. The function
cumsum computes the cumulative sum of its argument, so the jth element of the 1-
by-N array W is dW(1) + dW(2) + · · · + dW(j), as required. Avoiding for loops and
thereby computing directly with arrays rather than individual components is the key
to writing efficient MATLAB code [3, Chapter 20]. Some of the M-files in this article
would be several orders of magnitude slower if written in nonvectorized form.

The M-file bpath3.m in Listing 3 produces Figure 2. Here, we evaluate the func-
tion u(W (t)) = exp(t+ 1

2W (t)) along 1000 discretized Brownian paths. The average
of u(W (t)) over these paths is plotted with a solid blue line. Five individual paths
are also plotted using a dashed red line. The M-file bpath3.m is vectorized across
paths; dW is an M-by-N array such that dW(i,j) gives the increment dWj in (2.1) for

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

528 DESMOND J. HIGHAM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.5

0

0.5

1

t

W(t)

Fig. 1 Discretized Brownian path from bpath1.m and bpath2.m.

%BPATH2 Brownian path simulation: vectorized

randn(’state’,100) % set the state of randn
T = 1; N = 500; dt = T/N;

dW = sqrt(dt)*randn(1,N); % increments
W = cumsum(dW); % cumulative sum

plot([0:dt:T],[0,W],’r-’) % plot W against t
xlabel(’t’,’FontSize’,16)
ylabel(’W(t)’,’FontSize’,16,’Rotation’,0)

Listing 2 M-file bpath2.m.

the ith path. We use cumsum(dW,2) to form cumulative sums across the second (col-
umn) dimension. Hence, W is an M-by-N array whose ith row contains the ith path.
We use repmat(t,[M 1]) to produce an M-by-N array whose rows are all copies of t.
The M-by-N array U then has ith row corresponding to u(W (t)) along the ith path.
Forming Umean = mean(U) computes columnwise averages, so Umean is a 1-by-N array
whose jth entry is the sample average of u(W (tj)).

We see in Figure 2 that although u(W (t)) is nonsmooth along individual paths,
its sample average appears to be smooth. This can be established rigorously—the
expected value of u(W (t)) turns out to be exp(9t/8). In bpath3.m, averr records
the maximum discrepancy between the sample average and the exact expected value
over all points tj . We find that averr = 0.0504. Increasing the number of samples
to 4000 reduces averr to 0.0268.

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 529

%BPATH3 Function along a Brownian path

randn(’state’,100) % set the state of randn
T = 1; N = 500; dt = T/N; t = [dt:dt:1];

M = 1000; % M paths simultaneously
dW = sqrt(dt)*randn(M,N); % increments
W = cumsum(dW,2); % cumulative sum
U = exp(repmat(t,[M 1]) + 0.5*W);
Umean = mean(U);
plot([0,t],[1,Umean],’b-’), hold on % plot mean over M paths
plot([0,t],[ones(5,1),U(1:5,:)],’r--’), hold off % plot 5 individual paths
xlabel(’t’,’FontSize’,16)
ylabel(’U(t)’,’FontSize’,16,’Rotation’,0,’HorizontalAlignment’,’right’)
legend(’mean of 1000 paths’,’5 individual paths’,2)

averr = norm((Umean - exp(9*t/8)),’inf’) % sample error

Listing 3 M-file bpath3.m.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

t

U(t)

mean of 1000 paths
5 individual paths

Fig. 2 The function u(W (t)) averaged over 1000 discretized Brownian paths and along 5 individual
paths, from bpath3.m.

Note that u(W (t)) has the form (4.6) arising in section 4 as the solution to a linear
SDE. In some applications the solution is required for a given path—a so-called path-
wise or strong solution. As we will see in section 5, the ability of a method to compute
strong solutions on average is quantified by the strong order of convergence. In other
contexts, only expected value type information about the solution is of interest, which
leads to the concept of the weak order of convergence.

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

530 DESMOND J. HIGHAM

%STINT Approximate stochastic integrals
%
% Ito and Stratonovich integrals of W dW

randn(’state’,100) % set the state of randn
T = 1; N = 500; dt = T/N;

dW = sqrt(dt)*randn(1,N); % increments
W = cumsum(dW); % cumulative sum

ito = sum([0,W(1:end-1)].*dW)
strat = sum((0.5*([0,W(1:end-1)]+W) + 0.5*sqrt(dt)*randn(1,N)).*dW)

itoerr = abs(ito - 0.5*(W(end)^2-T))
straterr = abs(strat - 0.5*W(end)^2)

Listing 4 M-file stint.m.

3. Stochastic Integrals. Given a suitable function h, the integral
∫ T

0 h(t)dt may
be approximated by the Riemann sum

N−1∑
j=0

h(tj)(tj+1 − tj),(3.1)

where the discrete points tj = jδt were introduced in section 2. Indeed, the integral
may be defined by taking the limit δt→ 0 in (3.1). In a similar way, we may consider
a sum of the form

N−1∑
j=0

h(tj)(W (tj+1)−W (tj)),(3.2)

which, by analogy with (3.1), may be regarded as an approximation to a stochastic
integral

∫ T
0 h(t)dW (t). Here, we are integrating h with respect to Brownian motion.

In the M-file stint.m in Listing 4, we create a discretized Brownian path over
[0, 1] with δt = 1/N = 1/500 and form the sum (3.2) for the case where h(t) is
W (t). The sum is computed as the variable ito. Here .* represents elementwise
multiplication, so [0,W(1:end-1)].*dW represents the 1-by-N array whose jth element
is W(j-1)*dW(j). The sum function is then used to perform the required summation,
producing ito = -0.2674.

An alternative to (3.1) is given by

N−1∑
j=0

h

(
tj + tj+1

2

)
(tj+1 − tj),(3.3)

which is also a Riemann sum approximation to
∫ T

0 h(t)dt. The corresponding alter-
native to (3.2) is

N−1∑
j=0

h

(
tj + tj+1

2

)
(W (tj+1)−W (tj)).(3.4)

In the case where h(t) ≡ W (t), the sum (3.4) requires W (t) to be evaluated at
t = (tj + tj+1)/2. It can be shown that forming (W (tj) +W (tj+1))/2 and adding an

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 531

independent N(0,∆t/4) increment gives a value for W ((tj + tj+1)/2) that maintains
the three conditions listed at the start of section 2. Using this method, the sum (3.4)
is evaluated in stint.m as strat, where we find that strat = 0.2354. Note that
the two “stochastic Riemann sums” (3.2) and (3.4) give markedly different answers.
Further experiments with smaller δt reveal that this mismatch does not go away as
δt → 0. This highlights a significant difference between deterministic and stochastic
integration—in defining a stochastic integral as the limiting case of a Riemann sum,
we must be precise about how the sum is formed. The “left-hand” sum (3.2) gives
rise to what is known as the Itô integral, whereas the “midpoint” sum (3.4) produces
the Stratonovich integral.1

It is possible to evaluate exactly the stochastic integrals that are approximated
in stint.m. The Itô version is the limiting case of

N−1∑
j=0

W (tj)(W (tj+1)−W (tj)) = 1
2

N−1∑
j=0

(
W (tj+1)2 −W (tj)2 − (W (tj+1)−W (tj))

2
)

= 1
2

W (T)2 −W (0)2 −

N−1∑
j=0

(W (tj+1)−W (tj))
2

 .(3.5)

Now the term
∑N−1
j=0 (W (tj+1)−W (tj))

2 in (3.5) can be shown to have expected
value T and variance of O(δt). Hence, for small δt we expect this random variable to
be close to the constant T . This argument can be made precise, leading to

∫ T

0
W (t)dW (t) = 1

2W (T)2 − 1
2T,(3.6)

for the Itô integral. The Stratonovich version is the limiting case of

N−1∑
j=0

(
W (tj) +W (tj+1)

2
+ ∆Zj

)
(W (tj+1)−W (tj)),

where each ∆Zj is independent N(0,∆t/4). This sum collapses to

1
2

(
W (T)2 −W (0)2

)
+
N−1∑
j=0

∆Zj(W (tj+1)−W (tj)),

in which the term
∑N−1
j=0 ∆Zj(W (tj+1) −W (tj)) has expected value 0 and variance

O(δt). Thus, in place of (3.6) we have
∫ T

0
W (t)dW (t) = 1

2W (T)2.(3.7)

The quantities itoerr and straterr in the M-file stint.m record the amount
by which the Riemann sums ito and strat differ from their respective δt→ 0 limits
(3.6) and (3.7). We find that itoerr = 0.0158 and straterr = 0.0186.

Itô and Stratonovich integrals both have their uses in mathematical modeling. In
subsequent sections we define an SDE using the Itô version (a simple transformation
converts from Itô to Stratonovich).

1Some authors prefer an almost equivalent definition for the Stratonovich integral based on the
sum

∑N−1
j=0

1
2 (h(tj) + h(tj+1))(W (tj+1)−W (tj)).

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

532 DESMOND J. HIGHAM

4. The Euler–Maruyama Method. A scalar, autonomous SDE can be written in
integral form as

X(t) = X0 +
∫ t

0
f(X(s)) ds+

∫ t

0
g(X(s)) dW (s), 0 ≤ t ≤ T.(4.1)

Here, f and g are scalar functions and the initial condition X0 is a random variable.
The second integral on the right-hand side of (4.1) is to be taken with respect to
Brownian motion, as discussed in the previous section, and we assume that the Itô
version is used. The solution X(t) is a random variable for each t. We do not attempt
to explain further what it means for X(t) to be a solution to (4.1)—instead we define
a numerical method for solving (4.1), and we may then regard the solution X(t) as
the random variable that arises when we take the zero stepsize limit in the numerical
method.

It is usual to rewrite (4.1) in differential equation form as

dX(t) = f(X(t))dt+ g(X(t))dW (t), X(0) = X0, 0 ≤ t ≤ T.(4.2)

This is nothing more than a compact way of saying that X(t) solves (4.1). To keep
with convention, we will emphasize the SDE form (4.2) rather than the integral form
(4.1). (Note that we are not allowed to write dW (t)/dt, since Brownian motion
is nowhere differentiable with probability 1.) If g ≡ 0 and X0 is constant, then the
problem becomes deterministic, and (4.2) reduces to the ordinary differential equation
dX(t)/dt = f(X(t)), with X(0) = X0.

To apply a numerical method to (4.2) over [0, T], we first discretize the interval.
Let ∆t = T/L for some positive integer L, and τj = j∆t. Our numerical approxi-
mation to X(τj) will be denoted Xj . The Euler–Maruyama (EM) method takes the
form

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1) (W (τj)−W (τj−1)) , j = 1, 2, . . . , L.(4.3)

To understand where (4.3) comes from, notice from the integral form (4.1) that

X(τj) = X(τj−1) +
∫ τj

τj−1

f(X(s))ds+
∫ τj

τj−1

g(X(s))dW (s).(4.4)

Each of the three terms on the right-hand side of (4.3) approximates the corresponding
term on the right-hand side of (4.4). We also note that in the deterministic case (g ≡ 0
and X0 constant), (4.3) reduces to Euler’s method.

In this article, we will compute our own discretized Brownian paths and use them
to generate the increments W (τj) −W (τj−1) needed in (4.3). For convenience, we
always choose the stepsize ∆t for the numerical method to be an integer multiple
R ≥ 1 of the increment δt for the Brownian path. This ensures that the set of points
{tj} on which the discretized Brownian path is based contains the points {τj} at which
the EM solution is computed. In some applications the Brownian path is specified as
part of the problem data. If an analytical path is supplied, then arbitrarily small ∆t
can be used.

We will apply the EM method to the linear SDE

dX(t) = λX(t)dt+ µX(t)dW (t), X(0) = X0,(4.5)

where λ and µ are real constants; so f(X) = λX and g(X) = µX in (4.2). This SDE
arises, for example, as an asset price model in financial mathematics [4]. (Indeed, the

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 533

%EM Euler-Maruyama method on linear SDE
%
% SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero,
% where lambda = 2, mu = 1 and Xzero = 1.
%
% Discretized Brownian path over [0,1] has dt = 2^(-8).
% Euler-Maruyama uses timestep R*dt.

randn(’state’,100)
lambda = 2; mu = 1; Xzero = 1; % problem parameters
T = 1; N = 2^8; dt = 1/N;
dW = sqrt(dt)*randn(1,N); % Brownian increments
W = cumsum(dW); % discretized Brownian path

Xtrue = Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);
plot([0:dt:T],[Xzero,Xtrue],’m-’), hold on

R = 4; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt
Xem = zeros(1,L); % preallocate for efficiency
Xtemp = Xzero;
for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;
Xem(j) = Xtemp;

end

plot([0:Dt:T],[Xzero,Xem],’r--*’), hold off
xlabel(’t’,’FontSize’,12)
ylabel(’X’,’FontSize’,16,’Rotation’,0,’HorizontalAlignment’,’right’)

emerr = abs(Xem(end)-Xtrue(end))

Listing 5 M-file em.m.

well-known Black–Scholes partial differential equation can be derived from (4.5).) It
is known (see, for example, [8, p. 105]) that the exact solution to this SDE is

X(t) = X(0) exp
(
(λ− 1

2µ
2)t+ µW (t)

)
.(4.6)

In the M-file em.m in Listing 5 we consider (4.5) with λ = 2, µ = 1, and X0 = 1
(constant). We compute a discretized Brownian path over [0, 1] with δt = 2−8 and
evaluate the solution in (4.6) as Xtrue. This is plotted with a solid magenta line in
Figure 3. We then apply EM using a stepsize ∆t = Rδt, with R = 4. On a general
step the EM method (4.3) requires the increment W (τj) −W (τj−1), which is given
by

W (τj)−W (τj−1) =W (jRδt)−W ((j − 1)Rδt) =
jR∑

k=jR−R+1

dWk.

In em.m this quantity appears as Winc = sum(dW(R*(j-1)+1:R*j)). The 1-by-L array
Xem stores the EM solution, which is plotted in Figure 3 as red asterisks connected
with dashed lines. The discrepancy between the exact solution and the EM solution
at the endpoint t = T , computed as emerr, was found to be 0.6907. Taking ∆t = Rδt
with smaller R values of 2 and 1 produced endpoint errors of 0.1595 and 0.0821,
respectively.

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

534 DESMOND J. HIGHAM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

t

X

Fig. 3 True solution and EM approximation, from em.m.

5. Strong and Weak Convergence of the EM Method. In the example above
with em.m the EM solution matches the true solution more closely as ∆t is decreased—
convergence seems to take place. Keeping in mind that X(τn) and Xn are random
variables, in order to make the notion of convergence precise we must decide how to
measure their difference. Using E |Xn−X(τn)|, where E denotes the expected value,
leads to the concept of strong convergence. A method is said to have strong order of
convergence equal to γ if there exists a constant C such that

E |Xn −X(τ)| ≤ C∆tγ(5.1)

for any fixed τ = n∆t ∈ [0, T] and ∆t sufficiently small. If f and g satisfy appro-
priate conditions, it can be shown that EM has strong order of convergence γ = 1

2 .
Note that this marks a departure from the deterministic setting—if g ≡ 0 and X0 is
constant, then the expected value can be deleted from the left-hand side of (5.1) and
the inequality is true with γ = 1.

In our numerical tests, we will focus on the error at the endpoint t = T , so we let

estrong
∆t := E |XL −X(T)|, where L∆t = T,(5.2)

denote the EM endpoint error in this strong sense. If the bound (5.1) holds with
γ = 1

2 at any fixed point in [0, T], then it certainly holds at the endpoint, so we have

estrong
∆t ≤ C∆t

1
2(5.3)

for sufficiently small ∆t.
The M-file emstrong.m in Listing 6 looks at the strong convergence of EM for

the SDE (4.5) using the same λ, µ, and X0 as in em.m. We compute 1000 different
discretized Brownian paths over [0, 1] with δt = 2−9. For each path, EM is applied

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 535

%EMSTRONG Test strong convergence of Euler-Maruyama
%
% Solves dX = lambda*X dt + mu*X dW, X(0) = Xzero,
% where lambda = 2, mu = 1 and Xzer0 = 1.
%
% Discretized Brownian path over [0,1] has dt = 2^(-9).
% E-M uses 5 different timesteps: 16dt, 8dt, 4dt, 2dt, dt.
% Examine strong convergence at T=1: E | X_L - X(T) |.

randn(’state’,100)
lambda = 2; mu = 1; Xzero = 1; % problem parameters
T = 1; N = 2^9; dt = T/N; %
M = 1000; % number of paths sampled

Xerr = zeros(M,5); % preallocate array
for s = 1:M, % sample over discrete Brownian paths

dW = sqrt(dt)*randn(1,N); % Brownian increments
W = cumsum(dW); % discrete Brownian path
Xtrue = Xzero*exp((lambda-0.5*mu^2)+mu*W(end));
for p = 1:5

R = 2^(p-1); Dt = R*dt; L = N/R; % L Euler steps of size Dt = R*dt
Xtemp = Xzero;
for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;

end
Xerr(s,p) = abs(Xtemp - Xtrue); % store the error at t = 1

end
end

Dtvals = dt*(2.^([0:4]));
subplot(221) % top LH picture
loglog(Dtvals,mean(Xerr),’b*-’), hold on
loglog(Dtvals,(Dtvals.^(.5)),’r--’), hold off % reference slope of 1/2
axis([1e-3 1e-1 1e-4 1])
xlabel(’\Delta t’), ylabel(’Sample average of | X(T) - X_L |’)
title(’emstrong.m’,’FontSize’,10)

%%%% Least squares fit of error = C * Dt^q %%%%
A = [ones(5,1), log(Dtvals)’]; rhs = log(mean(Xerr)’);
sol = A\rhs; q = sol(2)
resid = norm(A*sol - rhs)

Listing 6 M-file emstrong.m.

with 5 different stepsizes: ∆t = 2p−1δt for 1 ≤ p ≤ 5. The endpoint error in the sth
sample path for the pth stepsize is stored in Xerr(s,p); so Xerr is a 1000-by-5 array.
The function mean is then used to average over all sample paths: forming mean(Xerr)
produces a 1-by-5 array where each column of Xerr is replaced by its mean. Hence,
the pth element of mean(Xerr) is an approximation to estrong

∆t for ∆t = 2p−1δt.
If the inequality (5.3) holds with approximate equality, then, taking logs,

log estrong
∆t ≈ logC + 1

2 log∆t.(5.4)

The command loglog(Dtvals,mean(Xerr),’b*-’) in emstrong.m plots our approx-
imation to estrong

∆t against ∆t on a log-log scale. This produces the blue asterisks
connected with solid lines in the upper left-hand plot of Figure 4. For reference, a
dashed red line of slope one-half is added. We see that the slopes of the two curves
appear to match well, suggesting that (5.4) is valid. We test this further by assuming

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

536 DESMOND J. HIGHAM

10
–3

10
–2

10
–1

10
–4

10
–3

10
–2

10
–1

10
0

∆ t

S
am

pl
e

av
er

ag
e

of
 |

X
(T

)
–

 X
L |

emstrong.m

10
–3

10
–2

10
–1

10
–4

10
–3

10
–2

10
–1

10
0

∆ t

| E
(X

(T
))

 –
 S

am
pl

e
av

er
ag

e
of

 X
L |

emweak.m

10
–3

10
–2

10
–1

10
–4

10
–3

10
–2

10
–1

10
0

∆ t

| E
(X

(T
))

 –
 S

am
pl

e
av

er
ag

e
of

 X
L |

emweak.m

10
–3

10
–2

10
–1

10
–4

10
–3

10
–2

10
–1

10
0

∆ t

S
am

pl
e

av
er

ag
e

of
 |

X
(T

)
–

 X
L |

milstrong.m

Fig. 4 Strong and weak error plots: dashed red line is the appropriate reference slope in each case.
Top left and right are for EM, bottom left is for weak EM, and bottom right is for Milstein.

that a power law relation estrong
∆t = C∆tq exists for some constants C and q, so that

log estrong
∆t = logC + q log∆t. A least squares fit for logC and q is computed at the

end of emstrong, producing the value 0.5384 for q with a least squares residual of
0.0266. Hence, our results are consistent with a strong order of convergence equal to
one-half.

While monitoring the error estrong
∆t in emstrong.m, we are implicitly assuming that

a number of other sources of error are negligible, including the following.
Sampling error: the error arising from approximating an expected value by a
sampled mean.

Random number bias: inherent errors in the random number generator.
Rounding error: floating point roundoff errors.

For a typical computation the sampling error is likely to be the most significant of
these three. In preparing the programs in this article we found that some exper-
imentation was required to make the number of samples sufficiently large and the
timestep sufficiently small for the predicted orders of convergence to be observable.
(The sampling error decays like 1/

√
M , where M is the number of sample paths

used.) A study in [7] indicates that as ∆t decreases, lack of independence in the
samples from a random number generator typically degrades the computation before
rounding errors become significant.

Although the definition of strong convergence (5.1) involves an expected value,
it has implications for individual simulations. The Markov inequality says that if a

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 537

random variable X has finite expected value, then for any a > 0 the probability that
|X| ≥ a is bounded above by (E |X|)/a, that is,

P(|X| ≥ a) ≤ E |X|
a

.

Hence, taking a = ∆t1/4, we see that a consequence of EM’s strong convergence
of order γ = 1

2 is

P(|Xn −X(τ)| ≥ ∆t1/4) ≤ C∆t1/4,

or, equivalently,

P(|Xn −X(τ)| < ∆t1/4) ≥ 1− C∆t1/4.

This shows that the error at a fixed point in [0, T] is small with probability close to 1.
The strong order of convergence (5.1) measures the rate at which the “mean of

the error” decays as ∆t→ 0. A less demanding alternative is to measure the rate of
decay of the “error of the means.” This leads to the concept of weak convergence. A
method is said to have weak order of convergence equal to γ if there exists a constant
C such that for all functions p in some class

|E p(Xn)− E p(X(τ))| ≤ C∆tγ(5.5)

at any fixed τ = n∆t ∈ [0, T] and ∆t sufficiently small. Typically, the functions p
allowed in (5.5) must satisfy smoothness and polynomial growth conditions. We will
focus on the case where p is the identity function. For appropriate f and g it can be
shown that EM has weak order of convergence γ = 1.

Mimicking our strong convergence tests, we let

eweak
∆t := |EXL − EX(T)|, where L∆t = T,(5.6)

denote the weak endpoint error in EM. So (5.5) for p(X) ≡ X with γ = 1 immediately
implies that

eweak
∆t ≤ C∆t(5.7)

for sufficiently small ∆t.
We examine the weak convergence of EM in the M-file emweak.m in Listing 7.

Here we solve (4.5) over [0, 1] for λ = 2, µ = 0.1, and X0 = 1. We sample over 50000
discretized Brownian paths and use five stepsizes ∆t = 2p−10 for 1 ≤ p ≤ 5 in EM.
This code has one extra level of vectorization compared to emstrong—we compute
simultaneously with all 50000 paths. This improves the execution time at the expense
of extra storage requirements. To compensate, we have used different paths for each
∆t so that only the current increments, rather than the complete paths, need to be
stored. Further, we choose the path increment δt = ∆t for extra efficiency. The
sample average approximations to EXL are stored in Xem. It follows from (4.6) that
EX(T) = eλT for the true solution and Xerr stores the corresponding weak endpoint
error for each ∆t. The upper right-hand plot of Figure 4 shows how the weak error
varies with ∆t on a log-log scale. A dashed red reference line of slope one is added.
It seems that (5.7) holds with approximate equality. As in emstrong.m we do a least
squares power law fit that gives q = 0.9858 and resid = 0.0508, confirming this
behavior.

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

538 DESMOND J. HIGHAM

%EMWEAK Test weak convergence of Euler-Maruyama
%
% Solves dX = lambda*X dt + mu*X dW, X(0) = Xzero,
% where lambda = 2, mu = 1 and Xzer0 = 1.
%
% E-M uses 5 different timesteps: 2^(p-10), p = 1,2,3,4,5.
% Examine weak convergence at T=1: | E (X_L) - E (X(T)) |.
%
% Different paths are used for each E-M timestep.
% Code is vectorized over paths.
%
% Uncommenting the line indicated below gives the weak E-M method.

randn(’state’,100);
lambda = 2; mu = 0.1; Xzero = 1; T = 1; % problem parameters
M = 50000; % number of paths sampled

Xem = zeros(5,1); % preallocate arrays
for p = 1:5 % take various Euler timesteps

Dt = 2^(p-10); L = T/Dt; % L Euler steps of size Dt
Xtemp = Xzero*ones(M,1);
for j = 1:L

Winc = sqrt(Dt)*randn(M,1);
% Winc = sqrt(Dt)*sign(randn(M,1)); %% use for weak E-M %%
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp.*Winc;

end
Xem(p) = mean(Xtemp);

end
Xerr = abs(Xem - exp(lambda));

Dtvals = 2.^([1:5]-10);
subplot(222) % top RH picture
loglog(Dtvals,Xerr,’b*-’), hold on
loglog(Dtvals,Dtvals,’r--’), hold off % reference slope of 1
axis([1e-3 1e-1 1e-4 1])
xlabel(’\Delta t’), ylabel(’| E(X(T)) - Sample average of X_L |’)
title(’emweak.m’,’FontSize’,10)

%%%% Least squares fit of error = C * dt^q %%%%
A = [ones(p,1), log(Dtvals)’]; rhs = log(Xerr);
sol = A\rhs; q = sol(2)
resid = norm(A*sol - rhs)

Listing 7 M-file emweak.m.

It is worth emphasizing that for the computations in emweak.m, we used different
paths for each stepsize ∆t. This is perfectly reasonable. Weak convergence concerns
only the mean of the solution, and so we are free to use any

√
∆tN(0,1) sample for the

increment W (τj) −W (τj−1) in (4.3) on any step. In fact, the order of weak conver-
gence is maintained if the increment is replaced by an independent two-point random
variable

√
∆tVj , where Vj takes the values +1 and −1 with equal probability. (Note

that
√
∆tVj has the same mean and variance as

√
∆tN(0,1).) Replacing the Brownian

increment by
√
∆tVj in this way leads to the weak Euler–Maruyama (WEM) method,

which has weak order of convergence γ = 1, but, since it uses no pathwise information,
offers no strong convergence. The motivation behind WEM is that random number
generators that sample from Vj can be made more efficient than those that sample
from N(0,1). In the M-file emweak.m we have included the comment line

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 539

% Winc = sqrt(Dt)*sign(randn(M,1)); %% use for weak E-M %%
Deleting the leading % character, and hence uncommenting the line, implements
WEM, since sign(randn(M,1)) is equally likely to be +1 or -1. (Clearly, because we
are using the built-in normal random number generator, there is no efficiency gain
in this case.) The resulting error graph is displayed as the lower-left hand picture in
Figure 4. A least squares power law fit gives q = 1.0671 and resid = 0.2096.

6. Milstein’s Higher Order Method. We saw in the previous section that EM
has strong order of convergence γ = 1

2 in (5.1), whereas the underlying deterministic
Euler method converges with classical order 1. It is possible to raise the strong order of
EM to 1 by adding a correction to the stochastic increment, giving Milstein’s method.
The correction arises because the traditional Taylor expansion must be modified in the
case of Itô calculus. A so-called Itô–Taylor expansion can be formed by applying Itô’s
result, which is a fundamental tool of stochastic calculus. Truncating the Itô–Taylor
expansion at an appropriate point produces Milstein’s method for the SDE (4.2):

Xj = Xj−1 +∆tf(Xj−1) + g(Xj−1) (W (τj)−W (τj−1))(6.1)
+ 1

2g(Xj−1)g′(Xj−1)
(
(W (τj)−W (τj−1))2 −∆t

)
, j = 1, 2, . . . , L.

The M-file milstrong.m in Listing 8 applies Milstein’s method to the SDE

dX(t) = rX(t)(K −X(t))dt+ βX(t)dW (t), X(0) = X0,(6.2)

which arises in population dynamics [9]. Here, r, K, and β are constants. We take
r = 2, K = 1, β = 0.25, and X0 = 0.5 (constant) and use discretized Brownian
paths over [0, 1] with δt = 2−11. The solution to (6.2) can be written as a closed-form
expression involving a stochastic integral. For simplicity, we take the Milstein solution
with ∆t = δt to be a good approximation of the exact solution and compare this with
the Milstein approximation using ∆t = 128δt, ∆t = 64δt, ∆t = 32δt, and ∆t = 16δt
over 500 sample paths. We have added one more level of vectorization compared with
the emstrong.m file—rather than using a for loop to range over sample paths, we
compute with all paths simultaneously. We set up dW as an M-by-N array in which
dW(s,j) is the jth increment for the sth path. The required increments for Milstein
with timestep R(p)*dt are

Winc = sum(dW(:,R(p)*(j-1)+1:R(p)*j),2);
This takes the sub-array consisting of all rows of dW and columns R(p)*(j-1)+1 to
R(p)*j and sums over the second (column) dimension. The result is an M-by-1 array
whose jth entry is the sum of the entries in row i of dW between columns R(p)*(j-1)+1
and R(p)*j. The M-by-5 array Xmil stores all numerical solutions for the M paths and
5 stepsizes. The resulting log-log error plot is shown as the lower right-hand picture
in Figure 4 along with a reference line of slope 1. The least-squares power law fit
gives q = 1.0184 and resid = 0.0350.

7. Linear Stability. The concepts of strong and weak convergence concern the
accuracy of a numerical method over a finite interval [0, T] for small stepsizes ∆t.
However, in many applications the long-term, t → ∞, behavior of an SDE is of
interest. Convergence bounds of the form (5.1) or (5.5) are not relevant in this context
since, generally, the constant C grows unboundedly with T . For deterministic ODE
methods, a large body of stability theory has been developed that gives insight into
the behavior of numerical methods in the ∆t fixed, tj → ∞ limit. Typically, a
numerical method is applied to a class of problems with some qualitative feature,

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

540 DESMOND J. HIGHAM

%MILSTRONG Test strong convergence of Milstein: vectorized
%
% Solves dX = r*X*(K-X) dt + beta*X dW, X(0) = Xzero,
% where r = 2, K= 1, beta = 1 and Xzero = 0.5.
%
% Discretized Brownian path over [0,1] has dt = 2^(-11).
% Milstein uses timesteps 128*dt, 64*dt, 32*dt, 16*dt (also dt for reference).
%
% Examines strong convergence at T=1: E | X_L - X(T) |.
% Code is vectorized: all paths computed simultaneously.

rand(’state’,100)
r = 2; K = 1; beta = 0.25; Xzero = 0.5; % problem parameters
T = 1; N = 2^(11); dt = T/N; %
M = 500; % number of paths sampled
R = [1; 16; 32; 64; 128]; % Milstein stepsizes are R*dt

dW = sqrt(dt)*randn(M,N); % Brownian increments
Xmil = zeros(M,5); % preallocate array
for p = 1:5

Dt = R(p)*dt; L = N/R(p); % L timesteps of size Dt = R dt
Xtemp = Xzero*ones(M,1);
for j = 1:L

Winc = sum(dW(:,R(p)*(j-1)+1:R(p)*j),2);
Xtemp = Xtemp + Dt*r*Xtemp.*(K-Xtemp) + beta*Xtemp.*Winc ...

+ 0.5*beta^2*Xtemp.*(Winc.^2 - Dt);
end
Xmil(:,p) = Xtemp; % store Milstein solution at t =1

end

Xref = Xmil(:,1); % Reference solution
Xerr = abs(Xmil(:,2:5) - repmat(Xref,1,4)); % Error in each path
mean(Xerr); % Mean pathwise erorrs
Dtvals = dt*R(2:5); % Milstein timesteps used

subplot(224) % lower RH picture
loglog(Dtvals,mean(Xerr),’b*-’), hold on
loglog(Dtvals,Dtvals,’r--’), hold off % reference slope of 1
axis([1e-3 1e-1 1e-4 1])
xlabel(’\Delta t’)
ylabel(’Sample average of | X(T) - X_L |’)
title(’milstrong.m’,’FontSize’,10)

%%%% Least squares fit of error = C * Dt^q %%%%
A = [ones(4,1), log(Dtvals)]; rhs = log(mean(Xerr)’);
sol = A\rhs; q = sol(2)
resid = norm(A*sol - rhs)

Listing 8 M-file milstrong.m.

and the ability of the method to reproduce this feature is analyzed. Although a
wide variety of problem classes have been analyzed, the simplest, and perhaps the
most revealing, is the linear test equation dX/dt = λX, where λ ∈ C is a constant
parameter. For SDEs, it is possible to develop an analogous linear stability theory,
as we now indicate.

We return to the linear SDE (4.5), with the parameters λ and µ allowed to
be complex. In the case where µ = 0 and X0 is constant, (4.5) reduces to the
deterministic linear test equation, which has solutions of the form X0 exp(λt). If
we use the term stable to mean that limt→∞X(t) = 0 for any X0, then we see

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 541

that stability is characterized by �{λ} < 0. In order to generalize this idea to the
SDE case, we must be more precise about what we mean by “limt→∞X(t) = 0”—
random variables are infinite-dimensional objects and hence norms are not equivalent
in general. We will consider the two most common measures of stability: mean-square
and asymptotic. Assuming that X0 �= 0 with probability 1, solutions of (4.5) satisfy

lim
t→∞

EX(t)2 = 0⇔ �{λ}+ 1
2 |µ|2 < 0,(7.1)

lim
t→∞

|X(t)| = 0, with probability 1⇔ �{λ− 1
2µ

2} < 0.(7.2)

The left-hand side of (7.1) defines what is meant by mean-square stability. The right-
hand side of (7.1) completely characterizes this property in terms of the parameters λ
and µ. Similarly, (7.2) defines and characterizes asymptotic stability. Setting µ = 0,
the characterizations collapse to the same condition, �{λ} < 0, which, of course, arose
for deterministic stability. It follows immediately from (7.1) and (7.2) that if (4.5)
is mean-square stable, then it is automatically asymptotic stable, but not vice versa.
Hence, on this test problem, mean-square stability is a more stringent requirement
than asymptotic stability. Both stability definitions are useful in practice.

Now suppose that the parameters λ and µ are chosen so that the SDE (4.5) is
stable in the mean-square or asymptotic sense. A natural question is then, “For what
range of ∆t is the EM solution stable in an analogous sense?” The mean-square
version of this question is easy to analyze. Simple properties of the expected value
show that

lim
j→∞

EX2
j = 0⇔ |1 + ∆tλ|2 +∆t|µ|2 < 1(7.3)

for EM applied to (4.5). The asymptotic version of the question can be studied via
the strong law of large numbers and the law of the iterated logarithm, leading to

lim
j→∞

|Xj | = 0, with probability 1⇔ E log
∣∣∣1 + ∆tλ+

√
∆tµN(0, 1)

∣∣∣ < 0.(7.4)

These results are illustrated by the M-file stab.m in Listing 9. To test mean-
square stability, we solve (4.5) with X0 = 1 (constant) over [0, 20] for two parameter
sets. The first set has λ = −3 and µ =

√
3. These values satisfy (7.1) and hence the

problem is mean-square stable. We apply EM over 50000 discrete Brownian paths for
three different stepsizes: ∆t = 1, 1/2, 1/4. Only the third of these, ∆t = 1/4, satisfies
the right-hand side of (7.3). The upper picture in Figure 5 plots the sample average of
X2
j against tj . Note that the vertical axis is logarithmically scaled. In this picture the

∆t = 1 and ∆t = 1/2 curves increase with t, while the ∆t = 1/4 curve decays toward
to zero. Hence, this test correctly implies that for ∆t = 1, 1/2 and ∆t = 1/4, EM is
unstable and stable, respectively, in the mean-square sense. However, the number of
samples used (50000) is not sufficient to resolve the behavior fully; the three curves
should be straight lines. This highlights the fact that simplistic sampling without
further checks may lead to misleading conclusions.

To examine asymptotic stability, we use the parameter set λ = 1/2 and µ =
√
6.

It follows from (7.2) that the SDE is asymptotically stable (although, from (7.1), it
is not mean-square stable). Since asymptotic stability concerns a probability 1 event,
we apply EM over a single discrete Brownian path for ∆t = 1, 1/2, 1/4, and because
computing with a single path is cheap, we integrate over [0, 500]. It can be shown that
only the smallest of these timesteps, ∆t = 1/4, satisfies the condition (7.4)—this is

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

542 DESMOND J. HIGHAM

%STAB Mean-square and asymptotic stability test for E-M
%
% SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero,
% where lambda and mu are constants and Xzero = 1.

randn(’state’,100)
T = 20; M = 50000; Xzero = 1;
ltype = {’b-’,’r--’,’m-.’}; % linetypes for plot

subplot(211) %%%%%%%%%%%% Mean Square %%%%%%%%%%%%%
lambda = -3; mu = sqrt(3); % problem parameters
for k = 1:3

Dt = 2^(1-k);
N = T/Dt;
Xms = zeros(1,N); Xtemp = Xzero*ones(M,1);
for j = 1:N

Winc = sqrt(Dt)*randn(M,1);
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp.*Winc;
Xms(j) = mean(Xtemp.^2); % mean-square estimate

end
semilogy([0:Dt:T],[Xzero,Xms],ltype{k},’Linewidth’,2), hold on

end
legend(’\Delta t = 1’,’\Delta t = 1/2’,’\Delta t = 1/4’)
title(’Mean-Square: \lambda = -3, \mu = \surd 3’,’FontSize’,16)
ylabel(’E[X^2]’,’FontSize’,12), axis([0,T,1e-20,1e+20]), hold off

subplot(212) %%%%% Asymptotic: a single path %%%%%%%
T = 500;
lambda = 0.5; mu = sqrt(6); % problem parameters
for k = 1:3

Dt = 2^(1-k);
N = T/Dt;
Xemabs = zeros(1,N); Xtemp = Xzero;
for j = 1:N

Winc = sqrt(Dt)*randn;
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;
Xemabs(j) = abs(Xtemp);

end
semilogy([0:Dt:T],[Xzero,Xemabs],ltype{k},’Linewidth’,2), hold on

end
legend(’\Delta t = 1’,’\Delta t = 1/2’,’\Delta t = 1/4’)
title(’Single Path: \lambda = 1/2, \mu = \surd 6’,’FontSize’,16)
ylabel(’|X|’,’FontSize’,12), axis([0,T,1e-50,1e+100]), hold off

Listing 9 M-file stab.m.

illustrated in Figure 6, which is discussed below. The lower picture in Figure 5 plots
|Xj | against tj along the path. We see that only the ∆t = 1/4 solution appears to
decay to zero, in agreement with the theory.

Figure 6 offers further insight into these computations. Here we have plotted
regions of stability for λ, µ ∈ R. The x-axis and y-axis represent ∆tλ and ∆tµ2,
respectively. In this notation, it follows from (7.1) that the SDE is mean-square stable
for y < −2x (horizontal magenta shading, marked SDE:ms) and asymptotically stable
for y > 2x (vertical green shading, marked SDE:as). The condition (7.3) for mean-
square stability of EM requires y to be positive and lie beneath the parabola −x(2+x).
The parabola is shown as a solid red curve in the figure and the corresponding mean-
square stability region for EM is marked EM:ms. The condition (7.4) that determines
asymptotic stability of EM leads to the flattened-egg-shaped boundary in solid blue.

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 543

0 2 4 6 8 10 12 14 16 18 20
10

– 20

10
–10

10
0

10
10

10
20

Mean Square: λ = 3, µ = √ 3
E

[X
2]

∆ t = 1
∆ t = 1/2
∆ t = 1/4

0 50 100 150 200 250 300 350 400 450 500
10

–50

10
0

10
50

10
100

Single Path: λ = 1/2, µ = √ 6

|X
|

∆ t = 1
∆ t = 1/2
∆ t = 1/4

Fig. 5 Mean-square and asymptotic stability tests, from stab.m.

–4 –3 –2 –1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

EM:ms

EM:as

SDE:ms

SDE:as

∆ t λ

∆
µ

 t
2

Fig. 6 Mean-square and asymptotic stability regions.

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

544 DESMOND J. HIGHAM

The resulting region is marked EM:as. To interpret the picture, notice that given
values for λ and µ, the point (x, y) = (λ, µ2) corresponds to the timestep ∆t = 1,
and then varying the stepsize ∆t corresponds to moving along the ray that connects
(λ, µ2) with the origin. The parameter sets (λ, µ2) = (−3, 3) and (λ, µ2) = (1/2, 6)
used by stab.m are marked as red squares. We see that the first set lies in SDE:ms
and the second in SDE:as, but neither are stable for EM with ∆t = 1. Reducing
∆t from 1 to 1/2 takes us to the points marked with blue circles in the figure. Now
the first set is in EM:as (but not EM:ms) and the second set remains outside EM:as.
Reducing ∆t further to the value 1/4 takes us to the points marked by green triangles.
We see that the first parameter set is now in EM:ms and the second set in EM:as, so
the stability property of the underlying SDE is recovered in both cases.

8. Stochastic Chain Rule. We saw in section 3 that there is more than one
way to extend the concept of integration to a stochastic setting. In this section we
briefly mention another fundamental difference between stochastic and deterministic
calculus.

In the deterministic case, if dX/dt = f(X) then, for any smooth function V , the
chain rule says that

dV (X(t))
dt

=
dV (X(t))

dX

d(X(t))
dt

=
dV (X(t))

dX
f(X(t)).(8.1)

Now, suppose that X satisfies the Itô SDE (4.2). What is the SDE analogue of (8.1)
for V (X)? A reasonable guess is dV = (dV/dX)dX, so that, using (4.2),

dV (X(t)) =
dV (X(t))

dX
(f(X(t))dt+ g(X(t))dW (t)) .(8.2)

However, a rigorous analysis using Itô’s result reveals that an extra term arises2

and the correct formulation is

dV (X(t)) =
dV (X(t))

dX
dX + 1

2g(X(t))
2 d

2V (X(t))
dX2 dt,

which, using (4.2), becomes

dV (X(t)) =
(
f(X(t))

dV (X(t))
dX

+ 1
2g(X(t))

2 d
2V (X(t))
dX2

)
dt+g(X(t))

dV (X(t))
dX

dW (t).

(8.3)
We will not attempt to prove, or even justify, (8.3). Instead we will perform a numer-
ical experiment.

We consider the SDE

dX(t) = (α−X(t)) dt+ β
√

X(t)dW (t), X(0) = X0,(8.4)

where α and β are constant, positive parameters. This SDE is a mean-reverting square
root process that models asset prices [8, Chapter 9]. It can be shown that if X(0) > 0
with probability 1, then this positivity is retained for all t > 0. Taking V (X) =

√
X,

an application of (8.3) gives

dV (t) =
(
4α− β2

8V (t)
− 1

2V (t)
)

dt+ 1
2βdW (t).(8.5)

2In fact, (8.2) turns out to be valid in the Stratonovich framework, but here we are using Itô
calculus.

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

NUMERICAL SIMULATION OF SDEs 545

%CHAIN Test stochastic Chain Rule
%
% Solve SDE for V(X) = sqrt(X) where X solves
% dX = (alpha - X) dt + beta sqrt(X) dW, X(0) = Xzero,
% with alpha = 2, beta = 1 and Xzero = 1.
% Xem1 is Euler-Maruyama solution for X.
% Xem2 is Euler-Maruyama solution of SDE for V from Chain Rule.
% Hence, we compare sqrt(Xem1) and Xem2.
% Note: abs is used for safety inside sqrt, but has no effect in this case.

randn(’state’,100)
alpha = 2; beta = 1; T = 1; N = 200; dt = T/N; % Problem parameters
Xzero = 1; Xzero2 = 1/sqrt(Xzero); %

Dt = dt; % EM steps of size Dt = dt
Xem1 = zeros(1,N); Xem2 = zeros(1,N); % preallocate for efficiency
Xtemp1 = Xzero; Xtemp2 = Xzero2;
for j = 1:N

Winc = sqrt(dt)*randn;
f1 = (alpha-Xtemp1);
g1 = beta*sqrt(abs(Xtemp1));
Xtemp1 = Xtemp1 + Dt*f1 + Winc*g1;
Xem1(j) = Xtemp1;
f2 = (4*alpha-beta^2)/(8*Xtemp2) - Xtemp2/2;
g2 = beta/2;
Xtemp2 = Xtemp2 + Dt*f2 + Winc*g2;
Xem2(j) = Xtemp2;

end

plot([0:Dt:T],[sqrt([Xzero,abs(Xem1)])],’b-’,[0:Dt:T],[Xzero,Xem2],’ro’)
legend(’Direct Solution’,’Solution via Chain Rule’,2)
xlabel(’t’,’FontSize’,12)
ylabel(’V(X)’,’FontSize’,16,’Rotation’,0,’HorizontalAlignment’,’right’)

Xdiff = norm(sqrt(Xem1) - Xem2,’inf’)

Listing 10 M-file chain.m.

In the M-file chain.m in Listing 10 we apply EM to the SDE (8.4) for α = 2, β = 1, and
X0 = 1 (constant). We compute a discrete Brownian path over [0, 1] with δt = 1/200
and use ∆t = δt. The square root of the numerical solution is plotted with a solid
blue line in Figure 7. We also solve the SDE (8.5) for V and plot the solution with a
red “o” symbol. We observe that there is good agreement between the two solutions.
This is confirmed by a check on the maximum discrepancy: Xdiff = 0.0151.

9. Further Issues. This article is designed to give readers a brief and practical
introduction to the numerical simulation of SDEs with a minimum of technical detail.
As a consequence, we have glossed over a vast amount of theory and left out many
important topics. Consulting the references cited at the end of section 1 is a good
way to fill in some of the gaps. In this final section, we hint at some of the topics
omitted.

First, we have not discussed what conditions on f and g in (4.2) can be imposed
in order to guarantee the existence of a unique solution to the SDE. Typical existence
and uniqueness theorems (and convergence theorems for numerical methods) impose
much more stringent constraints than their deterministic counterparts. Second, we
have not mentioned the connection between SDEs and certain time-dependent par-
tial differential equations. Third, we restricted attention to scalar problems—the EM

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

546 DESMOND J. HIGHAM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

t

V(X)

Direct Solution
Solution via Chain Rule

Fig. 7 EM approximations of V (X(t)) =
√
X(t) using (8.4) directly and the chain rule version

(8.5), from chain.m.

method looks much the same when applied to an SDE system, but Milstein’s method
becomes more complicated. Research into numerical methods for SDEs is being ac-
tively pursued in a number of directions, including the construction of methods with
high order of strong or weak convergence or improved stability, the design of variable
timestep algorithms, and the analysis of long-term properties such as ergodicity for
nonlinear problems. Pointers to the recent literature can be found in [11].

Acknowledgment. I thank Nick Higham, Andrew Stuart, and Thomas Gorm
Theting for their valuable comments.

REFERENCES

[1] T. C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, New York, 1988.
[2] D. J. Higham, Mean-square and asymptotic stability of the stochastic theta method, SIAM J.

Numer. Anal., 38 (2000), pp. 753–769.
[3] D. J. Higham and N. J. Higham, MATLAB Guide, SIAM, Philadelphia, 2000.
[4] J. C. Hull, Options, Futures, and Other Derivatives, 4th ed., Prentice–Hall, Upper Saddle

River, NJ, 2000.
[5] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Springer-

Verlag, Berlin, 1991.
[6] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,

Springer-Verlag, Berlin, 1999.
[7] Y. Komori, Y. Saito, and T. Mitsui, Some issues in discrete approximate solution for

stochastic differential equations, Comput. Math. Appl., 28 (1994), pp. 269–278.
[8] X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.
[9] B. Øksendal, Stochastic Differential Equations, 5th ed., Springer-Verlag, Berlin, 1998.
[10] H. C. Öttinger, Stochastic Processes in Polymeric Fluids, Springer-Verlag, Berlin, 1996.
[11] E. Platen, An introduction to numerical methods for stochastic differential equations, Acta

Numer., 8 (1999), pp. 197–246.
[12] Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential

equations, SIAM J. Numer. Anal., 33 (1996), pp. 2254–2267.
[13] The MathWorks, Inc., MATLAB User’s Guide, Natick, Massachusetts, 1992.
[14] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.

D
ow

nl
oa

de
d

01
/1

5/
19

 to
 1

32
.1

98
.1

29
.9

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

