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0 Preliminaries

0.1 Motivation

The numerical methods of solving differential equations that we will study in this course are
based on the following concept: Given a differential equation, e.g.,

y′(x) = f(x, y), (0.1)

replace the derivative by an appropriate finite difference, e.g.:

y′(x) ≈ y(x+ h)− y(x)

h
, when h is small (h ≪ 1). (0.2)

Then Eq. (0.1) becomes (in the approximate sense)

y(x+ h)− y(x) = h f(x, y(x)), (0.3)

from which the ‘new’ value y(x + h) of the unknown function y can be found given the ‘old’
value y(x).

In this course, we will consider both equations that are more complicated than (0.1) as well
as the discretization schemes that are more sophisticated than (0.3).

0.2 Taylor series expansions

Taylor series expansion of functions will play a central role when we study the accuracy of
discretization schemes. Below is a reminder from Calculus II, and its generalization.

If a function f(x) has infinitely many derivatives at x = x0, then its Taylor series is:

f(x0 +∆x) = f(x0) +
∆x

1!
f ′(x0) +

(∆x)2

2!
f ′′(x0) + . . .

=
∞∑
n=0

(∆x)n

n!
f (n)(x0) . (0.4)

If, however, f(x) is only known to have derivatives up to the (N + 1)st (i.e. f (N+1)(x0)
exists), then the following Taylor formula with a remainder holds:

f(x) =
N∑

n=0

(x− x0)
n

n!
f (n)(x0) +

(x− x0)
N+1

(N + 1)!
f (N+1)(x∗), where x∗ ∈ (x0, x) . (0.5)

For functions of two variables, Eq. (0.4) generalizes as follows:

f(x0 +∆x, y0 +∆y) =
∞∑
n=0

(∆x)n

n!

∂nf(x0, y0 +∆y)

∂xn

=
∞∑
n=0

(∆x)n

n!

(
∞∑

m=0

(∆y)m

m!

∂n+mf(x0, y0)

∂xn∂ym

)
explained below

=
∞∑
k=0

1

k!

(
∆x

∂

∂x
+∆y

∂

∂y

)k

f(x, y)|x=x0,y=y0

= f(x0, y0) + (∆x fx(x0, y0) + ∆y fy(x0, y0)) +

+
1

2!

(
(∆x)2fxx(x0, y0) + 2∆x∆y fxy(x0, y0) + (∆y)2fyy(x0, y0)

)
+ . . . (0.6)
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The step of going from the second to the third line in the above calculations is based on the
binomial expansion formula

(a+ b)k =
k∑

n=0

k!

n!(k − n)!
an bk−n

and takes some effort to verify. (For example, one would write out all terms in line two with
n + m = 2 and verify that they equal to the term in line three with k = 2. Then one would
repeat this for n+m = k = 3 and so on, until one sees the pattern.) For our purposes, it will
be sufficient to just accept the end result, i.e. the last line of (0.6).

0.3 Existence and uniqueness theorem for ODEs

In the first two parts of this course, we will deal exclusively with ordinary differential equations
(ODEs), i.e. equations that involve the derivative(s) with respect to only one independent
variable (usually denoted as x).

To solve an ODE numerically, we first have to be sure that its solution exists and is unique;
otherwise, we may be looking for something that simply is not there! The following theorem
establishes this fundamental fact for ODEs.

Theorem 0.1 Let y(x) satisfy the initial-value problem (IVP), i.e. an ODE plus the initial
condition:

y′(x) = f(x, y), y(x0) = y0 . (0.7)

Let f(x, y) be defined and continuous in a closed region R that contains point (x0, y0). Let, in
addition, f(x, y) satisfy the Lipschitz condition with respect to y:

For any x, y1, y2 ∈ R, |f(x, y1)− f(x, y2)| ≤ L|y1 − y2| , (Lipschitz)

where the constant L depends on the region R and the function f , but not on y1 and y2. Then
a solution of IVP (0.7) exists and is unique on some interval containing the point x0.

Remarks to Theorem 0.1:

1. Any f(x, y) that is differentiable with respect to y and such that |fy| ≤ L in R, satisfies
the Lipschitz condition. In this case, the Lipschitz constant L = maxR |fy(x, y)|.

2. In addition, f(y) = |y| also satisfies the Lipchitz condition, even though this function
does not have a derivative with respect to y. In general, L = max |fy(x, y)|, where the
maximum is taken over the part of R where fy exists. For example, for f(y) = |y|, one
has L = 1.

3. f(y) =
√
y does not satisfy the Lipschitz condition on [0, 1]. Indeed, one cannot find a

constant L that would be independent of y and such that

√
y −

√
0 < L|y − 0|

for sufficiently small y.

Question: What happens to the solution of the ODE when the Lipschitz condition is violated?
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Consider the IVP
y′(x) =

√
y, y(0) = 0 . (0.8)

As we have just said in Remark 3, the function f(y) =
√
y does not satisfy the Lipschitz

condition. One can verify (by substitution) that IVP (0.8) has the following solutions:

1st solution: y =
x2

4
.

2nd solution: y = 0.

infinitely many solutions:

y =


0, 0 ≤ x ≤ a (∀a > 0)

(x− a)2

4
, x > a .
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Thus, if f(x, y) does not satisfy the Lipschitz condition, the solution of IVP (0.7) may not be
unique.

If f(x, y) is a linear function of y, i.e.:

f(x, y) = a(x)y + g(x), (0.9)

then we have a stronger existence and uniqueness result than that given by Theorem 0.1.
Namely, we have

Theorem 0.2 Let y(x) satisfy the linear IVP:

y′(x) = a(x)y + g(x), y(x0) = y0 , (0.10)

where a(x) and g(x) are defined and continuous on an interval (xleft, xright) that contains point
x0. Then a solution of the IVP (0.10) exists, is unique, and has a continuous first derivative on
the interval (xleft, xright).

Remarks to Theorem 0.2:

1. The statement of Theorem 0.2 is stronger than that of Theorem 0.1 because the former
guarantees a unique solution in the entire interval (xleft, xright) where the coefficients of
the ODE are defined. On the contrary, Theorem 1 guarantees a solution only on some
part, but not necessarily all, of the interval where f(x, y) is defined as a function of x.
Here is an example where the solution of an IVP fails to exist beyond some value of x
even though f(x, y) is defined for all x. Consider the IVP

y′ = y2, y(0) = 1. (0.11)

Here f(x, y) = y2 is defined, continuous, and Lipshitz for all x and all finite y. However,
the solution of (0.11), y = 1/(1 − x), exists only on the interval [0, 1). It blows up at
x = 1 and cannot be continued past that point.

Theorem 2 guarantees that such blow-ups or other “unpleasant” behavior will not occur
for the linear IVP (0.10) with “well-behaved” coefficients a(x) and g(x).
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2. The reason that makes the statement of Theorem 0.2 stronger than that of Theorem 0.1
is the fact that the right-hand side of (0.10) satisfies the Lipshitz condition for all y.

In contrast, f(x, y) = y2 in the IVP (0.11) does not satisfy the Lipshitz condition when
y → ∞. Hence a blow-up, i.e. a behavior where y → ∞, occurs for that IVP.

3. Coefficients a(x) and g(x) of the linear IVP (0.10) may have finite discontinuities. In
such a case, the solution of the IVP will still exist and be unique, although it will have a
discontinuous first derivative. You will encounter such a situation in Homework # 2.

0.4 Solution of a linear inhomogeneous IVP

Not only do we have the global existence and uniqueness result for the IVP (0.10), but we can
also obtain the solution y(x) explicitly. Below we show how it can be done for a(x) = const.
The general case is just slightly more technical, but conceptually similar.

Consider the IVP

y′(x) = a y + g(x), a = const , y(x0) = y0. (0.12)

Step 1: Solve the homogenous ODE y′ = a y:

y′hom = a yhom ⇒ yhom(x) = ea(x−x0). (0.13)

Note that at this stage, yhom(x) is just some solution to the homogeneous ODE and does not
need to satisfy the initial condition.

Step 2: Look for the solution of the inhomogeneous problem in the form y(x) = yhom(x) · c(x),
where c(x) is determined by substituting the latter expression into Eq. (0.12):

̸ ̸ ̸c y′hom + c′ yhom = ̸ ̸ ̸a c yhom + g(x), ⇒

c′ =
g(x)

yhom
, ⇒

c(x) =

∫
g(x̄) e−a(x̄−x0)dx̄, ⇒

y(x) =

[
y0 +

∫ x

x0

g(x̄) e−a(x̄−x0)dx̄

]
ea(x−x0) . (0.14)

In the first line of (0.14), the symbol ‘ ̸ ̸ ̸ ’ denotes cancellation of the respective terms on the
two sides of the equation, which occurs due to (0.13).

0.5 A very useful limit from Calculus

In Calculus I, you learned that
lim
h→0

(1 + h)1/h = e, (0.15)

where e is the base of the natural logarithm.
The following useful corollary is derived from (0.15):

lim
h→0

(1 + ah)b/h = eab, (0.16)
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where a, b are any finite numbers. Indeed, if we denote ah = g, then g → 0 as h → 0, and then
the l.h.s. (left-hand side) of (0.16) becomes:

lim
g→0

(1 + g)b/(g/a) = lim
g→0

(1 + g)ab/g =

(
lim
g→0

(1 + g)1/g
)ab

= eab .

Note also that
lim
h→0

( 1 + ah2 )b/h = e0 = 1 (0.17)

for any finite numbers a and b.


