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1 Simple Euler method and its modifications

1.1 Simple Euler method for the 1st-order IVP

Consider the IVP
y′(x) = f(x, y), y(x0) = y0 . (1.1)

Let: xi = x0 + i h, i = 0, 1, . . . n
yi = y(xi) — true solution evaluated at points xi

Yi — the solution to be calculated numerically.

Replace

y′(x) −→ Yi+1 − Yi

h
.

Then Eq. (1.1) gets replaced with

Yi+1 = Yi + h f(xi, Yi) Y0 = y0 . (1.2)

1.2 Local error of the simple Euler method

The calculated solution satisfies Eq. (1.2). Next, assuming that the true solution of IVP (1.1)
has (at least) a second derivative y′′(x), one can use the Taylor expansion to write:

yi+1 = y(xi + h) = yi + y′i h+ y′′i (x
∗
i )

h2

2
= yi + h f(xi, yi) +O(h2) . (1.3)

Here x∗
i is some point between xi and xi+1 = xi + h, and we have used Eq. (0.5).

Notation O(hk) for any k means the following:

q = O(hk) whenever lim
h→0

q

hk
= const < ∞ , const ̸= 0 .

For example,

5h2 + 1000h3 = O(h2); or
h

1 + h cos(3 + 2h)
= O(h) .

We now introduce a new notation. The local truncation error shows how well the solution
Yi+1 of the finite-difference scheme approximates the exact solution yi+1 of the ODE at point
xi+1, assuming that at xi the two solutions were the same, i.e. Yi = yi. Comparing the last line
of Eq. (1.3) with Eq. (1.2), we see that the local truncation error of the simple Euler method
is O(h2). It tends to zero when h → 0.

Another useful notation is that of discretization error. It shows how well the finite-difference
scheme approximates the ODE. Let us now estimate this error. First, we note from (1.2) and
(1.3) that the computed and exact solutions satisfy:

Yi+1 − Yi

h
= f(xi, Yi) and

yi+1 − yi
h

= f(xi, yi) +O(h),

whence the discretization error of the simple Euler method is seen to be O(h).
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1.3 Global error of the Euler method; Propagation of errors

As we have said above, the local truncation error shows how well the computed solution ap-
proximates the exact solution at one given point, assuming that these two solutions have been
the same up to that point. However, as we compute the solution of the finite-difference scheme,
the local truncation errors at each step accumulate. This results in that the difference between
the computed solution Yi and exact solution yi at some point xi down the line becomes much
greater than the local truncation error.

Let ϵi = yi − Yi denote the error (the difference between the true and computed solutions)
at x = xi. This error (or, sometimes, its absolute value) is called the global error of the
finite-difference method.

Our goal in this subsection will be to find an upper bound for the global error. Let us
emphasize that finding an upper bound for the error rather than the error itself is the best
one can do. (Indeed, if one could have found the actual error ϵi, one would have then simply
added it to the numerical solution Yi and obtained the exact solution yi.) The main purpose
of finding the upper bound for the error is to determine how it depends on the step size h. We
will do this now for the simple Euler method (1.2).

To this end, we begin by considering Eq. (1.2) and the 1st line of Eq. (1.3):

Yi+1 = Yi + h f(xi, Yi)

yi+1 = yi + h f(xi, yi) +
h2

2
y′′(x∗

i )

Subtract the 1st equation above from the 2nd to obtain the error at xi+1:

ϵi+1 = ϵi + h (f(xi, yi)− f(xi, Yi)) +
h2

2
y′′(x∗

i ) . (1.4)

Now apply the “triangle inequality”, valid for any three numbers a, b, c:

a = b+ c ⇒ |a| ≤ |b|+ |c|, (1.5)

to Eq. (1.4) and obtain:

|ϵi+1| ≤ |ϵi|+ hL|ϵi|+
h2

2
|y′′(x∗

i )|

= (1 + hL)|ϵi|+
h2

2
|y′′(x∗

i )| . (1.6)

In writing the second term in the above formula, we used the fact that f(x, y) satisfies the
Lipschitz condition with respect to y (see Lecture 0).

To complete finding the upper bound for the error |ϵi+1|, we need to estimate y′′(x∗
i ). We

use the Chain rule for a function of two variables (recall Calculus III) to obtain:

y′′(x) =
d2y(x)

dx2
|use theODE =

df(x, y)

dx
= fx

dx

dx
+ fy

dy

dx
= fx + fyf . (1.7)

Considering the first term on the r.h.s. of (1.7), let us assume that

|fx| ≤ M1 for some M1 < ∞. (1.8)

In cases when this asumption does not hold (as, for example, for f(x, y) = x1/3 sin 1
x
), the

estimate obtained below (see (1.16)) is not valid, but a modified estimate can usually be found
on a case-by-case basis. So here we proceed with assumption (1.8).
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Considering the second term on the r.h.s. of (1.7), we first recall that f satisfies the Lipschitz
condition with respect to y, which means that

|fy| ≤ M2 for some M2 < ∞, (1.9)

except possibly at a finite number of y-values where fy does not exist (like at y = 0 for
f(y) = |y|). Finally, the other factor of the second term on the r.h.s. of (1.7) is also bounded,
because f is assumed to be continuous and on the closed region R (see the Existence and
Uniqueness Theorem in Lecture 0). Thus,

|f | ≤ M3 for some M3 < ∞. (1.10)

Combining Eqs. (1.7–1.10), we see that

|y′′(x∗
i )| ≤ M1 +M2M3 ≡ M < ∞ . (1.11)

Now combining Eqs. (1.6) and (1.11), we obtain:

|ϵi+1| ≤ (1 + hL)|ϵi|+
h2

2
M . (1.12)

This last equation implies that |ϵi+1| ≤ zi+1 , where zi+1 satisfies the following recurrence
equation:

zi+1 = (1 + hL)zi +
h2

2
M , z0 = 0 . (1.13)

(Condition z0 = 0 follows from the fact that ϵ0 = 0; see the initial conditions in Eqs. (1.1) and
(1.2).)

Thus, the error |ϵi| is bounded by zi, and we need to solve Eq. (1.13) to find that bound.
The way to do so is analogous to solving a linear inhomogeneous equation (see Section 0.4).
However, before we obtain the solution, let us develop an intuitive understanding of what kind
of answer we should expect. To this end, let us assume for the moment that L = 0 in Eq.
(1.13). Then we have:

zi+1 = zi +
h2

2
M = (zi−1 +

h2

2
M) +

h2

2
M = . . .

= z0 +
h2

2
M · i = 0 +

h2

2
M · xi − x0

h
= h · M(xi − x0)

2
= O(h) .

That is, the global error |ϵi| should have the size O(h). In other words,

Global error = Number of steps × Local error
or

O(h) = O
(
1
h

)
× O(h2)

Now let us show that a similar estimate also holds for L ̸= 0. First, solve the homogeneous
version of (1.13):

zi+1 = (1 + hL) zi ⇒ zi,hom = (1 + hL)i . (1.14)

Note that this is an analogue of ea(xi−x0) in Section 0.4, because

(1 + hL)i = (1 + hL)(xi−x0)/h|h→0 ≈ eL(xi−x0),
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where we have used the definition of xi, found after (1.1), and also the results of Section 0.5.
In close analogy to the method used in Section 0.4, we seek the solution of (1.13) in the

form zi = cizi,hom (with c0 = 0). Substituting this form into (1.13) and using Eq. (1.14), we
obtain:

ci+1(1 + hL)i+1 = (1 + hL) · ci(1 + hL)i +
h2

2
M ⇒

ci+1 = ci +
h2M

2 (1 + hL)i+1
= ci−1 +

h2M

2 (1 + hL)i+1−1
+

h2M

2 (1 + hL)i+1

= . . . = c0 +
i+1∑
k=1

h2M

2

1

(1 + hL)k

= |geometric series
h2M

2(1 + hL)

1− 1
(1+hL)i+1

1− 1
(1+hL)

=
hM

2L

(
1− 1

(1 + hL)i+1

)
. (1.15)

Combining (1.14) and (1.15), and using (0.16), we finally obtain:

zi+1 =
hM

2L

(
(1 + hL)i+1 − 1

)
=

hM

2L

(
(1 + hL)(xi+1−x0)/h − 1

)
≈ hM

2L

(
eL(xi+1−x0) − 1

)
= O(h),

⇒

|ϵi+1| ≤
hM

2L

(
eL(x−x0) − 1

)
= O(h) . (1.16)

This is the upper bound for the global error of the simple Euler method (1.2).

Thus, in the last two subsections, we have shown that for the simple Euler method:

• Local truncation error = O(h2);

• Discretization error = O(h);

• Global error = O(h).

The exponent of h in the global error is often referred to as the order of the finite-difference
method. Thus, the simpler Euler method is the 1st-order method.

Question: How does the above bound for the error change when we include the machine
round-off error (which occurs because numbers are computed with finite accuracy, usually
10−16)?

Answer: In the above formulae, replace h2M/2 by h2M/2 + r, where r is the maximum
value of the round-off error. Then Eq. (1.16) gets replaced with

|ϵi+1| ≤
(
h2M

2
+ r

)
1

hL

(
eL(x−x0) − 1

)
=

(
hM

2L
+

r

hL

)(
eL(x−x0) − 1

)
(1.17)

The r.h.s. of the above bound is schematically plotted in the figure below. We see that for very
small h, the term r/h can be dominant.
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Moral:

Decreasing the step size
of the difference equation
does not always result
in the increased accuracy
of the obtained solution.

total error 

discretization
error 

round−off error 

 step size  h

1.4 Modifications of the Euler method

In this subsection, our goal is to find finite-difference schemes which are more accurate than the
simple Euler method (i.e., the global error of the sought methods should be O(h2) or better).

Again, we first want to develop an intuitive understanding of how this can be done, and
then actually do it. So, to begin, we notice an obvious fact that the ODE y′ = f(x, y) is just a
more general case of y′ = f(x). The solution of the latter equation is y =

∫
f(x)dx. Whenever

we cannot evaluate the integral analytically in closed form, we resort to approximating the
integral by the Riemann sums.

A very crude approximation
to
∫ b

a
f(x)dx

is provided by the
left Riemann sums:

Yi+1 = Yi + h f(xi) .

This is the analogue of the
simple Euler method (1.2):

Yi+1 = Yi + h f(xi, Yi) .

left Riemann sums

x
0
 x

1
 x

2
 x

3
 

Approximations of the integral
∫ b

a
f(x)dx that are known to be more accurate than the left

Riemann sums are the Trapezoidal Rule and the Midpoint Rule:

Trapezoidal Rule:

Yi+1 = Yi + h
f(xi) + f(xi+1)

2
.

Its analogue for the ODE
is to look like this:

Yi+1 = Yi +
h

2
(f(xi, Yi) + f(xi+1, Yi + Ah)) ,

(1.18)
where the coefficient A is to be determined.
Method (1.18) is called
the Modified Euler method.

Trapezoidal Rule

x
0
 x

1
 x

2
 x

3
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Midpoint Rule:

Yi+1 = Yi + h f

(
xi +

h

2

)
.

Its analogue for the ODE
is to look like this:

Yi+1 = Yi + h f

(
xi +

h

2
, Yi +Bh

)
, (1.19)

where the coefficient B is to be determined.
We will refer to method (1.19) as
the Midpoint method.

Midpoint Rule

x
0
 x

1
 x

2
 x

3
 

The coefficients A in (1.18) and B in (1.19) are determined from the requirement that the
corresponding finite-difference scheme have the global error O(h2) (as opposed to the simple
Euler’s O(h)), or equivalently, the local truncation error O(h3). Below we will determine the
value of A. You will be asked to compute B along similar lines in one of the homework problems.

To determine the coeficient A in the Modified Euler method (1.18), let us rewrite that
equation while Taylor-expanding its r.h.s. using Eq. (0.6) with ∆x = h and ∆y = Ah:

Yi+1 = Yi +
h

2
f(xi, Yi) +

h

2

(
f(xi, Yi) + [hfx(xi, Yi) + (Ah)fy(xi, Yi)] + O(h2)

)
= Yi + hf(xi, Yi) +

h2

2
(fx(xi, Yi) + Afy(xi, Yi)) + O(h3) . (1.20)

Equation (1.20) yields the Taylor expansion of the computed solution Yi+1. Let us compare
it with the Taylor expansion of the exact solution y(xi+1). To simplify the notations, we will
denote y′i = y′(xi), etc. Then, using Eq. (1.7):

yi+1 = yi + hy′i +
h2

2
y′′i +O(h3)

= yi + hf(xi, yi) +
h2

2
(fx(xi, yi) + f(xi, yi)fy(xi, yi)) + O(h3) . (1.21)

Upon comparing the last lines of Eqs. (1.20) and (1.21), we see that in order for method (1.18)
to have the local truncation error of O(h3), one should take A = f(xi, Yi).

Thus, the Modified Euler method can be programmed into a computer code as follows:
Y0 = y0,
Ȳi+1 = Yi + hf(xi, Yi),

Yi+1 = Yi +
h

2

(
f(xi, Yi) + f(xi+1, Ȳi+1)

)
.

(1.22)

Remark 1: An alternative way to code in the last line of the above equation is

Yi+1 =
1

2

(
Yi + Ȳi+1 + hf(xi+1, Ȳi+1)

)
. (1.23)

This way is more efficient, because it requires only one evaluation of function f , which is
usually the most time-consuming operation, while the last line of (1.22) requires two function
evaluations.
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Remark 2: Note that when coding (1.22) (either in its original form or as described in
Remark 1), Ȳi+1 is updated at every step. Hence you do not need to store it in a vector
and hence can drop the index (i+1). That is, you can code the second line in (1.22) as:
Ybar = Y(i) + h*f(x(i), Y(i)).

In a homework problem, you will show that in Eq. (1.19), B = 1
2
f(xi, Yi). Then the

Midpoint method can be programmed as follows:
Y0 = y0,

Yi+ 1
2
= Yi +

h

2
f(xi, Yi),

Yi+1 = Yi + hf

(
xi +

h

2
, Yi+ 1

2

)
.

(1.24)

Remark 3: Similarly to Remark 2, Yi+ 1
2

is just a notation. You do not need to store this
vector and hence do not need to define a half-integer index.

Both the Modified Euler and the Midpoint methods have the local truncation error of O(h3)
and the discretization and global errors of O(h2). Thus, these are the 2nd-order methods. The
derivation of the local truncation error for the Modified Euler method is given in the Appendix
to this section. This derivation will be needed for solving some of the homework problems.

Remark 4: Different books use different names for the methods which we have called the Mod-
ified Euler and Midpoint methods.

1.5 An alternative way to improve the accuracy of a finite-difference
method: Richardson method / Romberg extrapolation

We have shown that the global error of the simple Euler method is O(h), which means that

Y h
i = yi +O(h) = yi + (a h+ b h2 + . . .) = yi + a h+O(h2) (1.25)

where a, b, etc. are some constant coefficients that depend on the function f and its derivatives
(as well as on the values of x), but not on h. The superscript h in Y h

i means that this particular
numerical solution has been computed with the step size h. We can now halve the step size
and re-compute Y

h/2
i , which will satisfy

Y
h/2
i = yi +

(
a
h

2
+ b

(
h

2

)2

+ . . .

)
= yi +

(
a
h

2
+O(h2)

)
. (1.26)

Let us clarify that Y
h/2
i is not the numerical solution at xi + (h/2) but rather the numerical

solution computed from x0 up to xi with the step size (h/2).
Equations (1.25) and (1.26) form a system of linear equations for the unknowns a and yi.

Solving this system, we find
yi = 2Y

h/2
i − Y h

i +O(h2) . (1.27)

Thus, a better approximation to the exact solution than either Y h
i or Y

h/2
i is Y improved

i =

2Y
h/2
i − Y h

i .

The above method of improving accuracy of the computed solution is called either the
Romberg extrapolation or Richardson method. It works for any finite-difference scheme, not
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just for the simple Euler. However, it is not computationally efficient. For example, to compute
Y improved as per Eq. (1.27), one requires one function evaluation to compute Y h

i+1 from Y h
i and

two function evaluations to compute Y
h/2
i+1 from Y

h/2
i (since we need to use two steps of size h/2

each). Thus, the total number of function evaluations to move from point xi to point xi+1 is
three, compared with two required for either the Modified Euler or Midpoint methods.

1.6 Appendix: Derivation of the local truncation error of the Mod-
ified Euler method

The idea of this derivation is the same as in Section 1.2, where we derived an estimate for
the local truncation error of the simple Euler method. The details of the present derivation,
however, are more involved. In particular, we will use the following formula, obtained similarly
to (1.7):

y′′′(x) =
d3y(x)

dx3
|use theODE =

d2f(x, y)

dx2
|use (1.7) and theChainRule again

= (fx + fyf)x
dx

dx
+ (fx + fyf)y

dy

dx
|use theProduct rule

= fxx + fxfy + 2ffxy + f(fy)
2 + f 2fyy . (1.28)

Let us recall that in deriving the local truncation error at point xi+1, one always assumes
that the exact solution yi and the computed solution Yi at the previous step (i.e. at point xi)
are equal: yi = Yi. Also, for brevity of notations, we will write f without arguments to mean
either f(xi, yi) or f(xi, Yi):

f ≡ f(xi, yi) = f(xi, Yi).

By the definition, given in Section 1.2, the local truncation error of the Modified Euler
method is computed as follows:

ϵME
i+1 = yi+1 − Y ME

i+1 , (1.29)

where yi+1 and Yi+1 are the exact and computed solutions at point xi+1, respectively (assuming
that yi = Yi). We first find yi+1 using ODE (1.1):

yi+1 = y(xi + h)

= yi + hy′i +
h2

2
y′′i +

h3

6
y′′′i +O(h4) |use (1.7) and (1.28)

= yi + hf +
h2

2
(fx + ffy) +

h3

6

(
fxx + fxfy + 2ffxy + f(fy)

2 + f 2fyy
)
+O(h4) .(1.30)

Above, to obtain the coefficient multiplying h3, note that y′′′i ≡ d y′′i /dx; hence one needs to take
d/dx of the previous term using the Chain Rule as in (1.7). For example: dfx/dx = fxx+fxyf .

We now find Y ME
i+1 from Eq. (1.22):

Y ME
i+1 = Yi +

h

2
( f + f(xi + h, Yi + hf) ) |for last term, use (0.6)with∆x=h and ∆y=hf in the next line

= Yi +
h

2

(
f +

{
f + [hfx + hffy] +

1

2!
[h2fxx + 2 · h · hf · fxy + (hf)2fyy] +O(h3)

})
= Yi + hf +

h2

2
(fx + ffy) +

h3

4
(fxx + 2ffxy + f 2fyy) +O(h4) . (1.31)
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Finally, subtracting (1.31) from (1.30), one obtains:

ϵME
i+1 = h3

[(
1

6
− 1

4

)
(fxx + 2ffxy + f 2fyy) +

1

6
(fx + ffy)fy

]
+ O(h4)

= h3

[
− 1

12
(fxx + 2ffxy + f 2fyy) +

1

6
(fx + ffy)fy

]
+ O(h4) . (1.32)

For example, let f(x, y) = ay, where a = const. Then

fx = fxx = fxy = 0, fy = a, and fyy = 0 ,

so that from (1.32) the local truncation error of the Modified Euler method, applied to the
ODE y′ = ay, is found to be

ϵME
i+1 =

h3

6
a3y + O(h4) .

1.7 Questions for self-assessment

1. What does the notation O(hk) mean?

2. What are the meanings of the local truncation error, discretization error, and global error?

3. Give an example when the triangle inequality (1.5) holds with the ‘<’ sign.

4. Be able to explain all steps made in the derivations in Eqs. (1.15) and (1.16).

5. Why are the Modified Euler and Midpoint methods called 2nd-order methods?

6. By using the expression for Ȳi+1 from (1.22), verify that (1.23) is equivalent to the last
line of (1.22).

7. Obtain (1.27) from (1.25) and (1.26).

8. Explain why the properly programmed Modified Euler method requires exactly two eval-
uations of f per step.

9. Why may one prefer the Modified Euler method over the Romberg extrapolation based
on the simple Euler method?


